
Shah and Dang / Front Inform Technol Electron Eng 2020 21(3):465-475 465

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

Aneffective approach for low-complexity
maximum likelihood based automatic modulation

classification of STBC-MIMOsystems∗

Maqsood H. SHAH‡, Xiao-yu DANG
College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics,

Nanjing 211106, China

E-mail: maqsood@nuaa.edu.cn; dang@nuaa.edu.cn

Received May 16, 2018; Revision accepted Sept. 24, 2018; Crosschecked Oct. 10, 2019; Published online Dec. 27, 2019

Abstract: A low-complexity likelihood methodology is proposed for automatic modulation classification of or-
thogonal space-time block code (STBC) based multiple-input multiple-output (MIMO) systems. We exploit the
zero-forcing equalization technique to modify the typical average likelihood ratio test (ALRT) function. The pro-
posed ALRT function has a low computational complexity compared to existing ALRT functions for MIMO systems
classification. The proposed approach is analyzed for blind channel scenarios when the receiver has imperfect chan-
nel state information (CSI). Performance analysis is carried out for scenarios with different numbers of antennas.
Alamouti-STBC systems with 2 × 2 and 2 × 1 and space-time transmit diversity with a 4× 4 transmit and receive
antenna configuration are considered to verify the proposed approach. Some popular modulation schemes are used
as the modulation test pool. Monte-Carlo simulations are performed to evaluate the proposed methodology, using
the probability of correct classification as the criterion. Simulation results show that the proposed approach has
high classification accuracy at low signal-to-noise ratios and exhibits robust behavior against high CSI estimation
error variance.
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classification; Zero-forcing

https://doi.org/10.1631/FITEE.1800306 CLC number: TP391.4

1 Introduction

Study on automatic modulation classification
(AMC) has its roots in the military requirements
for electronic warfare operations, such as spectrum
surveillance and communication intelligence. How-
ever, with the emergence of software-defined radio
(SDR) and cognitive radio in the last couple of
decades, AMC has found significance for civilian
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applications. For example, AMC can be used to
avoid interference in a congested radio environment.
A transmission unit can tune its parameters on the
basis of a classified modulation in an adjacent chan-
nel, and keep the interference to the minimum. In
the case of SDR, where overhead data is transmit-
ted along with the main payload for reconfiguration,
AMC can be used to optimize the transmission effi-
ciency (Bahloul et al., 2016).

A lot of work has been done with regard
to AMC for single-input and single-output (SISO)
systems (Dobre et al., 2007). With the emer-
gence of multiple-input multiple-output (MIMO)
systems, which tackle the modern requirements of
high data rates and reliability in multi-path fading
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environments, the problem of AMC poses new
challenges. Space-time block code (STBC) is a
methodology in the context of MIMO systems, send-
ing multiple copies of the desired signal for high reli-
ability transmission. Many variants of this technique
have been proposed (Alamouti, 1998; Tarokh et al.,
1999). More recently, STBC-MIMO has found its
application in optical wireless communications. A
robust method based on Alamouti-STBC (Al-STBC)
was proposed which can perform well under turbu-
lent atmospheric conditions (Niu et al., 2014; Thao
et al., 2016). In the context of power line commu-
nication networks, different variants of STBC have
been used to achieve enhanced performance (Quan
and Ribeiro, 2011; Tseng et al., 2017). STBC has also
been used in cooperative relay scenarios to achieve
high data rates. Veljovic and Urosevic (2017) used
orthogonal STBC (OSTBC) with a configuration of
4×1 to achieve 3/4 data rate. Similarly, a distributed
quasi OSTBC was used to achieve better bit-error-
rate performance (Tseng and Liao, 2014).

There are different MIMO techniques which are
still evolving with contemporary developments in
the field of communications. AMC for MIMO sys-
tems is still a very active research area. There are
two broader categories for modulation classification
algorithms, decision-theoretic (or likelihood-based)
(Huang and Polydoros, 1995; Sills, 1999; Wei and
Mendel, 2000) and pattern recognition (or feature-
based) (Nandi and Azzouz, 1997, 1998; Swami and
Sadler, 2000). The likelihood-based approach is a
probabilistic solution and performs optimal classifi-
cation in the Bayesian sense. It is based on prior
knowledge of the probability distribution and hy-
pothesis (Sills, 1999). The feature-based approach
depends on some basic features (or characteristics)
of a received signal (Nandi and Azzouz, 1997). There
are two broader categories to solve the classification
problem after obtaining the feature set, hierarchical
tree based (Swami and Sadler, 2000) and machine
learning based approaches. The support vector ma-
chine (Zhu et al., 2011), k-nearest neighbor (Aslam
et al., 2012), and artificial neural network (Nandi
and Azzouz, 1998) are some of the machine learn-
ing based modulation classifiers. Recently, evolution
of deep learning for pattern recognition has inspired
work in the field of communications. Ali and Fan
(2017) used deep learning to perform modulation
classification without explicit extraction of a feature

set. However, most of the AMC work in deep learn-
ing still pertains to SISO systems.

Eldemerdash et al. (2013) proposed a feature-
based approach for modulation classification of Al-
STBC systems. For spatially correlated MIMO sys-
tems, a feature-based approach using higher-order
moments and cumulants was proposed in Hassan
et al. (2010). Some other feature-based (Shi et al.,
2007; Mühlhaus et al., 2012; Marey and Dobre, 2015)
and maximum likelihood (ML) based methodologies
(Choqueuse et al., 2010; Luo et al., 2012; Salam et al.,
2015; Turan et al., 2016) have been proposed for
AMC of different MIMO systems. The computa-
tional complexity of likelihood functions proposed in
these studies increases with the increase of the num-
ber of antennas, which makes them less practical for
higher numbers of antennas in real-time scenarios.

In this study, we propose an ML-based modula-
tion classification approach for OSTBC-MIMO sys-
tems. We exploit the zero-forcing (ZF) equalization
technique to achieve a consequential low-complexity
solution. An updated ALRT function, independent
of the antenna number, is proposed using the ZF-
equalized symbols for classification. The impact of
the CSI estimation error (Beres and Adve, 2007) on
modulation classification is simulated and discussed.
The proposed algorithm has been verified for the Al-
STBC system with 2 × 2 and 2 × 1 and space-time
transmit diversity (STTD) with a 4×4 transmit and
receive antenna configuration. The probability of
correct classification is used as the performance cri-
terion. Simulations reveal high classification accu-
racy at a practical signal-to-noise ratio (SNR) range
and CSI estimation error variance.

2 System model

In this section the general flow of the overall
classification process is explained briefly. Fig. 1 de-
picts an overall flow diagram of our system model. In
the radio frequency preprocessing block, the signal
received by Nr antennas is mixed with a correlated
channel matrix and subsequently provided as input
to the ZF equalization block after addition of ad-
ditive white Gaussian noise (AWGN). Typical ML-
based modulation classification methodologies con-
sider non-equalized symbols at multiple receive an-
tennas. In this study, we use the symbols after ZF
equalization for ML-based classification.
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Fig. 1 Overall process flow diagram of the proposed
study

For a MIMO system with Nt transmit antennas
and Nr receive antennas, the received signal vector
is given by

R = HS +N , (1)

where R is the receive data vector, H is the block-
fading channel with Rayleigh distribution, S is the
transmitted vector consisting of modulated symbols,
and N is the AWGN channel vector with variance
σ2
n.

The signal model for Al-STBC (2 × 2, 2 × 1)
and for STTD (4 × 4) transmit and receive antenna
configurations is further explained in the following
subsections.

2.1 Al-STBC with 2 × 2 MIMO configuration

Alamouti block coding is a transmit diversity
technique which can be used in the 2 × 1 multiple-
input and single-output (MISO) and 2 × 2 MIMO
configurations (Alamouti, 1998). We consider the
2 × 2 MIMO configuration to elaborate the signal
model and achieve a generalized received signal vec-
tor form. Table 1 represents the Al-STBC scheme,
where s2k+1 and s2k+2 are symbols transmitted by
antennas 1 and 2 at time slot 2k + 1, respectively.
Similarly, −s∗2k+2 and s∗2k+1 are symbols transmitted
by antennas 1 and 2 at time slot 2k + 2, respectively,
where * represents the conjugate, k ∈ 0, 1, . . . , L/2,
and L is the block length of data symbols. The
process of received vector combination for multiple

Table 1 Al-STBC code

Antenna
Time slot

2k + 1 2k + 2

1 s2k+1 −s∗2k+2

2 s2k+2 s∗2k+1

antennas at different time slots is elaborated for the
2× 2 Al-STBC configuration, which is subsequently
generalized for other scenarios.

The received signals for antennas 1 and 2 at time
slot 2k + 1 are given by

(2k+1)
r1 = h11s2k+1 + h12s2k+2 +

(2k+1)
n1 , (2)

(2k+1)
r2 = h21s2k+1 + h22s2k+2 +

(2k+1)
n2 . (3)

In Eqs. (2) and (3), overset is used to denote the
time slot and the subscript emphasizes the antenna
number. The received signals for antennas 1 and 2
at time slot 2k + 2 can be given by

(2k+2)
r1 = h11(−s∗2k+2) + h12s

∗
2k+1 +

(2k+2)
n1 , (4)

(2k+2)
r2 = h21(−s∗2k+2) + h22s

∗
2k+1 +

(2k+2)
n2 . (5)

By taking the conjugate of Eqs. (4) and (5) and
rearranging to obtain a combined received vector for
both antennas at time slots 2k + 1 and 2k + 2, we
have

(2k+1)

R =

⎡
⎣
(2k+1)
r1

(2k+1)
r2

⎤
⎦=

[
h11 h12
h21 h22

][
s2k+1

s2k+2

]
+

⎡
⎣
(2k+1)
n1

(2k+1)
n2

⎤
⎦ , (6)

(2k+2)

R =

⎡
⎣
(2k+2)

r∗1
(2k+2)

r∗2

⎤
⎦=

[
h∗12 −h∗11
h∗22 −h∗21

][
s2k+1

s2k+2

]
+

⎡
⎣
(2k+2)

n∗
1

(2k+2)

n∗
2

⎤
⎦. (7)

By combining the received vectors for different
time slots in Eqs. (6) and (7), we have

←→
R =

←→
HS +

←→
N , (8)

where ↔ represents the concatenation operation,

←→
R =

⎡
⎣
(2k+1)

R
(2k+2)

R

⎤
⎦,
←→
H =

⎡
⎣
(2k+1)

H
(2k+2)

H

⎤
⎦, and

←→
N =

⎡
⎣
(2k+1)

N
(2k+2)

N

⎤
⎦.

2.2 STTD with 4 × 4 MIMO configuration

The space-time code for four antennas, using
STTD and orthogonal transmit diversity (OTD),
was defined by Jalloul et al. (1999). Table 2 shows
the STBC for four transmit antennas.

Following a similar process for 2 × 2 Al-STBC
as in the previous subsection, we can write the com-
bined received vector for the 4 × 4 STBC-MIMO
configuration as
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Table 2 Orthogonal STTD-OTD code

Antenna
Time slot

4k + 1 4k + 2 4k + 3 4k + 4

1 s4k+1 −s∗4k+2 s4k+1 −s∗4k+2

2 s4k+2 s∗4k+1 s4k+2 s∗4k+1

3 s4k+3 −s∗4k+4 −s4k+3 s∗4k+4

4 s4k+4 s∗4k+3 −s4k+3 −s∗4k+3

↔
R=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(4k+1)

R
(4k+2)

R
(4k+3)

R
(4k+4)

R

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(4k+1)

H
(4k+2)

H
(4k+3)

H
(4k+4)

H

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣

s4k+1

s4k+2

s4k+3

s4k+4

⎤
⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(4k+1)

N
(4k+2)

N
(4k+3)

N
(4k+4)

N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

The generalized form for the combined received
vector for multiple antennas and time slots is thus
given by

←→
R (NtNr×1)=

←→
H (NtNr×Nt)S(Nt×1)+

←→
N (NtNr×1).

(10)

The combined channel matrix
↔
H depends on the

number of receive antennas Nr and orthogonal code.
The subscripts in Eq. (10) represent the dimension
of vectors.

3 Channel estimation model and zero-
forcing equalization

3.1 CSI estimation error model

For the full-blind classification scenario, the CSI
matrix has to be estimated before applying ZF equal-
ization (Beres and Adve, 2007). We do not perform
CSI estimation in our study. However, we model the
estimated channel to investigate the effect of the esti-
mation error in our proposed methodology. Eq. (11)
represents the modeled estimated channel Ĥ:

Ĥ = H + σ2
eα, (11)

where Ĥ is the estimated channel matrix, σ2
e is the

variance of the channel estimation error, and α is
the matrix of the same size as H and has the en-
tries (zero-mean and unit variance) which are inde-
pendent and identically distributed (i.i.d.) random
variables with a standard normal distribution.

3.2 Zero-forcing equalization

ZF equalization uses the inverse of a channel re-
sponse to recover the equalized symbols. Once sym-
bols of block length L are received at multiple receive
antennas, we use the ZF equalization method to ob-
tain the equalized symbols, which are then passed on
as input to the ML framework for modulation clas-
sification. Eq. (10) shows the generalized combined
received signals for multiple time slots at different
receive antennas. We need to solve Eq. (10) for vec-
tor S. The pseudo-inverse of a matrix is defined
by H† = (HHH)−1HH (Ben-Israel and Greville,
2003). Equation for the equalized symbol vector Ŝ

is thus given by

Ŝ = H†(HS +N), (12)

Ŝ = S +H†N � S + ((HHH)−1HH)N , (13)

where † denotes the pseudo-inverse and ∧ empha-
sizes the equalized received symbols. Finally, for the
block of length L, the equalized symbol vector Ŝ

is concatenated and used in the ML framework for
modulation classification.

4 Proposed maximum likelihood
framework

A decision-theoretic based approach for mod-
ulation classification is based on the ML works of
the principle of hypothesis testing for multiple un-
knowns (Sills, 1999). We represent our likelihood
function for a certain modulation ψ by Λ(R|ψ,H),
where R is the received signal vector, ψ represents
the modulation format, and H is the channel coef-
ficient matrix for a flat-fading Rayleigh channel. In
the context of the ML framework, the most probable
classified modulation is the one that maximizes the
above likelihood function (Choqueuse et al., 2010;
Luo et al., 2012), such that

ψ̂ = argmax
ψ∈Θ

(Λ(R|ψ,H)), (14)

where ψ̂ denotes the classified modulation and
Θ = {ψ1, ψ2, . . . , ψn} represents the modulation
pool for which the likelihood function is maximized.
In our case, some popular modulation schemes, in-
cluding binary phase shift keying (BPSK), quadra-
ture phase shift keying (QPSK), 8 phase shift key-
ing (8PSK), and 16 quadrature amplitude modula-
tion (16QAM), are used as the modulation test pool.
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Θ = (ψ1 = BPSK, ψ2 = QPSK, ψ3 = 8PSK, ψ4 =

16QAM). A likelihood function depends on certain
random variables. In our case, transmitted symbols
S and Gaussian noise are the intrinsic random vari-
ables. ALRT is the optimal solution in the Bayesian
sense, as given by Choqueuse et al. (2010).

Λ(R|ψ,H) =

∫

S

Λ(R|ψ, S,H)P [S/ψ]dS, (15)

where S is the transmitted symbol corresponding to
modulation under test and P [S/ψ] is the probability
of S under modulation ψ. Since we assume that
transmitted symbols are i.i.d. random variables, we
can rewrite Eq. (15) as

Λ(R|ψ,H) =

L∏
k=1

∫

S(k)

Λ(R(k)|ψ, S(k),H)P [S(k)/ψ]dS.
(16)

Since P [S(k)/ψ] is equal to 1/(MNt), where M
is the number of constellation points and Nt is the
number of transmit antennas, Eq. (16) can be re-
written as

Λ(R|ψ,H) =

1

ML·Nt

L∏
k=1

∑
S(k)∈ψNt

Λ(R(k)|ψ, S(k),H).
(17)

For a received signalR(k) given the channel ma-
trix H and noise variance σ2

n, the probability density
function is given by

Λ(R(k)|S(k),H) =

1

(πσ2
n)
Nr

exp

(
− 1

σ2
n

||R(k) −HS(k)||2F
)
.

(18)

Substituting Eq. (17) into Eq. (16), we have

Λ(r|ψ,H) =
1

(ML·Nt)(πσ2
n)
Nr

L∏
k=1

∑
S(k)∈ψNt

exp

[
− 1

σ2
n

||R(k) −HS(k)||2F
]
.

(19)

Maximizing Eq. (19) can give us the desired clas-
sification results. However, for ease of analysis, the
log likelihood function of Eq. (19) is used instead:

log(Λ(R|ψ,H)) = −LNt logM −Nr log(πσ
2
n)+

L∑
k=1

log

⎛
⎝ ∑
S(k)∈ψNt

exp

(
−||R(k)−HS(k)||2F

σ2
n

)⎞
⎠. (20)

In Eq. (20), L is the block length of symbols, H
is the channel matrix, Nt and Nr are the numbers of
transmit and receive antennas respectively, σ2

n is the
noise variance, and M is the number of constellation
points corresponding to hypothesis ψ.

It is evident from Eq. (20) that the computa-
tional complexity of the log likelihood function in-
creases with the increasing number of transmitters.
For Al-STBC and STTD-OTD MIMO schemes dis-
cussed in the previous section, we propose a different
approach to use this ALRT function, which gets rid
of this additional complexity due to the increasing
number of transmitters. Instead of using the received
vector R at different antennas, we use the equalized
symbol vector Ŝ derived in Eq. (12) for ML estima-
tion. The updated low-complexity ALRT function is
accordingly given by

log(Λ(Ŝ|ψ,H)) = −L logM − log(πσ2
n)

+

L∑
k=1

log

⎛
⎝ ∑
S(k)∈ψ

exp

[
−||Ŝ − S(k)||

2
F

σ2
n

]⎞
⎠ .

(21)

This function is evaluated via Monte-Carlo sim-
ulations for three different scenarios of OSTBC-
MIMO systems, which are discussed in Section 5.

The proposed ALRT function in Eq. (21) is inde-
pendent of the number of transmit antennas (Nt) or
receive antennas (Nr). A typical ALRT function for
a MIMO system (Choqueuse et al., 2009; Luo et al.,
2012) as given in Eq. (20) has exponential operations
of order (MN)Nt , where M is the order of the mod-
ulation scheme, N is the number of samples, and Nt

is the number of transmit antennas. Our proposed
methodology manages to get rid of the additional
complexity of order O(Nt) caused by the additional
number of antennas and has exponential operations
of order MN similar to that of a SISO system. In
the case of a full-blind classification scenario, the
channel matrix H has to be estimated before the ZF
equalization stage and the proposed ALRT function
is also independent of H .

We achieve ZF equalization using Moore-
Penrose pseudo-inverse (Ben-Israel and Greville,
2003). Pseudo-inverse has been used in very diverse
areas and a lot of work has been done to optimize
its complexity (Courrieu, 2008; Saurabh, 2015). The
built-in MATLAB function that we used to carry
out simulations is based on spectral value decompo-
sition. In general, the complexity of a pseudo-inverse
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is of order O(nω) (Cormen et al., 2009), where n is
the matrix dimension and ω is the matrix multipli-
cation constant with an upper bound of 2.372 863 9
(Le Gall, 2016).

5 Simulation results

The performance of the proposed algorithm is
evaluated in this section. Five hundred Monte-Carlo
iterations were performed for each modulation hy-
pothesis (ψi) among a modulation pool of BPSK,
QPSK, 8PSK, and 16QAM. The Al-STBC MIMO
system with 2× 2 and 2× 1 and STTD-OTD with a
4× 4 antenna configuration were considered for ver-
ification of the proposed algorithm. Classification
performance for each system was evaluated with and
without consideration of the perfect CSI knowledge.
An SNR range of −15 to 15 dB with 1 dB increment
and CSI estimation error variance σ2

e = {0, 0.1, 0.3}
were considered for performance evaluation. For ease
of graphical visualization, the Pcc of modulations
other than the hypothesis (or falsely classified modu-
lations) were averaged for different values of σ2

e such
that

AvgPcc(ψi|ψj) = 1

3

3∑
n=1

Pcc(ψi|ψj)|(σ2
e (n)), (22)

where i �= j, σ2
e (1) = 0 when the receiver has perfect

CSI knowledge, σ2
e (2) = 0.1, and σ2

e (3) = 0.3. Sim-
ulation results for three different configurations are
discussed separately in subsequent subsections.

5.1 Performance of 2 × 1 Al-STBC

All simulations were carried out for a length
of L = 1024 i.i.d. modulated symbols. The signal
power and modulation type from all the transmit
antennas were assumed to be the same, and the num-
ber of transmit antennas Nt and noise variance σ2

n

were known at the receiver. Fig. 2 shows the clas-
sification results for Al-STBC for the 2 × 1 antenna
configuration. Figs. 2a–2d show the percentage of
correct classification when BPSK, QPSK, 8PSK, and
16QAM were transmitted. When σ2

e = 0 (with per-
fect CSI knowledge), 100% classification results were
achieved at almost 5 dB and beyond for all hypothe-
ses. In the case of imperfect CSI, when σ2

e = 0.1,
90% correct classification was achieved at 5 dB and
beyond for BPSK, QPSK, and 16QAM and at 0 dB
for 8PSK. When σ2

e = 0.3, more than 70% correct

classification was achieved at 5 dB for BPSK and
QPSK and at 0 dB for 16QAM. For 8PSK, 90% cor-
rect classification was achieved at 5 dB and beyond
when σ2

e = 0.3.

5.2 Performance of 2 × 2 Al-STBC

Classification results for Al-STBC with a 2 × 2

antenna configuration are depicted in Fig. 3. As
expected, the performance has been significantly im-
proved compared to the 2×1 MISO scenario. Fig. 3a
shows the percentage of correct classification when
BPSK was transmitted. When σ2

e = 0, 100% correct
classification was achieved at −3 dB and beyond.
In the case of imperfect CSI , when σ2

e was 0.1,
more than 90% correct classification was achieved
at 0 dB and beyond. However, when σ2

e = 0.3, more
than 80% correct classification was achieved at 0 dB
and beyond. Similar results can be deduced from
Figs. 3b–3d, which show the correct classification
percentage for QPSK, 8PSK, and 16QAM transmis-
sions. With perfect CSI knowledge, QPSK, 8PSK,
and 16QAM transmissions all achieved 100% correct
classification at −3 dB and beyond. When σ2

e = 0.1,
QPSK, 8PSK, and 16QAM achieved at least 90%
correct classification at −2, −5, and −2 dB, respec-
tively. In the case of σ2

e = 0.3, 90% correct classifi-
cation was achieved at 0 dB for QPSK and 16QAM
and at −5 dB for 8PSK.

5.3 Performance of 4 × 4 STTD-OTD

The classification results for 4 × 4 STTD-OTD
are shown in Fig. 4. It is evident from Figs 4a–4d
that a perfect classification in the case of σ2

e = 0

was achieved at −9, −8, −5, and −8 dB for BPSK,
QPSK, 8PSK, and 16QAM, respectively. When σ2

e =

0.1 and 0.3, more than 90% correct classification was
achieved at −5 dB and beyond.

It can be generalized in view of the above simula-
tion results for all the three presented scenarios that
classification performance increases with the increas-
ing number of receive antennas. The best results
were achieved in the 4 × 4 antenna configuration.
When a channel estimation error variance σ2

e was up
to 0.3, the results for 2 and 4 antennas were very
promising with almost 90% correct classification at
less than −5 dB.
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6 Discussion and future work

For all the modulation hypotheses in the
three scenarios discussed above, considerably high
classification results were achieved even at CSI esti-
mation error variance σ2

e = 0.3, which has not been
reported in the literature to the best of our knowl-
edge. Confusion matrices of all the three configura-
tions, 2×1, 2×2, and 4×4, for σ2

e=0, 0.1, and 0.3 at
0 dB SNR, are provided in Table 3. It is evident that

in the case of perfect CSI (σ2
e = 0), 2 × 2 and 4 × 4

MIMO configurations exhibited perfect classification
results. However, for the 2 × 1 MISO configuration,
more than 90% correct classification was achieved.
From Table 3, we can observe that for the 2×1 MISO
configuration at σ2

e = 0.3, BPSK was falsely classi-
fied as 8PSK and 16QAM for about 20% and 15% of
the instances, respectively. Similarly, when σ2

e = 0.3,
BPSK had the lowest classification accuracy of 78%
for the 2×2 configuration. It was falsely classified as
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e

Table 3 Confusion matrices for 2× 1, 2× 2, and 4× 4 configurations at σ2
e = {0,0.1,0.3} with 0 dB SNR

Configuration
σ2
e = 0 σ2

e = 0.1 σ2
e = 0.3

BPSK QPSK 8PSK 16QAM BPSK QPSK 8PSK 16QAM BPSK QPSK 8PSK 16QAM

BPSK 88 1 8 3 70 6 15 9 56 9 20 15
2× 1 QSPK 2 90 6 2 4 78 10 8 8 60 18 14
MISO 8PSK 0 1 98 1 0 5 91 4 4 4 88 4

16QAM 1 1 7 91 3 6 9 82 7 11 13 69

BPSK 100 0 0 0 96 0 4 0 78 5 8 7
2× 2 QSPK 0 100 0 0 0 95 3 2 2 90 7 1

MIMO 8PSK 0 0 100 0 1 2 95 2 1 3 91 5
16QAM 0 0 0 100 0 2 4 94 2 1 7 90

BPSK 100 0 0 0 98 2 0 0 96 1 3 0
4× 4 QSPK 0 100 0 0 0 98 0 2 1 94 3 1

MIMO 8PSK 0 0 100 0 4 0 97 2 2 5 85 8
16QAM 0 0 0 100 0 1 2 97 1 2 2 95
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QPSK, 8PSK, and 16QAM for 5%, 8%, and 7% of the
trials, respectively. When σ2

e = 0.1, 95% and 97.5%
correct classifications were achieved in the cases of
2 × 2 and 4 × 4 configurations, respectively. Simi-
larly, an average of 92.5% correct classification was
achieved for the 4×4 configuration at 0 dB SNR and
σ2
e = 0.3.

Table 4 gives a brief comparison of our proposed
approach with some state-of-the-art AMC method-
ologies for MIMO systems. Although the underlying
assumptions and MIMO system configurations may
vary among each of the referred articles, they can still
provide a fair comparison in terms of average clas-
sification accuracy. For instance, Choqueuse et al.
(2009) used ALRT to tackle modulation classifica-
tion in the MIMO system with a 2× 4 configuration
without perfect CSI. However, channel estimation er-
ror variance σ2

e was not provided. Choqueuse et al.
(2009) achieved an average classification accuracy of
93% for the unknown channel scenario and around
98% in the case of perfect channel knowledge.

In Hassan et al. (2012), higher-order statisti-
cal moments and cumulants were used, and about
75% classification accuracy was achieved at 5 dB
SNR and σ2

e = 0.1. In Turan et al. (2016), a joint
probability distribution function was proposed for
unknown antenna numbers and modulation type.
However, it gave classification results with perfect
channel knowledge only, i.e., 90% classification ac-
curacy on average at 0 dB SNR. Luo et al. (2012)
used an ML-based approach with a 2 × 3 antenna
configuration and achieved about 93% classification
accuracy on average at 0 dB SNR without perfect
channel knowledge. However, the estimation error
was not provided in this study. In Mühlhaus et al.
(2012), fourth-order cumulants were used as the fea-
ture space for classification. An average classification
accuracy of 94% was achieved without perfect CSI
knowledge.

Table 4 Comparison of the proposed approach with
the state-of-the-art methodologies with 0 dB SNR
and imperfect CSI

Literature Basic approach Nt ×Nr Pcc

Choqueuse et al. (2009) ML-based 2× 4 93.0%
Hassan et al. (2012) Feature-based 2× 4 75.0%
Turan et al. (2016) ML-based 2× 4 90.0%
Luo et al. (2012) ML-based 2× 3 93.0%
Mühlhaus et al. (2012) Feature-based 2× 4 94.0%
This paper ML-based 4× 4 97.5%

The methodology proposed in this study
achieved an average accuracy of about 97.5% at 0
dB SNR with a channel estimation error variance
of σ2

e = 0.1 for a 4 × 4 STBC-MIMO configura-
tion. Complexity analysis for ML-based schemes was
carried out in Section 4, and the approach proposed
in this study provided the least complex solution
among the ML candidates to the best of our knowl-
edge. A detailed summary of state-of-the-art solu-
tions based on ML and feature was given in Bahloul
et al. (2016). However, most approaches deal with
non-orthogonal MIMO systems for no more than two
transmit antennas.

Based on the review in Section 1, AMC research
for MIMO systems is still evolving and there are cer-
tain avenues which need further exploration. There
are some aspects that we intend to tackle as part of
our future research:

1. Use the potential of deep learning to tackle
the problems of AMC in MIMO systems, where the
number of transmit antennas is also unknown at the
receiver.

2. Classify nonlinear modulations which are
used in satellite communication such as minimum
shift keying (MSK), Gaussian-MSK (GMSK), and
Feher-patennted QPSK (FQPSK).

3. Expand the number of target modulations.
4. Work with signals received from the real en-

vironment for more realistic analysis.

7 Conclusions

A simple yet effective methodology has been
proposed in this study to tackle the problems of AMC
in STBC-MIMO systems. Using the ZF equaliza-
tion technique, we modified the typical ALRT func-
tion for modulation classification of MIMO systems.
The proposed ALRT function is independent of the
number of antennas and the CSI matrix, and of-
fers a considerably low-complexity likelihood solu-
tion for STBC-MIMO systems. Monte-Carlo sim-
ulations of 500 iterations for each hypothesis were
carried out to verify the proposed approach. To
the best of our knowledge, there has been no study
which deals with modulation classification of STBC-
MIMO for more than two antennas. Besides typical
Al-STBC for 2 × 1 and 2 × 2 scenarios, we investi-
gated the proposed approach for a 4×4 STBC-MIMO
configuration. Moreover, the proposed approach has
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been thoroughly investigated for blind channel sce-
narios with different values of the channel estimation
error. Simulation results showed a promising classi-
fication outcome for a wide range of SNR and robust
behavior against high CSI estimation error variance.
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