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Abstract: Parameter estimation of the 2R-1C model is usually performed using iterative methods that require
high-performance processing units. Consequently, there is a strong motivation to develop less time-consuming
and more power-efficient parameter estimation methods. Such low-complexity algorithms would be suitable for
implementation in portable microcontroller-based devices. In this study, we propose the quadratic interpolation
non-iterative parameter estimation (QINIPE) method, based on quadratic interpolation of the imaginary part of
the measured impedance, which enables more accurate estimation of the characteristic frequency. The 2R-1C model
parameters are subsequently calculated from the real and imaginary parts of the measured impedance using a set
of closed-form expressions. Comparative analysis conducted on the impedance data of the 2R-1C model obtained
in both simulation and measurements shows that the proposed QINIPE method reduces the number of required
measurement points by 80% in comparison with our previously reported non-iterative parameter estimation (NIPE)
method, while keeping the relative estimation error to less than 1% for all estimated parameters. Both non-iterative
methods are implemented on a microcontroller-based device; the estimation accuracy, RAM, flash memory usage,
and execution time are monitored. Experiments show that the QINIPE method slightly increases the execution time
by 0.576 ms (about 6.7%), and requires 24% (1.2 KB) more flash memory and just 2.4% (32 bytes) more RAM in
comparison to the NIPE method. However, the impedance root mean square errors (RMSEs) of the QINIPE method
are decreased to 42.8% (for the real part) and 64.5% (for the imaginary part) of the corresponding RMSEs obtained
using the NIPE method. Moreover, we compared the QINIPE and the complex nonlinear least squares (CNLS)
estimation of the 2R-1C model parameters. The results obtained show that although the estimation accuracy of
the QINIPE is somewhat lower than the estimation accuracy of the CNLS, it is still satisfactory for many practical

purposes and its execution time reduces to
1

45
–
1

30
.
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1 Introduction

Non-destructive techniques for evaluation of the
properties of materials, processes, and structures in-
cluding electrical impedance spectroscopy, dielectric
spectroscopy, thermal imaging, eddy current test-
ing, as well as magnetic particle, radiographic, and
ultrasonic methods, have been a topic of high im-
portance and interest in the scientific community.
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For example, electrical impedance spectroscopy is a
powerful and widely used technique in many fields
for unraveling the complex nonlinear processes of
many material-material interfaces and applications.
In these applications, measured electrical impedance
as a function of the excitation frequency can reveal
the internal dynamics of underlying processes (Bar-
soukov and Macdonald, 2005). Different material-
material interfaces, structural characteristics, and
internal connections can be modeled using equiva-
lent electrical circuits. In the literature, electrical
circuits have been reported as an approach for mod-
eling of sensors (Simić et al., 2017b; Vargas-Bernal
et al., 2018), biological cells and bioimpedance (Qiao
et al., 2012; Sánchez Terrones et al., 2013), solar
cells (Kern et al., 2002), proton exchange membrane
(PEM) fuel cells (Wang et al., 2005), batteries (Moss
et al., 2008; Dong et al., 2011), as well as in unsteady
heat transfer analysis (Wang et al., 2018) and pre-
diction of total body water volume (Gheorghe et al.,
2012).

The structure of an equivalent electrical circuit
is usually chosen based on previous knowledge of the
structure of the materials, material-material inter-
faces, and the physical processes involved. Estima-
tion of model parameters focuses on finding their
values, thus ensuring a small difference between the
measured impedance and the impedance calculated
using the estimated values of the model parame-
ters. Equivalent circuit models have traditionally
consisted of basic electrical elements such as resistors
(R), inductors (L), and capacitors (C). However,
the continuously increasing power of available com-
puting units allows the use of very complex models
containing empirical elements such as the constant
phase element (CPE) and the Warburg diffusion el-
ement. Recently, concepts from fractional calculus
(i.e., non-integer order differentiation) and integra-
tion have also been applied to parameter estimation
of equivalent electrical circuits (Maundy et al., 2015;
Freeborn et al., 2017; Al-Ali et al., 2018). Neverthe-
less, many electrochemical processes have inherently
capacitive electrical behaviors, which can be modeled
using simple R-C models, rather than more complex
models (Kern et al., 2002; Wang CS et al., 2005;
Moss et al., 2008; Dong et al., 2011; Gheorghe et
al., 2012; Qiao et al., 2012; Sánchez Terrones et al.,
2013; Manjakkal et al., 2014, 2015a, 2015b; Simić
et al., 2017b; Vargas-Bernal et al., 2018; Wang Z et

al., 2018). A notable example is the parallel 2R-1C
model, which consists of two resistors (R1 and R2)
and one capacitor (C2), with two branches connected
in parallel (Fig. 1). Its popularity is mainly due to
its simplicity and ability to assign a direct physical
interpretation to model parameters (Sanchez et al.,
2013).

R1

R2 C2

Fig. 1 The parallel 2R-1C model

As an example, in bioimpedance analysis a bio-
logical cell can be modeled using the parallel 2R-1C
model, where R1 is the resistance of the extracel-
lular space, R2 the resistance of the intracellular
space, and C2 represents the capacitance of the cell
membrane. Furthermore, the 2R-1C model allows
identification of changes in model parameters which
represent changes in the corresponding physical phe-
nomena. Specifically, changes in cell membrane ca-
pacitance (C2 in the model) reflect the characteristic
features of the occurrence of many processes in the
cell (Bertrand and Hopfer, 2002), such as the fu-
sion of vesicles with the plasma membrane (Santos-
Sacchi, 2004), particle uptake after cellular exposure
to phagocytic stimuli (Holevinsky and Nelson, 1998),
or cell temperature changes (Hotka and Zahradnik,
2014). The use of the 2R-1C model in bioimpedance
analysis has also been reported in measuring changes
in volume within an organ or the whole body (Fer-
reira et al., 2013), in vivo time-varying human lung
tissue characterization (Sanchez et al., 2013), and
body water volume estimation (Gheorghe et al.,
2012). Finally, the 2R-1C model has been used in
commercial bioimpedance spectroscopy devices, such
as the ImpediMed SFB7 and Xitron Hydra 4200,
which estimate the values of the model parameters
starting from the measured bioimpedance.

It is well known that the model of biological tis-
sue impedance using the Cole function shows bet-
ter results in fitting experimental high-frequency
impedance data (Lazović et al., 2014; Yousri et al.,
2017). However, instead of capacitor C2, the Cole



478 Simić et al. / Front Inform Technol Electron Eng 2020 21(3):476-490

function contains a CPE element which does not
have a clear physical meaning. Consequently, the
interpretability of the parameters along with its sim-
plicity makes the 2R-1C model an interesting alter-
native to the more complex Cole function. Therefore,
in this study we decide to restrict our discussion to
the 2R-1C model.

A structure similar to the parallel 2R-1C model,
formed with a resistor (R′

1) in series with a parallel
R-C circuit (R′

2 and C′
2), known as the series 2R-1C

model, is shown in Fig. 2.

R2

R1

C2

'

'

'

Fig. 2 The series 2R-1C model

However, both 2R-1C models from Figs. 1 and
2 are isospectral if the following conditions are
satisfied:

R′
1 =

R1R2

R1 +R2
, (1)

R′
2 =

R2
1

R1 +R2
, (2)

C′
2 =

C2(R1 +R2)
2

R2
1

. (3)

In the rest of this study we will use the term
2R-1C model for the structure shown in Fig. 1, with
a note that complete analysis can be easily trans-
ferred to the model from Fig. 2. Furthermore, be-
cause the meaning of the 2R-1C model parameters
depends on the application of the model, we will con-
sider a general case without discussing the physical
interpretation of model parameters.

The complex impedance of the 2R-1C model at
some angular frequency ω is given with

Z(ω) = R(ω) + jX(ω)

=
R1(1 + jωC2R2)

1 + jωC2(R1 +R2)
, (4)

where R(ω) and X(ω) stand for the real (resis-
tance) and imaginary (reactance) parts of Z(ω),
respectively.

Because the 2R-1C model consists of three pa-
rameters (R1, R2, and C2) while just two measured
values (R(ω) and X(ω)) are available at some fre-
quency ω, it is not possible to have a unique ana-
lytical solution of such a system of equations. Itera-
tive methods such as the Taylor polynomial (Ortega
and Rheinboldt, 1970), the Adomian decomposition
method (Babolian et al., 2004; Abbasbandy, 2005;
Darvishi and Barati, 2007), the homotopy perturba-
tion method (Golbabai and Javidi, 2007), quadra-
ture formulas (Cordero and Torregrosa, 2007; Noor,
2007), Levenberg-Marquardt, and the trust region
algorithms in the nonlinear least squares approach
(Bondarenko, 2012; Boinet et al., 2016; Boukamp
and Rolle, 2018) have been widely used for such a
class of mathematical problems.

However, iterative methods have some limita-
tions regarding time consumption, slow signal pro-
cessing, possibility of converging towards a local min-
imum, as well as requiring a high-quality starting
point for the values of model parameters (Sanchez
et al., 2013). Thus, new methods for parameter es-
timation of the 2R-1C model are continuously being
developed, such as differential impedance analysis
(Sanchez et al., 2013; Simić et al., 2017a), the lo-
cal polynomial method (Sanchez et al., 2011), use
of multisine excitations instead of the classical tech-
nique of frequency sweep for impedance measure-
ment (Sanchez et al., 2012), and more recently, fast
spectral measurements and regularization (Ramírez-
Chavarría et al., 2018). However, the approaches
described in Sanchez et al. (2011, 2012, 2013) and
Ramírez-Chavarría et al. (2018) are not optimized
for low-cost systems with low power processing units
because they require complex mathematical opera-
tions. Therefore, these approaches are typically im-
plemented on PC-based platforms.

The main contribution of this study is a
non-iterative method for parameter estimation of
2R-1C models appropriate for low-cost and widely
used microcontroller-based devices. The proposed
method enables reduction of the number of mea-
surement points by 80% compared to the previ-
ously proposed non-iterative method while main-
taining the same estimation accuracy. More impor-
tantly, the proposed method is 30–45 times faster
than the state-of-the-art Levenberg-Marquardt iter-
ative estimation method. Such an approach ensures
high system portability and autonomy, which is very
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important for applications where handheld devices
are needed for real-time estimation at the measure-
ment site.

2 Low-complexity methods for para-
meter estimation of the 2R-1C model

2.1 Non-iterative parameter estimation me-
thod

The real and imaginary parts of the complex
impedance of the 2R-1C model can be written as

R(ω) = Re{Z(ω)} = K
ω2 + zp

ω2 + p2
, (5)

X(ω) = Im{Z(ω)} = K
(p− z)ω

ω2 + p2
, (6)

where K, z, and p are as follows:

K =
R1R2

R1 +R2
, (7)

z =
1

R2C2
, (8)

p =
1

(R1 +R2)C2
. (9)

It is easy to show that the first derivative of
X(ω) is equal to zero for

ωc =
1

(R1 +R2)C2
. (10)

This frequency is the characteristic angular fre-
quency of the 2R-1C model, which is equal to the re-
ciprocal value of the time constant τ = (R1+R2)C2.
From Eq. (9), we can see that ωc = p.

The non-iterative parameter estimation (NIPE)
method, a non-iterative approach for estimating the
parameters of the 2R-1C model (R̂1, R2, and C2),
was proposed in Simić et al. (2016). In the NIPE
method, the estimated value p̂ of the characteristic
angular frequency is obtained as the frequency where
the magnitude of the measured imaginary part of the
impedance attains a maximum value. Then param-
eters ẑ(ωi) and K̂(ωi) are calculated for each mea-
surement angular frequency ωi as

ẑ(ωi) =
R(ωi) · p̂ · ωi −X(ωi) · ω2

i

R(ωi) · ωi +X(ωi) · p̂ , (11)

K̂(ωi) =
R(ωi) · ωi +X(ωi) · p̂

ωi
, (12)

where i = 1, 2, . . . , N with N being the total num-
ber of data points.

With known p̂, K̂(ωi), and ẑ(ωi), from Eqs. (7)–
(9), parameters of the 2R-1C model can be calculated
as

R̂1(ωi) =
ẑ(ωi) · K̂(ωi)

p̂
, (13)

R̂2(ωi) =
ẑ(ωi) · K̂(ωi)

ẑ(ωi)− p̂
, (14)

Ĉ2(ωi) =
ẑ(ωi)− p̂

ẑ2(ωi) · K̂(ωi)
, (15)

for each ωi (i = 1, 2, . . . , N). Finally, the esti-
mated values R̂1, R̂2, and Ĉ2 are obtained as means
of R̂1(ωi), R̂2(ωi), and Ĉ2(ωi) (i = 1, 2, . . . , N),
respectively.

Compared to the iterative approaches, the ad-
vantages of the NIPE method are acceptable es-
timation accuracy, lower computational complex-
ity, shorter processing time, as well as suitability
for portable low-cost microcontroller-based systems
and in-situ parameter estimation in real time (Simić
et al., 2016). Comprehensive analysis regarding the
estimation accuracy and execution time showed that
the NIPE method in comparison with the complex
nonlinear least squares (CNLS) approach was 20–80
times faster, while still providing an acceptable esti-
mation error that was lower than 1% (Simić et al.,
2016). However, in Simić et al. (2016) the estimation
accuracy showed a strong dependence on the number
of measurement points, with a high number of mea-
surement points required for a satisfactorily accurate
estimation of the characteristic frequency.

In the rest of this section we will present the
quadratic interpolation non-iterative parameter esti-
mation (QINIPE) method, an approach for reducing
the need for a high number of measurement points
while keeping the same estimation accuracy without
a significant increase in algorithm complexity.

2.2 Quadratic interpolation non-iterative pa-
rameter estimation method

The accuracy of characteristic frequency estima-
tion based on finding the maximum magnitude (peak
of the curve) of the imaginary part of the impedance
can be affected by noise or a limited number of
available measurements. In this study, we assume
that noise affects both the iterative and non-iterative
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methods in the same way and propose a method
which will preserve the accuracy of the 2R-1C model
parameter estimation with a decreased number of
measurements. We leave a detailed analysis of the
influence of noise on the 2R-1C model parameter es-
timation methods and design of appropriate filters
for future work.

The influence of uncertainty in the characteris-
tic frequency on the estimated values of the model
parameters is very important. It can be observed
if instead of the exact value of the characteristic fre-
quency for the given 2R-1C model, the value p̂ = μ ·p
where μ is a real valued parameter, is used for the es-
timation of the model parameters. Relative errors for
estimated values ẑ(ωi) and K̂(ωi) can be calculated:

δz(ωi) =
ẑ(μ · p, ωi)− z

z

=

p · ωi(1− μ)

(
X2(ωi) +R2(ωi)

)
(
ωiR(ωi) + μpX(ωi)

)(
ωiX(ωi)− pR(ωi)

) ,

(16)

δK(ωi) =
K̂(μ · p, ωi)−K

K

=
p · (μ− 1) ·X(ωi)

p ·X(ωi) + ωi · R(ωi)
. (17)

Calculations of the relative errors for the esti-
mated values of R̂1, R̂2, and Ĉ2 can be done in a
similar way. However, keeping in mind that the es-
timated values of the model parameters are means
of Eqs. (13)–(15), and, therefore, frequency indepen-
dent, it is more useful to calculate the relative errors
as

δR̂1 =

1

N

∑N
i=1 R̂1(ωi)−R1

R1
=

R̂1 −R1

R1
, (18)

δR̂2 =

1

N

∑N
i=1 R̂2(ωi)−R2

R2
=

R̂2 −R2

R2
, (19)

δĈ2 =

1

N

∑N
i=1 Ĉ2(ωi)− C2

C2
=

Ĉ2 − C2

C2
, (20)

where R1, R2, and C2 are the actual values of
the model parameters, while R̂1(ωi), R̂2(ωi), and
Ĉ2(ωi) are defined with Eqs. (13), (14), and (15),
respectively.

The number of measurement frequencies N is
usually limited by the complexity of the used mea-

surement and data acquisition units, and their ca-
pabilities for handling a wide frequency range, small
frequency step, and large amount of data. However,
in many applications a large number of measurement
frequencies are required to allow identification and
analysis of the processes involved. Thus, optimiza-
tion of the number of measurement points is a very
important and not easily accomplished task.

In the rest of the study, we use the more conve-
nient f (Hz) instead of ω (rad/s) for specifying the
frequency range and characteristic frequency of an
impedance. To analyze the influence of the number
of measurement points N on characteristic frequency
estimation, we consider the frequency range (fmin,
fmax). The frequency step is thus

Δf =
fmax − fmin

N − 1
. (21)

In Fig. 3 the locations of several measure-
ment points on the typical curve X(f) for a 2R-1C
model are given. Let the characteristic frequency
fc be located between the two measurement points
(fi, fi+1). The largest possible absolute error in
characteristic frequency estimation is f̂c − fc =

0.5Δf .

X
(f)

 (Ω
)

fi−1 fi fi+1

f (Hz)

Δf

fc−fc
ˆ

Estimated
peak

Actual
peak

Fig. 3 Error in characteristic frequency estima-
tion due to the limited number of measurement
frequencies

Let the maximum acceptable relative error of
the characteristic frequency estimation be δfc. The
number of measurement frequencies needed to satisfy
this requirement can be calculated from

δfc =
f̂c − fc

fc
=

0.5Δf

fc
=

fmax − fmin

2fc(N − 1)
, (22)

as
N = 1 +

fmax − fmin

2 · fc · δfc
, (23)
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and the required frequency step is

Δf = 2 · δfc · fc. (24)

From Eq. (23), we can see that the highest num-
ber of measurement frequencies is required if the
characteristic frequency is equal to the lower fre-
quency limit, i.e., fc = fmin.

The number of measurement frequencies and
frequency step calculated by Eqs. (23) and (24) can
be used to ensure that the relative error of the
characteristic frequency estimation is smaller than
the maximum acceptable value δfc. However, if
(fmin + hΔf) ≈ fc, where h is an integer, it is possi-
ble to obtain an even smaller relative error with fewer
measurement frequencies. For example, if the ana-
lyzed frequency range is from 10 to 100 kHz, and the
characteristic frequency is fc=50 kHz, then N =10,
corresponding to the frequency step of Δf = 10 kHz,
will cause a smaller error in characteristic frequency
estimation than N = 16, which corresponds to the
frequency step of Δf=6 kHz. Therefore, it is not
easy to predict the optimal value of N that will min-
imize the estimation error.

A limited number of measurement frequencies
leads to a possibility that the measurement point
equaling the characteristic frequency is missed in
a frequency sweep (Fig. 3). To improve the accu-
racy of characteristic frequency estimation, we need
more accurate estimation of the maximum value of
the imaginary part of the impedance. To this end,
we propose the QINIPE method which uses a three-
point quadratic interpolation around the estimated
peak (Fig. 4).

Let
X(ωn−1) = α, (25)

X(ωn) = β, (26)

X
(ω

) (
Ω

)

α

β

γ

ωn−1 ωn ωn+1

ω (rad/s)

Fig. 4 Values of the imaginary part of impedance
around peak β

X(ωn+1) = γ. (27)

Angular frequency ωn can be determined from
measured data X(ωi) (i = 1, 2, . . . , N), as the
angular frequency at which the absolute value of
the imaginary part of impedance has the maximum
value. Thus, procedures for finding ωn involve solv-
ing for the maximum value in an array |X(ωi)|. After
ωn is found, β can be calculated by Eq. (26). Fur-
thermore, neighboring frequencies (ωn−1 and ωn+1)
can be used to define α and γ, according to Eqs. (25)
and (27), respectively.

Solving the set of Eqs. (25)–(27) using a
quadratic model for the imaginary part of the
impedance

aω2 + bω + c = X(ω) (28)

gives

a = − (α− β)ωn+1 − (α − γ)ωn + (β − γ)ωn−1

(ωn−1 − ωn)(ωn−1 − ωn+1)(ωn − ωn+1)
,

(29)

b =− α(ω2
n − ω2

n+1)− β(ω2
n−1 − ω2

n+1)

(ωn−1 − ωn)(ωn−1 − ωn+1)(wn − ωn+1)

− γ(ω2
n−1 − ω2

n)

(ωn−1 − ωn)(ωn−1 − ωn+1)(wn − ωn+1)
,

(30)

c =
(α− γ)ωn−1 · ωn

(ωn−1 − ωn)(ωn−1 − ωn+1)
− α · ωn − β · ωn−1

ωn−1 − ωn

− (β − γ)ωn−1 · ωn

(ωn−1 − ωn)(ωn − ωn+1)
.

(31)

The proposed QINIPE method uses the calcu-
lated parameters a, b, and c to improve the esti-
mation of the peak of the imaginary part of the
impedance, which results in the corrected value of
the characteristic angular frequency:

p̂corr = − b

2a
. (32)

The rest of the QINIPE method is the same
as that of the NIPE method, but instead of p̂, the
corrected estimate of the characteristic angular fre-
quency p̂corr is used in Eqs. (11)–(15) for estimation
of the 2R-1C model parameters.

The innovative aspect of this work is that we
suggest an improvement of the previously reported
method for parameter estimation of the 2R-1C
model, making it more suitable for low-cost embed-
ded hardware. The benefits of such a realization are
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higher accuracy and lower complexity with a very
short processing time, which makes it interesting for
portable and low-cost diagnostic devices.

3 Experimental results and discussion

As a part of the validation process of the non-
iterative methods described in Section 2, we first
analyze the accuracy of the parameter estimation
of 2R-1C models with numerically calculated (sim-
ulated) impedance data. After that, we compare
the microcontroller-based implementations of the
QINIPE and NIPE methods. Finally, the proposed
QINIPE method is compared to the CNLS method
on the real impedance data.

3.1 Simulation

3.1.1 Data generation

To analyze the influence of the uncertainty in
characteristic frequency estimation and the number
of measurement points on model parameter esti-
mation, the reference values chosen for simulation
are R1 = 1 kΩ, R2 = 470 Ω, and C2 = 4.7 nF.
These values are chosen because of the availabil-
ity of components for hardware-based experiments.
The characteristic angular frequency of the ana-
lyzed 2R-1C model calculated using Eq. (10) for the
given reference values is ωc = 144 738.750 rad/s,
while the corresponding characteristic frequency is
fc = 23 035.887 Hz. The complex impedance data
are calculated using Eq. (1) in the frequency range
from 5 to 100 kHz, which is common for low-cost and
widely used microcontroller-based impedance meters
(Seoane et al., 2008). Additionally, for more quanti-
tative characterization of the non-iterative methods,
we use a simulated impedance of the 2R-1C mod-
els with reference values estimated from six common
electrical bioimpedance (EBI) measurements: to-
tal body composition (TBC), respiration rate (RR),
trunk-trunk (TT), leg-leg (LL), lung composition
(LC), and arm-arm (AA) (Pena, 2009; Ferreira et al.,
2010).

3.1.2 Influence of uncertainty in characteristic fre-
quency on the estimated values of model parameters

Instead of the actual values for the char-
acteristic frequency, we used values of μ ∈
{±0.01, ±0.02, ±0.05, ±0.1}. Thus, we introduced

relative errors, δfc (%), in characteristic frequency
estimations of ±1%, ±2%, ±5%, and ±10%, respec-
tively. Additionally, we wanted to analyze if the
sign of the relative error in characteristic frequency
estimation influences the estimated values of the
model parameters. The numbers of measurement
frequencies (10, 100, and 1000) were chosen arbi-
trarily to cover the analyzed frequency range. The
estimated values of the model parameters using the
NIPE method are presented in Table 1.

Table 1 Relative errors for estimated values of model
parameters for different δfc and N

N δfc (%) δR1 (%) δR2 (%) δC2 (%)

10 10 −4.338 −6.853 −4.130

100 10 −4.475 −6.202 −4.253

1000 10 −4.488 −6.141 −4.265

10 5 −2.272 −3.486 −2.151

100 5 −2.344 −3.134 −2.217

1000 5 −2.351 −3.101 −2.223

10 2 −0.936 −1.409 −0.881

100 2 −0.965 −1.262 −0.910

1000 2 −0.968 −1.248 −0.913

10 1 −0.473 −0.707 −0.445

100 1 −0.487 −0.632 −0.459

1000 1 −0.489 −0.625 −0.460

10 −1 0.482 0.712 0.452
100 −1 0.498 0.635 0.467

1000 −1 0.499 0.627 0.468

10 −2 0.974 1.429 0.913
100 −2 1.005 1.272 0.942

1000 −2 1.008 1.258 0.945
10 −5 2.512 3.612 2.342

100 −5 2.591 3.199 2.418
1000 −5 2.598 3.161 2.425

10 −10 5.303 7.359 4.898
100 −10 5.469 6.462 5.060

1000 −10 5.485 6.379 5.075

As can be seen from Table 1, the relative er-
rors in estimation of parameters were within [−1%,
+1%] if δfc was ±1%. Moreover, if μ < 0 the rela-
tive errors were positive; otherwise, they were neg-
ative. The number of measurement frequencies did
not make a significant difference in the estimated
values of the model parameters. Therefore, it is im-
portant only for the estimation of the characteris-
tic frequency. Relative errors in the estimation of
values of the model parameters up to 1% are usu-
ally acceptable in many practical cases, and we will
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consider that case in the remainder of the study.
Thus, our target is the estimation of the characteris-
tic frequency with relative errors less than 1%.

3.1.3 Influence of the number of measurement points
on characteristic frequency estimation

If the analyzed frequency range is from 5 to
100 kHz and required δfc = 0.01 (1% error), the
highest number of measurement points is required if
fc=5 kHz. According to Eq. (23) the required num-
ber of measurement points is N = 951 (frequency
step of 100 Hz). Using the NIPE method the es-
timated value of the characteristic frequency of the
analyzed 2R-1C model was f̂c = 23.000 kHz. Thus,
the characteristic frequency was estimated with a rel-
ative error of −0.156%. The estimated value of the
characteristic frequency was used for parameter esti-
mation of the analyzed 2R-1C model. As expected,
the values of model parameters R̂1 = 1000.770 Ω,
R̂2 = 470.459 Ω, and Ĉ2 = 4.703 nF were es-
timated with very small relative errors, that is,
δR1 = 0.077%, δR2 = 0.098%, and δC2 = 0.072%.

However, the relatively high number of measure-
ment points required for the frequency step of 100 Hz
is not suitable for low-cost impedance meters because
an advanced data acquisition unit and high process-
ing time are required. Moreover, in many practical
applications (Blad, 1996), characteristic frequency
is usually a few tens of kHz, which can significantly
reduce the required number of measurement frequen-
cies. For example, studies of bioimpedance have
shown that the mean values of characteristic fre-
quencies are 80.1 and 57 kHz for women and men,
respectively (de Lorenzo et al., 1997; Ward et al.,
2000; Kyle et al., 2001; Schulz et al., 2006). The me-
dian values of characteristic frequencies are 32 kHz
for men and 35 kHz for women (Ward and Heitmann,
1998). Thus, apriori knowledge about the analyzed
system is very useful in reducing the required num-
ber of measurement points. Moreover, the approxi-
mate location of the characteristic frequency can be
found by means of an initial impedance measurement
(screening) with just a few measurement points. For
example, if the minimum possible fc is 20 kHz, then
according to Eq. (23), N = 238 should ensure a less
than 1% error in characteristic frequency estimation.

Using the NIPE method, the estimated value of
the characteristic frequency of the analyzed 2R-1C
model when N = 238 is f̂c = 23 037.975 Hz. Thus,

the characteristic frequency was estimated with an
error of 0.009%. This estimated value was used for
parameter estimation of the analyzed 2R-1C model.
As expected, the values of the model parameters
R̂1 = 999.955 Ω, R̂2 = 469.973 Ω, and Ĉ2 = 4.700 nF
were estimated with very small relative errors, i.e.,
δR1 = −0.004%, δR2 = 0.040%, and δC2 = 0.004%.

3.1.4 Characteristic frequency estimation of the
2R-1C model using the QINIPE method

As mentioned before, our approach described in
Section 2.2 aims to reduce the number of measure-
ment points while keeping a high accuracy in the
estimation of the model parameters. To this end,
we used quadratic interpolation of the measurement
values around the peak of the imaginary part of the
measured impedance. We started with N = 238,
and then N was decreased to 3, as the minimum
number of measurement points needed to implement
quadratic interpolation. For each tested number of
measurements, the value of parameter p was esti-
mated using Eqs. (29)–(32) while δfc was monitored.
As can be seen in Fig. 5, using the QINIPE method
it is possible to reduce N to 29 while keeping the rel-
ative error in the characteristic frequency estimation
lower than 1%. In contrast, a much higher number
of measurement frequencies (N = 173) was required
for the NIPE method. Additionally, for N = 29 the
relative error in characteristic frequency estimation
using the NIPE method was 4.652%, much higher
than 0.683% obtained using the QINIPE method.

The NIPE and QINIPE methods were also
compared regarding relative errors in the estimated
values of model parameters. The relative errors in
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Fig. 5 Comparison of relative errors in characteristic
frequency estimation
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parameter estimation for different numbers of mea-
surement frequencies are shown in Figs. 6–8. From
Figs. 6–8, we can see that, using the QINIPE method
it is possible to have a 1% relative error in param-
eter estimation with 80% fewer measurement points
(N = 23) compared to the NIPE method (N = 115).
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Fig. 6 Comparison of relative errors in estimation of
R1
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Fig. 8 Comparison of relative errors in estimation of
C2

3.1.5 Parameter estimation of the 2R-1C model from
simulated bioimpedance

To obtain more quantitative characterization of
the proposed method, we performed parameter esti-
mation using simulated impedances of 2R-1C models
whose reference values were estimated from six com-
mon EBI measurements: TBC, RR, TT, LL, LC, and
AA. The reference values for the model parameters
as well as the characteristic frequencies are shown in
Table 2.

The values from Table 2 were used to calcu-
late the reference impedance data in the frequency
range from 5 to 100 kHz. The experiment started
with N = 951 and then the number of measurement
frequencies was decreased with the aim of compar-
ing the required numbers of measurements needed to
have the relative estimation errors of all three model
parameters lower than 1%. The NIPE and QINIPE
methods were used on the same dataset and the re-
sults obtained are presented in Fig. 9.

As can be seen from Fig. 9, the QINIPE method
enabled a reduction of the number of measurement
points of more than 80% in comparison to the NIPE

Table 2 Reference values for model parameters (Pena,
2009; Ferreira et al., 2010)

EBI R1 (Ω) R2 (Ω) C2 (nF) fc (Hz)

TBC 917.50 629.00 3.42 30 091.52
RR 58.50 23.90 75.70 25 515.09
TT 99.00 42.30 44.00 25 599.14
LL 510.00 450.00 6.55 25 310.90
LC 81.46 19.64 47.70 33 002.79
AA 364.60 379.00 6.20 34 521.45

EBI: electrical bioimpedance; TBC: total body composi-
tion; RR: respiration rate; TT: trunk-trunk; LL: leg-leg;
LC: lung composition; AA: arm-arm
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Fig. 9 Comparison of the minimum number of mea-
surement points required for relative errors lower
than 1%
TBC: total body composition; RR: respiration rate; TT:
trunk-trunk; LL: leg-leg; LC: lung composition; AA: arm-arm
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method, while achieving an estimation error for all
three model parameters lower than 1%.

Furthermore, we compared the execution time
of the described non-iterative methods as well as
the CNLS. Our test platform was MATLAB R2013b
installed on a Lenovo notebook with an i5-4300M
CPU at 2.60 GHz and a 64-bit Windows 7 operat-
ing system. For CNLS estimation, the Levenberg-
Marquardt algorithm was used as implemented in
the MATLAB function lsqcurvefit. The maximum
numbers of function evaluations and iterations were
set to 103, while the termination tolerance on the
function value and that on the estimated vector were
set to 10−4. To increase the speed of estimation, ana-
lytical expressions for the Jacobian matrix were sup-
plied to the solver. By measuring the performances
using a stopwatch timer (MATLAB commands tic
and toc), we determined that the QINIPE method
requires a slightly higher processing time than NIPE
(Table 3). However, it required a significantly lower
number of measurement points for 1% error, which
can be a huge advantage if low-cost microcontroller-
based devices are used. In addition, when com-
pared to CNLS, the relative estimation errors of both
QINIPE and NIPE were higher, but the QINIPE was
30–45 times faster.

Table 3 Comparison of execution time

EBI
N t (ms)

NIPE QINIPE CNLS NIPE QINIPE CNLS

TBC 91 17 17 4.561 5.060 180.621
RR 148 25 25 5.067 5.949 190.501
TT 138 25 25 5.865 7.037 190.925
LL 112 21 21 3.386 4.480 193.935
LC 231 29 29 3.298 4.085 179.834
AA 84 15 15 3.871 3.895 186.247

EBI: electrical bioimpedance; TBC: total body composition;
RR: respiration rate; TT: trunk-trunk; LL: leg-leg; LC: lung
composition; AA: arm-arm

3.2 Microcontroller-based experiment

The AD5933-based impedance measurement
system (Fig. 10) reported in Simić et al. (2017b)
was used for impedance measurement of the ana-
lyzed 2R-1C model. The device is based on an 8-bit
ATmega128 microcontroller and integrated circuit
AD5933. Communication between the microcon-
troller and AD5933 (device initialization, definition
of measurement details, and collection of measure-
ment data) is via the inter-integrated circuit (I2C)

protocol. Using this device it is possible to perform
frequency sweep impedance measurement in the fre-
quency range from 5 to 100 kHz with a maximum of
511 points and a frequency step as low as 0.1 Hz.

Fig. 10 AD5933-based impedance measurement
device

Tests of accuracy of the developed impedance
measurement device were performed using series and
parallel R-C networks, with values for R and C cho-
sen in such a way to ensure a wide range of impedance
magnitudes and phase angle changes. The results ob-
tained were compared to the reference measurement
results obtained using an Agilent 4263B LCR meter
and Hewlett Packard 4194A Impedance/Gain-Phase
Analyzer. For impedance magnitude in the range
from 100 Ω to 100 kΩ, the maximum system er-
rors for magnitude and phase angle measurements in
the complete frequency range were less than 3% and
2.5◦, respectively (Simić, 2014; Simić and Stojanović,
2017).

To apply the developed device in real-time
impedance measurement, it is necessary to investi-
gate how long it takes to collect impedance data for
one measurement point. The theoretical sample time
for a single measurement using AD5933 is the sum
of the following three parts (Ferreira et al., 2013):

1. The time required for the AD5933 to estimate
the impedance values, which is approximately 1 ms
for a commonly used system clock of 16 MHz.

2. The total time to perform all the I2C protocol
instructions.

3. The settling cycle time (the total number of
settling cycles multiplied by the period of the exci-
tation signal).

For the I2C frequency at 400 kHz, one set-
tling cycle, and excitation frequency of 50 kHz, the
theoretical impedance sampling time is 1.895 ms,
while the experimentally obtained time needed to
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perform all the operations required for one measure-
ment at 50 kHz is around 1.7910 ms (Ferreira et al.,
2013), and for the excitation frequency at 100 kHz
it is around 1.7911 ms (Ferreira et al., 2013). The
experimentally obtained values are means calculated
for 100 repeated measurements.

The 2R-1C model was implemented with real
components using the same nominal values as used
in the simulation part, namely, R1 = 1000 Ω (±5%),
R2 = 470 Ω (±5%), and C2 = 4.7 nF (±5%).
With these values, the nominal characteristic fre-
quency calculated using Eq. (10) is 23 035.887 Hz.
Using the AD5933-based measurement device, the
impedances of the used components in the frequency
range from 5 to 100 kHz were measured. The
results obtained (mean values±standard deviation)
were R1 = 983.37 ± 0.67 Ω, R2 = 463.49 ± 1.22 Ω,
and C2 = 4.55± 0.06 nF. Using the mean values the
calculated characteristic frequency is 24 175.876 Hz.
It can be seen that there is a slight difference in
comparison with the nominal values of the model
parameters and characteristic frequency.

The impedance measurement of the 2R-1C
model was performed in the frequency range from
5 to 100 kHz at 29 frequency points, because in the
simulation N = 29 was shown to be the required
number of measurements needed to achieve a 1%
relative error in characteristic frequency estimation
using quadratic interpolation.

We also compared the microcontroller-based
implementations (https://github.com/simicm1987/
2R1C_estimation) of the NIPE and QINIPE meth-
ods. Our test platform was Arduino Uno board
based on the ATmega328P microcontroller with
2 KB SRAM, 16 MHz clock speed, and 32 KB flash
memory in total. The estimated values of the char-
acteristic frequency, the mean values of the model
parameters R̂1, R̂2, and Ĉ2, and the standard devi-
ations σR1, σR2, and σC2 obtained using the NIPE
and QINIPE methods are shown in Table 4.

As shown in Table 4, the standard deviations of

the mean values R̂1, R̂2, and Ĉ2, estimated using the
NIPE method, were 1.419%, 2.337%, and 0.406%, re-
spectively. Using the QINIPE method these values
were 0.852%, 1.167%, and 0.913%, respectively. The
estimated values of R̂1(f), R̂2(f), and Ĉ2(f) at dif-
ferent frequencies normalized to the estimated mean
values (R̂1, R̂2, and Ĉ2) are shown in Figs. 11–13.

The values estimated using the NIPE and
QINIPE methods were then used to calculate the
impedances of the 2R-1C model (Eq. (4)) at 29
points in the frequency range from 5 to 100 kHz.
Because of the tolerances of the nominal values, the
frequency-dependent characteristics of the deployed
components, the measurement noise, and the actual
reference values for the model parameters were not
known. Therefore, we chose to compare the mea-
sured impedance and the impedance calculated us-
ing the estimated values of the model parameters
(Fig. 14).

The relative errors δR(ω) (%) and δX(ω) (%)

for the real and imaginary parts of the esti-
mated impedances are shown in Figs. 15 and 16,
respectively.

As can be seen from Figs. 15 and 16, the
maximum differences between the measured and
impedance calculated using the parameters esti-
mated by means of the QINIPE method were smaller
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Table 4 Estimated values for the characteristic frequency and model parameters for N = 29

Data source f̂c (Hz) R̂1 ± σR1 (Ω) R̂2 ± σR2 (Ω) Ĉ2 ± σC2 (nF)

Nominal values 23 035.887 1000±0.05 470±0.05 4.7±0.05
Measured 24 175.876 983.37±0.67 463.49±1.22 4.550±0.06

NIPE 23 352.000 955.653±13.563 467.185±10.916 4.412±0.018
QINIPE 24 409.671 972.629±8.290 479.621±5.647 4.490±0.04
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for both the real part (1.197% < 2.328%) and imag-
inary part (2.722% < 4.667%) of the impedance.

Additionally, we compared the root mean square
errors (RMSEs) between the measured impedance
(Rmeas and Xmeas) and impedance calculated (Rcalc

and Xcalc) using the values of the model parame-
ters obtained using the NIPE and QINIPE methods.
The RMSEs for the real and imaginary parts of the
impedance were calculated as follows:

RMSER =

√∑N
i=1(Rcalc(ωi)−Rmeas(ωi))2

N
, (33)

RMSEX =

√∑N
i=1(Xcalc(ωi)−Xmeas(ωi))2

N
. (34)

The RMSE values obtained are shown in Fig. 17.
We can see that the RMSEs for impedance estimated
using QINIPE were smaller for 42.8% (real part) and
64.5% (imaginary part) in comparison to the values
estimated using NIPE.

Using the Arduino stopwatch timer (function
micros) we determined that the NIPE method can
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estimate the parameter values in 8.592 ms, while the
QINIPE method required 9.168 ms. The QINIPE
method required 6306 bytes of flash memory and
1396 bytes of RAM, while the NIPE method required
5060 bytes of flash memory and 1364 bytes of RAM
(Fig. 18).

Although the QINIPE method required 6.7%
higher execution time, 24% more flash memory, and
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Fig. 18 Performance comparison of the microcon-
troller implementation of NIPE and QINIPE

2.4% more RAM compared to the NIPE method,
it is still acceptable for practical implementations
and applications with low-cost microcontroller-based
devices.

4 Conclusions

In this study the QINIPE method, suitable for
low-cost embedded hardware, has been proposed
for estimation of 2R-1C model parameters. The
QINIPE model used quadratic interpolation of the

imaginary part of the measured impedance around
the initially estimated characteristic frequency to in-
crease the accuracy of characteristic frequency es-
timation. As a result, the accuracy of estimation
of all parameters of the 2R-1C model has been im-
proved. With the known characteristic frequency the
2R-1C model parameters were calculated from the
measured real and imaginary parts of an impedance
using closed-form expressions.

The performed comparative analysis showed
that the proposed QINIPE method reduced the
required number of measurement points by 80%
in comparison with our previously reported NIPE
method without quadratic interpolation, while keep-
ing the estimation errors for all parameters less than
1%. The NIPE and QINIPE methods were im-
plemented on the Arduino Uno board. In com-
parison to the NIPE method, the execution time
of the QINIPE method was slightly increased by
0.576 ms (about 6.7%), and it required 24% (1.2 KB)
more flash memory and just 2.4% (32 bytes) more
RAM. Microcontroller-based experiments demon-
strated the suitability of the proposed method for
implementation on low-cost microcontroller-based
devices with limited resources for power consump-
tion, computational complexity, and RAM usage, as
well as for applications where portable operation is
needed.

The proposed algorithm is a step towards the
integration of low-cost AD5933-based impedance
measurement system with non-iterative approaches
in a compact unit for bioimpedance analysis and
in-situ sensor parameter estimation in general. Low-
complexity algorithms and real-time execution with
satisfactory accuracy are the main requirements for
such a device. To further improve the performance
of this system, we plan to focus on preprocessing of
the measured impedance data in future work.
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