
Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 448

Efficient keyword search over graph-structured data

based on minimal covered r-cliques

Asieh GHANBARPOUR1,2, Khashayar NIKNAFS1, Hassan NADERI†‡1
1School of Computer Engineering, Iran University of Science and Technology, Tehran 13114-16846, Iran

2Department of Computer Engineering, University of Sistan and Baluchestan, Zahedan 98167-45845, Iran
†E-mail: naderi@iust.ac.ir

Received Mar. 3, 2018; Revision accepted Sept. 11, 2018; Crosschecked Mar. 5, 2020

Abstract: Keyword search is an alternative for structured languages in querying graph-structured data. A result to a keyword
query is a connected structure covering all or part of the queried keywords. The textual coverage and structural compactness have
been known as the two main properties of a relevant result to a keyword query. Many previous works examined these properties
after retrieving all of the candidate results using a ranking function in a comparative manner. However, this needs a
time-consuming search process, which is not appropriate for an interactive system in which the user expects results in the least
possible time. This problem has been addressed in recent works by confining the shape of results to examine their coverage and
compactness during the search. However, these methods still suffer from the existence of redundant nodes in the retrieved results.
In this paper, we introduce the semantic of minimal covered r-clique (MCCr) for the results of a keyword query as an extended
model of existing definitions. We propose some efficient algorithms to detect the MCCrs of a given query. These algorithms can
retrieve a comprehensive set of non-duplicate MCCrs in response to a keyword query. In addition, these algorithms can be exe-
cuted in a distributive manner, which makes them outstanding in the field of keyword search. We also propose the approximate
versions of these algorithms to retrieve the top-k approximate MCCrs in a polynomial delay. It is proved that the approximate
algorithms can retrieve results in two-approximation. Extensive experiments on two real-world datasets confirm the efficiency and
effectiveness of the proposed algorithms.

Key words: Keyword search; Graph mining; Information retrieval; Database; Clique
https://doi.org/10.1631/FITEE.1800133 CLC number: TP391

1 Introduction

Keyword search is an alternative for structured

languages in querying over graph-shaped structured
and semi-structured data such as relational databases,
XML databases, and RDF databases. Keyword search
is proposed with respect to the convenience of com-
mon users in querying datasets. In this type of search,
the user expresses his/her query by entering just some
keywords without knowing the underlying schema of

data or having familiarity with the complex syntax of
a structured query language.

Since the queries in keyword search are syntax-
free, the semantic of the query should be extracted
from the existing graph data. A result to a keyword
query is a compact connected structure which covers
all or part of the queried keywords. As an example,
Fig. 1a shows a part of the DBLP dataset. Suppose
that keyword query Q={Ba, Liu, 2016} has been
expressed on this graph. Fig. 1b shows three results to
this query. Each of results A1 and A2 shows a common
paper written by “Ba” and “Liu,” which was pub-
lished in 2016. Similarly, A3 shows the paper “Blue-
tooth low energy,” which was written by Ba and Liu,
and refers to paper “Fully integrated Bluetooth,”
which was also written by the two authors. Although

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
 ORCID: Hassan NADERI, https://orcid.org/0000-0002-3296-

8505
© Zhejiang University and Springer-Verlag GmbH Germany, part of
Springer Nature 2020

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 449

this result is also relevant to the query, it provides
some additional information which may not be sig-
nificant for the user.

In the literature, the following three conditions
have been considered as the basis for ranking the
results of a keyword query:

1. coverage of queried keywords (the result
which covers a greater number of queried keywords is
ranked higher),

2. closeness of queried keywords, and
3. minimality of results (a result is minimal if it

does not contain any subtree/subgraph that also sat-
isfies the result conditions).

In these works, the results are retrieved based on
different strategies and then ranked based on the
mentioned properties. This implies that all the rele-
vant results should be retrieved before ranking. To
have more efficient algorithms, the desired properties
of results should be checked sooner and in the search
step. To this goal, the concepts of Steiner tree, distinct
root-based semantics, Steiner graph, and r-clique are
proposed as the desired results that should be
searched. A Steiner tree considered in Kimelfeld and
Sagiv (2006), Ding et al. (2007), and Hao et al. (2015)
covers all the given keywords with the minimum sum
of edge weights. Since the problem of finding Steiner
trees in a graph is an NP-hard problem (He et al.,
2007), distinct root-based semantics was proposed to
define the results of keyword queries. According to
this semantics, a result covers all given keywords
with minimum central distances to a root node.
However, there are two problems with this. First, it is
aimed mainly at compacting the structure of results

based on the closeness of their nodes to a central node,
while this does not guarantee the closeness of key-
word nodes (the nodes covering at least one of the
queried keywords). Second, using the distinct root-
based semantics, the root of retrieved results would be
distinct. This means losing many of the results with
the same root of the retrieved results. The recent
works in keyword search tend to find subgraphs in-
stead of subtrees because they are more informative.
The concepts of r-radius Steiner graph (Li et al., 2008)
and r-clique (Kargar et al., 2014; Kargar and An,
2015) are for retrieving the compact subgraphs as the
results of keyword queries. The coverage of keywords
and the closeness of keyword nodes are well em-
bedded in these concepts. However, these definitions
do not emphasize the minimality of results.

In this study, we propose to find minimal cov-
ered r-cliques (MCCrs) of a graph as the results of a
keyword query. An MCCr is a compact structure of
vertices with three properties: (1) It covers all the
queried keywords; (2) The distance between every
pair of its vertices is no larger than r; (3) It does not
have a proper subgraph that is also an MCCr. An
MCCr is a compact and meaningful structure which
contains some relevant intermediate nodes for im-
proving the answerability. Moreover, MCCr is more
concise than the previous semantics since it contains
no irrelevant nodes.

The precise form of MCCrs makes identifying
them in a large graph difficult. In this paper, we in-
troduce some algorithms to identify the MCCrs of a
keyword query in efficient ways. The proposed algo-
rithms employ effective pruning techniques to reduce

Fig. 1 A part of the DBLP dataset (a) and some of results to query Q={Ba, Liu, 2016} (b)

(a) (b)

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 450

the time complexity of search. The main contributions
of this paper are summarized as follows:

1. We propose a new semantics for the results of
a keyword search in which the keyword vertices are
close to each other.

2. We present the Bron-Kerbosch-based key-
word search algorithm (BKS) as the base algorithm
for retrieving all the MCCrs of a homogenous graph,
in which pruning methods are employed as in the
Bron-Kerbosch algorithm (Bron and Kerbosch, 1973).
BKS uses pivoting and type restrictions to reduce the
exploration cost of finding MCCrs.

3. Algorithm BKSR is proposed as an improved
version of BKS. This algorithm searches the graph
more efficiently by imposing a frequency-based or-
dering on the graph’s vertices.

4. We propose BKSM and BKSRM as distrib-
uted versions of BKS and BKSR algorithms, respec-
tively. These algorithms rely on the distributive nature
of the base algorithms for parallel search of the search
space.

5. A heuristic algorithm is presented to produce
top-k results of a keyword query in a polynomial
delay. This algorithm can incrementally generate
results by observing the distance restrictions. Using
this algorithm, an approximate version is proposed for
each of the exact algorithms.

6. A set of extensive experiments is conducted
on two real datasets IMDb and DBLP with a com-
parison to the existing algorithms to show the effi-
ciency and effectiveness of the proposed algorithms.

2 Related works

Research on keyword search can be followed in

four categories: keyword search on relational data-
bases (Liu et al., 2006; Ding et al., 2007; Park J and
Lee, 2011; Bergamaschi et al., 2013, 2016; Xu et al.,
2013), keyword search on XML databases (Guo et al.,
2003; Le et al., 2015), keyword search on the Se-
mantic Web (Ning et al., 2009; Wang et al., 2015), and
keyword search on schema-free graphs (Ghanbarpour
and Naderi, 2018). All the relational, XML, and RDF
datasets are associated with the predefined schemas.
The existence of a schema does not impose any re-
striction on the graph, and facilitates the determina-
tion of the query meaning. However, there are many
graphs for which the schema is not defined. Keyword

search over schema-free graphs has been widely
examined in the literature (He et al., 2007; Golenberg
et al., 2008; Kim et al., 2012; Yuan et al., 2013; Park
CS and Lim, 2015). Even though these works provide
a general framework for keyword search over any
type of graph, they face more challenges because of
having less prior knowledge about the examined data.
In the following, some of these works are mentioned.

BLINKS (He et al., 2007) partitions graph data
into some blocks and uses a bi-level indexing to
process keyword queries. One group of indices is
used to travel between the blocks and the other is used
to access the data within the blocks. In retrieving an
answer, BLINKs begins from a keyword node and
searches its block with the help of intra-block indices.
If searching for an answer is expanded to the neigh-
borhood blocks, it uses multiple cursors and sends
each of them to a neighbor block to continue the
search. According to the claim of the authors,
BLINKS is m-optimal, where m is the number of
input keywords. Ease, which was introduced in Li et
al. (2008), defines the concept of r-radius subgraphs
on an undirected graph and provides a method to
group them. It uses two indices for storing data: the
first index saves the structural distance between each
pair of keywords and the second index stores the
contained r-radius subgraphs for each keyword. In
this approach, the size of the final answers is limited
to the size of the initial processed subgraphs. So, there
may be answers that have not been found. This ap-
proach contains a ranking step to sort retrieved an-
swers according to their structural compression and
some information retrieval measures. LABRADOR
(Mesquita et al., 2007), as an extension of the system
proposed by Calado et al. (2004), is a keyword search
system over attributed graphs. It uses Bayesian-based
probabilities to estimate the relevance of answers to a
given query. After retrieval, the candidate answers are
ranked according to the probability that they have of
representing the best assignment between the key-
words provided by the user and the attributes of the
database schema. de Virgilio et al. (2009) proposed an
approach based on the paths which led to the keyword
nodes. In this approach, a path of graph is selected in
each step to be added to an incomplete answer. The
paths are grouped based on their template and as-
signed with a score. The score of paths is used not
only in the expanding phase, but also in the final

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 451

ranking of answers.
Kargar and An (2011) focused on finding an-

swers in the form of r-cliques. An r-clique is a set of
nodes which covers all the query keywords and whose
shortest path between every two nodes is not greater
than r. r is a user-defined parameter and indicates the
maximum value of the answer’s diameter. Two ap-
proximate algorithms r-clique and r-clique-rare were
proposed in this work to find results of keyword
queries. In both algorithms, the search space is di-
vided based on the Lawler algorithm and the answers
are detected in the distinct subspaces. In the r-clique
algorithm, all the covered star-shaped structures with
different keywords as the roots are examined, and the
one with the maximum weight is selected as the best
result in each subspace. The authors claimed that, in
the worst case, the weight of an answer produced by
their algorithm is twice the weight of the optimal
answer. However, since the time complexity of this
algorithm is relatively high, they proposed algorithm
r-clique-rare. In this algorithm, instead of considering
all the star-shaped structures, only the ones with the
rarest nodes in their roots are considered. Although
r-clique-rare is faster than r-clique, the accuracy of its
results is lower. Kargar et al. (2014) proposed a
Lawler-based method to retrieve the top-k non-
duplicate answers. The duplicate answers are the ones
covering the same set of keyword nodes, although
these nodes may be connected differently.

Nguyen and Cao (2012) presented an approach
by selecting the top-k data sources from potentially
numerous data sources. Their method derives infor-
mation patterns from each data source as succinct
synopses that act as representatives of the corre-
sponding data sources. The patterns (subgraphs) are
then scored based on their relevance to the given
query using a structure-aware ranking function. A
new type of keyword search query, ROU-query, was
defined in Pan and Wu (2013). It uses input keywords
in three categories, required, optional, and unwanted,
and returns nodes of the underlying graph whose
neighborhood satisfies the keyword requirements. It
applies a new data structure named the query induced
partite graph (QuIP) to capture the constraints related
to the neighborhood size and unwanted keywords.
The authors proposed a family of algorithms which
take advantage of the information in QuIP for effi-
cient evaluation of ROU-queries.

The problem of finding duplication-free and
minimal answers was addressed in Kargar et al.
(2014), and an algorithm on the basis of Lawler’s
procedure was proposed as a solution. Park CS and
Lim (2015) proposed an approach to aggregate the
best keyword nodes gained from a pre-computed
process in order to produce the top-k relevant answers
in an approximate order. They used a queuing system
over the data extracted from an extended inverted
index. Their method prefers more extended and rel-
evant answers having more coverage of keywords
instead of minimal answers.

3 Preliminaries and problem statement

Given a keyword query with l keywords as

Q={k1, k2, …, kl} over a data graph, the problem of
keyword search in the graph is to find a set of con-
nected structures as results, where each of them sat-
isfies the keyword query. The results of a keyword
query can be in the form of subtrees or subgraphs.
According to the “AND semantic,” any result should
cover all of the queried keywords and, based on the
“OR semantic,” any result should cover at least one
queried keyword. In this work, relying on the AND
semantic, we define the MCCr as a result to a key-
word query. An MCCr is structurally compact and
textually covers all the queried keywords.
Definition 1 (Covered r-clique) A covered r-clique
C of graph G is a set of connected keyword vertices in
G that together cover all of the queried keywords and
in which the shortest distance between any pair of the
keyword vertices is equal to or lower than r (Kargar
and An, 2015).
Definition 2 (Minimal covered r-clique) A covered
clique C of G is minimal if there exists no covered
clique C′ in G such that C′ is a subset of C.

Retrieving MCCr as the result of a keyword
query has two advantages: (1) The semantics of
MCCr guarantees that the inside distances between
any two keyword nodes would not be larger than r. It
shows the structural compactness of the retrieved
results. (2) An MCCr is a specific subgraph that can
be detected in a graph more efficiently than subgraphs
with no predefined shapes.

Since there may be numerous results to a key-
word query, it is expected that results will be

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 452

presented in a ranked order based on their weights.
We use the sum-based semantic to define the weight
of an MCCr.
Definition 3 (Weight of MCCr) According to the
sum-based semantic, the weight of an MCCr of G
retrieved in response to query Q with l keywords is
calculated as follows:

1 1

Weight dist(,),
l l

i j
i j i

v v
  

 (1)

where vi and vj are vertices of MCCr, and dist(vi, vj)
shows the shortest distance between vi and vj in G. In
this work, the results with smaller weights are ranked
higher.

In Kargar et al. (2014) and Kargar and An (2015),
it was shown that finding covered r-cliques with the
minimum weight (based on Eq. (1)) is an NP-hard
problem. By a reduction of MCCr to covered r-clique,
it is easily proved that finding the minimum-weight
MCCr is also an NP-hard problem.

4 The proposed algorithms

In this section, we present some algorithms to
find MCCr to a keyword query. In the first algorithm,
the MCCrs are detected based on a classification on
the graph’s vertices based on the covered keywords.
The idea of this algorithm is derived from the
Bron-Kerbosch (Bron and Kerbosch, 1973) and To-
mita (Tomita et al., 2006) algorithms, which have
been proposed to find the maximal cliques of a ho-
mogeneous graph. However, in this work, we aim to
find the MCCr of a heterogeneous graph. The pro-
posed algorithm uses a recursive procedure to inves-
tigate the search space by building search trees rooted
at different vertices. In this procedure, the branches of
search trees are pruned based on the keywords of the
given query. In the improved version of this algorithm,
for better performance, the range of pruning the
search space is extended by maintaining an order on
the keyword vertices. The next two algorithms con-
centrate on distributed finding of MCCrs in the graph.
Then detecting results in an approximate order is
handled.

To solve the keyword search problem by finding
minimal covered cliques, the graph G is augmented

with an edge between any two connected nodes of G.
This augmentation can be achieved in an efficient
way by considering the following two optimizations:

1. Since the keywords are the base of search, just
the connections to the keyword vertices are added to
the graph. To this goal, a breadth-first search is per-
formed over any keyword vertex to recognize its
connections.

2. In keyword search, the results in which the
vertices are far away from each other are not worth
much. Therefore, the graph is augmented only by
connecting the pairs of vertices whose distance is
lower than a specified threshold.

The problem of detecting minimal covered
cliques in the augmented graph is mapped to the
problem of finding covered cliques.
Theorem 1 The set of MCCr related to query Q={k1,
k2, …, kl} in graph G is equivalent to the set of cov-
ered cliques in subgraph gG(V, E) such that
V(g)={uV(G)|uQ≠} and E(g) is a set of edges
connecting any vi, vjV(g) whose distance is no larger
than r, when ignoring the possible edges between the
covering vertices of the same keyword.
Proof Since there are at most l groups of vertices in
g covering distinct keywords and any possible edges
between vertices of a group are ignored, the number
of vertices of covered cliques is at most l. With regard
to the MCCr definition and according to the facts that
the number of distinct vertices in graph G is at most l
and that there are no connections in G between the
vertices with a distance greater than r, the set of
covered cliques of l keywords in G is equivalent to the
set of MCCr of l distinct keywords in G(V, E).

Using Theorem 1, the problem of solving a
keyword query in graph G is reduced to the problem
of finding the covered r-cliques in subgraph g(V, E)
containing those nodes of G with at least one given
keyword being covered. All the algorithms proposed
in this study solve the latter problem.

4.1 Finding all non-duplicate MCCrs (BKS
algorithm)

Finding cliques has been widely studied in the
domain of graph mining (Bron and Kerbosch, 1973;
Tomita et al., 2006; Segundo et al., 2016, 2018; Yu
and Liu, 2017). However, this group of methods
generates cliques with any size and does not impose

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 453

any restriction on the type of vertices. In this subsec-
tion, we propose BKS with the idea derived from the
Bron-Kerbosch and Tomita algorithms to detect all
the non-duplicate MCCrs of a given query with
keywords. In BKS, a number of combination trees of
keywords are searched based on the depth-first search
strategy. During the search, a large set of unessential
branches of combination trees is pruned for efficiency.
Suppose that the set of vertices covering keyword
kiQ is shown by Ci. In BKS, two sets of vertices are
considered in each step: the set of candidate vertices,
P, which can be added to the MCCr that are being
built, and the set R of vertices which are already
added to the MCCr. The algorithm begins by letting R
be an empty set, and expands R level by level using a
recursive procedure to reach a complete MCCr. In
each recursion, a vertex v of candidate vertices is
selected to be added to R, and the set P is restricted to
the neighbors of v. In addition, we restrict the set of
candidate vertices of P in each level of expansion to
CiP. Therefore, if the set R contains {v1, v2, …, vi−1}
in the entrance of level i, the set of candidate vertices
would be

1 2 1Γ() Γ() ... Γ() ,i iP v v v C     (2)

where Γ(v) shows the neighbor set of vertex v. This
setting retains the connectivity of vertices in the
MCCr. The recursion would not be followed if the
number of vertices added to R plus that of candidate
vertices is not greater than l. This is owing to the
essential need to present the vertices of all types of
keywords in the MCCr. The pseudo code of BKS is
shown in Algorithm 1. The pivoting step (according
to the Tomita algorithm) in statement five of proce-
dure BKS is to develop the range of pruning when
searching the graph.

Algorithm 1 BKS algorithm
Input: input graph G, query {k1, k2, …, kl}
Output: MCCrs

1 for i←1 to l do

2 Ci←set of nodes in G containing ki

3 P←PCi

4 end for
5 i←1

6 R←{}
7 BKS(P, R, i)

8 return

Proc BKS(P, R, i)
1 if P={} then
2 report R as an answer
3 end if
4 i←i+1

5 choose a pivot uCiP
 // choose u to maximize |(CiP)Γ(u)|
6 for each vertex v(CiP)\Γ(u) do
7 if size ((PΓ(v))(R{v}))≥l then
8 BKS(PΓ(v), R{v}, i)
9 end if
10 P←P\{v}
11 end for
12 return

Theorem 2 Algorithm BKS generates all and only
the MCCr of l keywords with no duplication.
Proof See the Appendix.
Theorem 3 The time complexity of algorithm BKS
is O(|Cmax|

l+1), where l shows the size of the given
query and |Cmax| the maximum size of vertex set Ci
containing keyword ki for 1≤i≤l.
Proof The height of recursive trees of the BKS
algorithm is at most l, each level associated to the
vertex set of a keyword, i.e., CiP. Since |Ci|≤|Cmax|
for any 1≤i≤l, the number of times of calling proce-
dure BKS is at most equal to |Cmax|

l. For any of re-
cursive calls of BKS, the time required for calculating
(CiP)Γ(u) is equal to the maximum size of (CiP),
which is |Cmax| multiplied by O(1), needed for calcu-
lating the intersection of Γ(u) and any vertices of
(CiP) using the bit intersection proposed in Dasari
et al. (2014). Therefore, the time complexity of BKS
is obtained as O(|Cmax|

l+1) according to Eq. (3):

1

max max max .
l l

C C C
 (3)

Note that BKS is used just as a baseline to

compare with the polynomial delay approximation
algorithm, which will be discussed in the next sub-
sections. After ranking the results generated by BKS,
an exact and optimal list of results would exist for any
given query.

The most similar works to ours are Kargar and
An (2011, 2015), which aim to find all the r-cliques (a
similar concept to MCCr) of a graph as the results of a
given query, using a branch and bound algorithm with
time complexity O(l2|Cmax|

l+1). Fig. 2 shows an

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 454

example graph and the schema of traversing this
graph with the Kargar-An and BKS algorithms. The
BKS algorithm has several advantages over the Kar-
gar-An algorithm: (1) The time complexity of BKS is
lower; (2) BKS is an incremental algorithm which can
incrementally present results before terminating the
algorithm, while the Kargar-An algorithm can present
results just after being terminated; (3) BKS can be
easily adapted to run on a distributed framework,
while the Kargar-An algorithm does not have this
ability.

4.2 Using the frequency of keywords in MCCr
detection (BKSR algorithm)

In the recursive trees of BKS, it is observed that
the pruning is more in the lower levels. Therefore, the
efficiency of BKS can be improved by delaying the
examination of high-frequency keywords to the lower
levels of recursion trees. In BKSR, the vertex set of
keywords is arranged in increasing order of size and
injected to the recursive calls of the algorithm based
on this order. In this way, the roots of recursive trees
are keyword vertices covering the less frequent
keywords of the query. Using this strategy, the num-
ber of recursive trees decreases (or remains un-
changed), and the number of candidates in the lower
levels of the tree increases (or remains unchanged),
resulting in a wider range of branches for the pruning.
Fig. 3 shows the schema of traversing the graph rep-
resented in Fig. 2a by algorithm BKSR.

4.3 Distributed finding of MCCrs

To increase the efficiency of the algorithms, es-
pecially in the large volume graphs, the capabilities of
parallel processing can be employed. In BKS and

BKSR algorithms, the recursive trees are built com-
pletely independent of each other. Therefore, they can
be built in parallel. This is the base idea of BKSM and
BKSRM algorithms, to parallel detection of MCCrs
under a distributed shared memory architecture. In
these algorithms, to increase the degree of parallelism,
the larger set of Ci is selected as the entries of the first
level of recursion, resulting in more independent
recursive trees. However, in other levels of recursion,
the vertex sets are injected the same as in the base
algorithms. The isolated recursive trees are executed
in parallel. The pseudo code of BKSRM is shown in
Algorithm 2. In this algorithm, the injection of vertex
sets to each level of recursion (except the first level) is
based on ascending order of their size to maintain a
high possibility of pruning.

Algorithm 2 BKSRM algorithm
Input: input graph G, query {k1, k2, …, kl}
Output: MCCrs

1 for i←1 to l do
2 Ci←set of nodes in G containing ki
3 orderi←Ci
4 end for
5 sort orderi in ascending order based on the size of Ci
6 for i←1 to l−1 do
7 P←Porderi
8 end for
9 for j←1 to size(orderl) do
10 i←1
11 R←{orderl

j}
12 P←PΓ(orderl

j)
13 process(j, BKS(P, R, i))
14 end for
15 return

Theorem 4 BKSRM detects all of the covered
cliques of l queried keywords with T parallel

Fig. 2 An example data graph (a), schema of traversing
the graph by r-clique (b), and schema of traversing the
graph by BKS (c)

(a)

(b)

(c)
(b)

Fig. 3 An example data graph (a), schema of traversing
the graph by BKS (b), and schema of traversing the graph
by BKSR (c)

(a) (c)

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 455

processors for 1≤T≤|Cmax| with time complexity
O(|Cmax|

l+1/T), where |Cmax| shows the maximum size
of Ci containing keyword ki for 1≤i≤l.
Proof According to algorithm BKSRM, the recur-
sive procedure is called at most for (l−1) levels, and
each level is associated to the vertex set of one of the
queried keywords except the most frequent one.
Therefore, the number of recursive calls would be
equal to |Cmax|

l−1. For any recursive call, (CiP)Γ(u)
should be calculated. This needs at most O(|Cmax|).
Therefore, processing each recursive tree would take
at most O(|Cmax|

l). In the vertex set related to the more
frequent keyword, there are at most |Cmax| vertices,
each of them considered as the root of a recursive tree.
These vertices are assigned to different processors to
be investigated in parallel. By considering the T par-
allel processors, the time complexity of BKSRM
would be at most

1

max max
max

()
() .

l
lC O C

O C
T T



 (4)

Since the degree of locality in the processing of

the graph is high in these algorithms, they can be
efficiently adapted to run on a large-scale graph pro-
cessing system such as ExPregel (Sagharichian et al.,
2015).

4.4 Top-k polynomial delay algorithm

One of the main properties of a keyword search
engine is its efficiency in incrementally producing the
top-k results to a given keyword query. The com-
plexity of delay between producing two subsequent
answers is a standard measure to estimate the effi-
ciency of the search. If this delay is polynomial based
on the size of the given query, the search algorithm is
called a polynomial delay algorithm (Golenberg et al.,
2008). In this subsection, a polynomial delay algo-
rithm is proposed to incrementally enumerate the
top-k results (MCCr) of a given query. The general
framework of this algorithm is based on the Lawler-
based strategy to divide the search space. The results
of each subspace are retrieved by an adaptation of the
BKS algorithm. The low-weight results among those
retrieved are presented as the top-k best results.

The basic Lawler algorithm (Lawler, 1972) was
introduced to compute the top-k solutions to discrete
optimization problems. This algorithm was then

adapted to the keyword search problem (Golenberg et
al., 2008; Kargar and An, 2011, 2015; Mass and Sagiv,
2012; Kargar et al., 2014). According to the adopted
Lawler-based strategy (Kargar and An, 2011), the
search space is divided into some overlapping sub-
spaces proportional to the number of query keywords.
Assume that the given query contains three keywords
Q={k1, k2, k3} and that the set of vertices covering any
ki is denoted by Ci. Therefore, C1×C2×C3 shows the
initial search space. The best result of this space is
detected and added to a priority queue. Suppose that
the best result is shown by {v1, v2, v3} such that vi
contains keyword ki. According to this result, the
initial search space is divided into four subspaces
(Table 1). After dividing the search space, the algo-
rithm for finding the best result is executed in each of
the subspaces except SB0. The detection results are
added to the priority queue. At the end of this step, the
lowest weight element of the priority queue is pre-
sented as the next best global result. The subspace to
which the last result belongs is further divided to the
sub-subspaces in a similar way, as shown in Table 1.

The best results of sub-subspaces are also added
to the priority queue and the lowest weight of the
queue’s elements is presented as the next best global
result. This process continues until presenting k re-
sults. We use Algorithm 3, which is a modified ver-
sion of Algorithm 2 presented in Kargar and An
(2015), as the outer layer of our keyword search
engine.

Algorithm 3 Lawler-based retrieval algorithm
Input: graph G, query Q, and k
Output: set of top-k ordered approx-MCCrs

1 for i←1 to l do
2 Ci←set of nodes in G containing ki
3 C←<C1, C2, …, Cl>
4 Queue←0
5 A←BKSRA(C, G, l)
6 if A≠ then
7 insert <A, C> into Queue

Table 1 Dividing the search space*

Subspace Representative set
SB0 {v1}×{v2}×{v3}
SB1 (C1−{v1})×C2×C3
SB2 {v1}×(C2−{v2})×C3
SB3 {v1}×{v2}×(C3−{v3})

* Kargar and An (2015)

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 456

8 while Queue≠ do
9 <A, S>←top element of Queue
10 output(A)
11 k←k−1
12 if k=0 then
13 return
14 <SB1, SB2, …, SBl>←subspaces(A, S)
15 for i←1 to l do
16 Ai←BKSRA(SBi, G, l)
17 if Ai≠ then
18 insert <Ai, SBi> into Queue

Proc subspaces (Kargar and An, 2015)
Input: the best answer of the previous step,

 A=<v1, v2, …, vl>, and search space C
Output: l new subspaces

1 for i←1 to l do

2 for j←1 to i−1 do

3 SBi
j←{vj}

4 SBi
i←Ci−{vi}

5 for j←i+1 to l do

6 SBi
j←Cj

7 return <SB1, SB2, …, SBl> where SBi=<SBi
1,

SBi
2, …, SBi

l> represents space SBi
1×SBi

2×…×SBi
l.

The procedure of finding the best answer recurs

(k×l−l+1) times in the Lawler-based top-k answer
retrieval. Therefore, its performance can significantly
affect the overall performance of the algorithm. In this
work, we propose algorithm BKSR(A), which is an
approximate version of algorithm BKSR, to find the
best approximate result of a subspace. Algorithm
BKSR(A) receives a search space as C=<C1, C2, …,
Cl> and sorts it based on the size of the subsets. Then,
for each vertex of the smallest size subset, the set P is
set equal to the sum of the other subsets and the set R
is set to empty. The vertices of the smallest size subset
are considered as the roots of recursive trees. The
recursive trees are expanded by selecting a vertex of
each level that has the least distance to the vertices of
R. The only MCCr retrieved from each recursive tree
is added to the priority queue based on its weight. The
minimum weight element of the priority queue is then
returned as the best result. The pseudo code is shown
in Algorithm 4.

Algorithm 4 BKSR(A)
Input: search space C, graph G, and number of keywords l
Output: the best approximate MCCr in C

1 Queue←{}

2 for i←1 to l do

3 orderi←Ci
4 end for
5 sort orderi in ascending order of size
6 for i←2 to l do

7 P←Porderi
8 end for
9 for j←1 to size(order1) do

10 i←1

11 R←{order1
j}

12 P←PΓ(order1
j)

13 BKSW(P, R, i)
14 end for
15 return top element of Queue

Proc BKSW(P, R, i)
1 if P={} then
2 insert R into Queue
3 end if
4 i←i+1

5 choose a pivot uCiP
 // choose u to maximize |(CiP)Γ(u)|
6 S←(CiP)\Γ(u)

7 v←S1

8 for i←2 to size(S) do

9 for j←1 to size(R)
10 if dist(Si, Rj)<dist(v, Rj) then
11 v←Si
12 end if
13 end for
14 if size((PΓ(v))(R{v}))≥l then
15 BKSW(PΓ(v), R{v}, i)
16 end if
17 end for
18 return

In algorithm BKSR(A), orderl

j shows the jth
vertex of the lth set of order. Similarly, in the other
expressions, the superscript is related to the vertices
and the subscript is related to the sets.
Theorem 5 Procedure BKSR(A) produces an an-
swer with two-approximation.
Proof The answers of BKSR(A) are always MCCrs
in which the distance between every two vertices is
no larger than r. Therefore, the weight of any
MCCr retrieved by BKSR(A) satisfies the following
equation:

approx_weight(MCC) (1) / 2.r l l r  (5)

Algorithm r-clique generates answers with

two-approximation. The answers generated by this
algorithm are star-shaped trees with a center node that

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 457

directly connects to (l−1) leaf nodes. Therefore, the
maximum weight of answers retrieved by algorithm
r-clique is

clique

2

(1)
max_weight() (1) 2 (1)

2

(1) .

l l
r l r r l

l r

       
 

(6)

In Kargar and An (2015), it was proved that the
weight of answers retrieved by r-clique is at most
twice the optimal weight. Therefore, it can be con-
cluded that

clique cliquemax weight() 2opt_ weight().r r_ (7)

It can be simply proved that the optimal r-clique

is always an MCCr and that this MCCr is the optimal
one among all the relevant MCCrs to the query. It
means that

cliqueopt _weight()= opt_ weight(MCC).rr (8)

Considering Eqs. (5)–(7), it is concluded that

2

clique

(1)
approx_weight(MCC) (1)

2
2opt_weight().

r

l l r
l r

r


  


 (9)

According to Eq. (8) and inequality (9), we have

approx_weight(MCC) 2opt_ weight(MCC).r r (10)

It shows that the weight of answers retrieved by

BKSR(A) is lower than twice that of the optimal
MCCr.
Theorem 6 The time complexity of algorithm
BKSR(A) in the worst case is O(l2|Cmin||Cmax|).
Proof Suppose the smallest size set is shown by Cmin.
In algorithm BKSR(A), the procedure BKSW is
called |Cmin| times. This procedure is recursive and its
recursive tree is similar to a chain containing at most l
recalls of BKSW. In any of recursive calls of BKSW,
the intersection operations need O(|Cmax|) for calcu-
lation. The statement 8 repeats at most |Cmax|l times.
Each time, the candidate vertex is compared with a
vertex of R (the current clique), while the size of R is
at most l. Therefore, the time complexity of BKSW, in

the worst case, is equal to O(|Cmax|)l
2+|Cmax|l=

O(|Cmax|l
2). In BKSR(A), procedure BKSW is called

for |Cmin| vertices. Therefore, the time complexity of
BKSR(A) is O(l2|Cmin||Cmax|).

Kargar and An (2011, 2015) also proposed a
greedy algorithm to approximate r-cliques. This al-
gorithm estimates results in two-approximate order. It
means that the weight of each result generated is no
higher than twice the weight of the optimal results.
However, results produced by this algorithm are not
essentially r-clique and can have the radius of 2r. The
time complexity of this algorithm is O(l2|Cmax|

2). In
contrast, BKSR(A) produces results with the maxi-
mum radius r. Therefore, it is more accurate than
r-clique. On the other hand, in the time complexity
calculations of BKSR, we assume that all of a group’s
keyword nodes are tested in each recursion call, while
in practice, only the set of vertices that are connected
to the selected ones in the earlier levels are examined
at each level. Thus, the runtime of BKSR(A) is in
practice lower than that of r-clique. The experimental
comparisons of these algorithms are presented in
Section 5.

5 Experiments

To evaluate the effectiveness and efficiency of
the proposed algorithms, we conduct extensive ex-
periments on the two large-scale real-world datasets
IMDb (http://www.grouplens.org/node/73) and DBLP
(http://dblp.uni-trier.de/xml/). A corresponding graph
is extracted from each of the datasets by considering
any tuple as a vertex and any connection between two
tuples through foreign keys as an edge of the graph.
Similar to Ding et al. (2007), Qin et al. (2009), and
Kargar and An (2015), any edge between vertices vi
and vj is weighted based on Eq. (11) such that deg(vk)
shows the degree of vertex vk:

1
(,) log(1 deg()) log(1 deg()) .

2i j i jw v v v v      (11)

We also use uniform weighting as an alternative
way to determine the weights of graph’s edges, which
gives each edge a weight of one.

In this section, we evaluate the results retrieved
by approximate versions of BKS, BKSR, BKSM, and
BKSRM algorithms, which are named BKS(A),

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 458

BKSR(A), BKSM(A), and BKSRM(A), respectively.
Any of the approximate algorithms is extracted from
its corresponding exact algorithm by adapting them to
Algorithm 4. The results are presented in comparison
with the results of r-clique and r-clique-rare algo-
rithms (Kargar and An, 2015). The reasons why we
choose r-clique algorithms for comparison are that:
(1) they are among the most recent work in the key-
word search domain; (2) the definition of r-cliques (as
the results) is more similar to that of the MCCr;
(3) they produce top-k answers in a polynomial delay,
similar to our algorithms.

All of the algorithms are implemented using
Java and on an Intel® CoreTM i7@2.80 GHz laptop
with 16 GB RAM and the Windows 8 operating sys-
tem. PostgreSQL is used to store the relational data.
The different systems are compared in terms of ef-
fectiveness and efficiency. To keep the comparison
fair, all the experiments are executed on the same set
of queries as in Kargar and An (2015).

5.1 Datasets and queries

In the experiments, the two large-scale real-
world datasets IMDb and DBLP are employed to
evaluate the effectiveness and efficiency of the pro-
posed algorithms. The IMDb dataset shows the rela-
tionships among the users and the movies of website
IMDb and the rating of the users to the movies. The
numbers of tuples in three relations (user, movie, and
rating) in the IMDb dataset are 138 493, 131 262, and
20 000 263, respectively. The DBLP dataset contains
information about papers, authors, and paper citations.
The numbers of tuples in author, paper, authorship,
and citations are 613 000, 929 000, 2 375 000, and
82 000, respectively. The set of queries and their
frequencies in the graphs of DBLP and IMDb are
presented in Table 2. Note that the queries used for
testing are the same as the queries used in Qin et al.

(2009) and Kargar and An (2011, 2015) for better
evaluation and comparison.

5.2 Efficiency evaluation

In this subsection, the runtime of different sys-
tems is compared based on the performance affecting
factors including the value of r (radius of results), the
number of keywords (l), and the frequency of key-

words (
ikf). In the diagrams, the fixed factors are set

to r=11, l=4, 0.0009
ikf  for all the queried key-

words. The average execution times of the systems
when varying the radius of results (r) are shown in
Fig. 4a, showing that the execution times of different
systems are increased by increasing the value of r.
This is because of the greater number of edges which
should be examined when increasing the radius of
results. Fig. 4 shows that algorithms BKS(A) and
BKSR(A) are faster than r-clique and that the execu-
tion time of BKSR(A) is close to that of r-clique-rare,
while as we will show later, the accuracy of BKSR(A)
is higher than that of r-clique-rare. The same behavior
is maintained in Figs. 4b and 4c, showing that the
execution times grow exponentially with an increased
number of queried keywords or querying the more

Table 2 The queries on DBLP and IMDb datasets

Frequency DBLP query IMDb query
0.0003 Q1: distance, discovery,

scalable, protocols
Q6: game, summer,

bride, dream
0.0006 Q2: Graph, routing, space,

scheme
Q7: Friday, street,

party, heaven
0.0009 Q3: fuzzy, optimization,

development, support,
environment, database

Q8: girl, lost, blood,
star, death, all

0.0012 Q4: modeling, logic,
dynamic, application

Q9: city, world, blue,
American

0.0015 Q5: control, web, parallel,
algorithms

Q10: king, house,
night, story

Fig. 4 Execution times of the systems based on different factors over the IMDb dataset: (a) query time vs. r; (b) query
time vs. the number of keywords; (c) query time vs. the keyword frequency

(a) (b) (c)

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 459

frequent keywords. The BKS(A) and BKSR(A) sys-
tems over the IMDb dataset are approximately two
and four times faster than r-clique, respectively.

As mentioned before, one of the advantages of
the proposed algorithms is their ability for distributive
execution with regard to the isolation building of the
recursive trees. The approximate versions of the dis-
tributed algorithms BKSM and BKSRM, named
BKSM(A) and BKSRM(A) respectively, have been
executed with eight simultaneous processors in a
distributed shared memory system. The runtimes of
these algorithms for different frequencies of key-
words are shown in Fig. 5a. The outperformance of
BKSRM(A) over BKSM(A) is evident. Comparing
Fig. 5a with the similar diagram in Fig. 4 shows that
the execution times of BKSM(A) and BKSRM(A) are
much lower than those of the r-clique and r-clique-
rare systems. Note that r-clique-based systems cannot
be executed in a distributive manner because any of
their results are formed by considering all of the
keyword nodes in the graph. We also show the

execution times of BKSM(A) and BKSRM(A) sys-
tems when varying the number of processors over the
queries with an average frequency 0.0015 in Fig. 5b.
As expected, by increasing the number of processors,
the execution time of distributed systems decreases
due to the increase of degree of parallelism. However,
managing multiple processors imposes an overhead,
which causes a slowing of the performance im-
provement gained by the large number of processors.

The same experiments are conducted on the
DBLP dataset (Fig. 6). Because of the greater number
of relationships in the DBLP dataset than in the IMDb,
the average time to respond to the DBLP queries is on
average higher than that to IMDb queries. Fig. 6a
shows that the execution times of all the examined
systems increase with the increase of the radius of
results. Fig. 6a also shows that algorithms BKS(A)
and BKSR(A) are faster than r-clique and that the
execution time of BKSR(A) is close to that of
r-clique-rare. This behavior is also maintained when
varying the number of queried keywords and the
frequency of keywords.

Fig. 5 The time of executing the distributed systems with eight processors over the IMDb dataset (a) and the exe-
cution time of distributed systems when varying the number of processors (b)

(a) (b)

Fig. 6 Execution times of different algorithms over the DBLP dataset: (a) query time vs. r; (b) query time vs. the
number of keywords; (c) query time vs. the keyword frequency

(a) (b) (c)

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 460

5.3 Effectiveness evaluation based on the com-
pactness measure

As we mentioned before, the proposed algo-
rithms can generate results in which no distances are
larger than r. However, the radius of results generated
by r-clique and r-clique-rare algorithms may reach 2r.
Fig. 7a shows the average percentage of cliques with
the maximum distance r on the IMDb dataset using
algorithm BKS(A) as an envoy of all of the other
proposed algorithms. The diagram is plotted based on
the top 10, 20, 30, 40, and 50 results of the examined
queries.

Since BKS(A) generates MCCrs with maximum
distance r, its average percentage of generating such
results is always 100%. According to Fig. 7a, for the
top-10 retrieved results, 90% and 58% of results
generated by r-clique and r-clique-rare systems re-
spectively are cliques with maximum distance r. This
shows that the r-clique system can generate more
high-quality results than the r-clique-rare. However,
by increasing the number of top results, the ability of
both algorithms in generating the compact results is
reduced such that when retrieving the top-50 results
for each query, their percentages of generating desired
results are 62.12% and 31.5%, respectively. Fig. 7b is
plotted based on the different frequencies of key-
words. This diagram also shows that the compactness
of results decreases in the r-clique and r-clique-rare
algorithms by increasing the frequency of keywords.
It is because of the greater number of candidate re-
sults when querying high-frequency keywords. In
contrast, the results retrieved by the proposed system
all satisfy the maximum distance r independent of the
frequency of keywords.

5.4 Effectiveness evaluation based on the average
weight measure

To make quality measurement possible, all the
results of a keyword query are detected using the
exact BKSR and among them, top-k minimum weight
results are selected as the ground-truth results of the
query. For example, for the keywords with frequency
0.0003, there are 3 043 836 results in the IMDb da-
taset, and retrieving them takes two hours and forty
minutes. Among them, top-50 results are selected and
used as the “Exact” ones to measure the quality of
results generated by different systems. In the above
example, the average uniform weight of the selected
top-50 results is six and their average logarithmic
weight is 38.1731. Generating top-50 results by ap-
proximate algorithms BKSRM(A), BKSM(A),
r-clique-rare, BKSR(A), BKS(A), and r-clique sys-
tems takes 0.062, 0.097, 0.287, 0.377, 0.6, and 1.117
ms, respectively. Note that the uniform weight of each
answer is determined by Eq. (1) when the weight of
each edge is set to one. Similarly, the logarithmic
weight of an answer is determined by Eq. (1) when
the weight of each edge is calculated by Eq. (11).

Figs. 8a and 8b show the average uniform weight
of results retrieved by the approximate algorithms
over the IMDb dataset when the frequencies of key-
words are 0.0003 and 0.0015, respectively. As is ev-
ident, the uniform weights of results generated by
BKS(A) and BKSR(A) algorithms are equal to the
weight of the exact results, while r-clique and
r-clique-rare produce results with higher uniform
weights. In addition, the uniform weights of r-clique
are closer to the exact weights rather than those of
r-clique-rare. Fig. 8b shows that, in the best and

(a) (b)

Fig. 7 The average percentage of generating results of the maximum distance r by different systems on the IMDb
dataset when varying the value of k (a) and the average percentage of generating results of the maximum distance r
when varying the frequency of keywords (b)

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 461

worst cases, the r-clique system produces results
weighted 1.67% and 6.67% higher than the exact
weights, respectively. These values are 10% and
26.67% for the results of the r-clique-rare system.

Fig. 9a shows the average logarithmic weights of
results retrieved by the different systems on the IMDb
dataset when the frequency of keywords is 0.0003.
The closeness of the weight of the results produced by
the proposed systems to the exact weights indicates
the success of these systems in retrieving high-quality
results. However, as expected, the logarithmic
weights of results produced by r-clique and r-clique-
rare are very much higher than the exact weights.
Fig. 9b, which is plotted based on the more frequent
keywords, shows the close performance of BKS(A),
BKSR(A), and r-clique in terms of the average loga-
rithmic weight of results. However, as shown previ-
ously, BKS(A) and BKSR(A) are significantly faster
than r-clique in retrieving results.

6 Conclusions

In this paper, we have proposed a group of

scalable branch and bound algorithms which retrieve
MCCr as the results of a keyword query. These algo-
rithms employ different strategies of pruning to re-
duce the time of answering a keyword query. In ad-
dition, the isolated recursive recalls of different roots
provide the ability for parallel processing of these
algorithms. The time complexity of the proposed
algorithms shows, in theory, the performance of the
proposed algorithms in comparison to the previous
works. This efficiency is proved in practice by ex-
periments on two real-words datasets. The experi-
mental results showed that algorithms BKS(A) and
BKSR(A) are two and four times faster than the
r-clique system, respectively, which is also a clique-
based retrieval system. In addition, algorithms
BKSM(A) and BKSRM(A) with the ability of parallel

(a) (b)

Fig. 8 The average uniform weights of results when querying the keywords with frequency 0.0003 (a) and 0.0015 (b)

(a) (b)

Fig. 9 The average logarithmic weight of results when querying the keywords with frequency 0.0003 (a) and 0.0015 (b)

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 462

processing are more efficient than the r-clique and
r-clique-rare systems. In the effectiveness evaluation
based on a compactness measure, the proposed algo-
rithms significantly outperformed those in the pre-
vious works in terms of generating results with
maximum distance r. This is because of observing the
maximum radius r in generating all of the results by
the proposed systems. The effectiveness of these al-
gorithms was also confirmed by examining the av-
erage weights of results.

Contributors

Asieh GHANBARPOUR completed the proofs and
mathematical parts, drafted the manuscript, and revised it.
Khashayar NIKNAFS completed the algorithms, carried out
the implementations, and evaluated the results. Hassan
NADERI guided the research and supervised the writing of the
manuscript.

Compliance with ethics guidelines

Asieh GHANBARPOUR, Khashayar NIKNAFS, and
Hassan NADERI declare that they have no conflict of interest.

References
Bergamaschi S, Guerra F, Interlandi M, et al., 2013. QUEST: a

keyword search system for relational data based on se-
mantic and machine learning techniques. Proc VLDB
Endowm, 6(12):1222-1225.

 https://doi.org/10.14778/2536274.2536281
Bergamaschi S, Guerra F, Interlandi M, et al., 2016. Combin-

ing user and database perspective for solving keyword
queries over relational databases. Inform Syst, 55:1-19.

 https://doi.org/10.1016/j.is.2015.07.005
Bron C, Kerbosch J, 1973. Finding all cliques of an undirected

graph. Commun ACM, 16(9):575-577.
 https://doi.org/10.1145/362342.362367
Calado P, da Silva AS, Laender AHF, et al., 2004. A Bayesian

network approach to searching Web databases through
keyword-based queries. Inform Process Manag, 40(5):
773-790. https://doi.org/10.1016/j.ipm.2004.03.002

Dasari NS, Ranjan D, Mohammad Z, 2014. Maximal clique
enumeration for large graphs on Hadoop framework. Proc
1st Workshop on Parallel Programming for Analytics
Applications, p.21-30.

 https://doi.org/10.1145/2567634.2567640
de Virgilio R, Cappellari P, Miscione M, 2009. Cluster-based

exploration for effective keyword search over semantic
datasets. In: Laender AHF, Castano S, Dayal U, et al.
(Eds.), Conceptual Modeling - ER 2009. Springer Berlin
Heidelberg, p.205-218.

 https://doi.org/10.1007/978-3-642-04840-1_17
Ding BL,Yu JX, Wang S, et al., 2007. Finding top-k min-cost

connected trees in databases. IEEE 23rd Int Conf on Data
Engineering, p.836-845.

 https://doi.org/10.1109/ICDE.2007.367929
Ghanbarpour A, Naderi H, 2018. A model-based keyword

search approach for detecting top-k effective answers.
Comput J, 62(3):377-393.

 https://doi.org/10.1093/comjnl/bxy056
Golenberg K, Kimelfeld B, Sagiv Y, 2008. Keyword proximity

search in complex data graphs. Proc ACM SIGMOD Int
Conf on Management of Data, p.927-940.

 https://doi.org/10.1145/1376616.1376708
Guo L, Shao F, Botev C, et al., 2003. XRANK: ranked key-

word search over XML documents. Proc ACM SIGMOD
Int Conf on Management of Data, p.16-27.

 https://doi.org/10.1145/872757.872762
Hao YF, Cao HP, Qi Y, et al., 2015. Efficient keyword search

on graphs using MapReduce. IEEE Int Conf on Big Data,
p.2871-2873.
https://doi.org/10.1109/BigData.2015.7364106

He H, Wang HX, Yang J, et al., 2007. BLINKS: ranked key-
word searches on graphs. Proc ACM SIGMOD Int Conf
on Management of Data, p.305-316.

 https://doi.org/10.1145/1247480.1247516
Kargar M, An AJ, 2011. Keyword search in graphs: finding

r-cliques. Proc VLDB Endowm, 4(10):681-692.
 https://doi.org/10.14778/2021017.2021025
Kargar M, An AJ, 2015. Finding top-k r-cliques for keyword

search from graphs in polynomial delay. Knowl Inform
Syst, 43(2):249-280.

 https://doi.org/10.1007/s10115-014-0736-0
Kargar M, An AJ, Yu XH, 2014. Efficient duplication free and

minimal keyword search in graphs. IEEE Trans Knowl
Data Eng, 26(7):1657-1669.

 https://doi.org/10.1109/TKDE.2013.85
Kim S, Lee W, Arora NR, et al., 2012. Retrieving keyworded

subgraphs with graph ranking score. Expert Syst Appl,
39(5):4647-4656.
https://doi.org/10.1016/j.eswa.2011.08.136

Kimelfeld B, Sagiv Y, 2006. Finding and approximating top-k
answers in keyword proximity search. Proc 25th ACM
SIGMOD-SIGACT-SIGART Symp on Principles of
Database Systems, p.173-182.

 https://doi.org/10.1145/1142351.1142377
Lawler EL, 1972. A procedure for computing the K best solu-

tions to discrete optimization problems and its application
to the shortest path problem. Manag Sci, 18(7):401-405.

 https://doi.org/10.1287/mnsc.18.7.401
Le TN, Bao FZ, Ling TW, 2015. Exploiting semantics for

XML keyword search. Data Knowl Eng, 99:105-125.
 https://doi.org/10.1016/j.datak.2015.06.003
Li GL, Ooi BC, Feng JH, et al., 2008. EASE: an effective

3-in-1 keyword search method for unstructured, semi-
structured and structured data. Proc ACM SIGMOD Int
Conf on Management of Data, p.903-914.

 https://doi.org/10.1145/1376616.1376706
Liu F, Yu C, Meng WY, et al., 2006. Effective keyword search

in relational databases. Proc ACM SIGMOD Int Conf on
Management of Data, p.563-574.

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 463

 https://doi.org/10.1145/1142473.1142536
Mass Y, Sagiv Y, 2012. Language models for keyword search

over data graphs. Proc 5th ACM Int Conf on Web Search
and Data Mining, p.363-372.

 https://doi.org/10.1145/2124295.2124340
Mesquita F, da Silva AS, de Moura ES, et al., 2007. LAB-

RADOR: efficiently publishing relational databases on
the web by using keyword-based query interfaces. Inform
Process Manag, 43(4):983-1004.

 https://doi.org/10.1016/j.ipm.2006.09.018
Nguyen K, Cao JL, 2012. Top-K data source selection for

keyword queries over multiple XML data sources. J In-
form Sci, 38(2):156-175.

 https://doi.org/10.1177/0165551511435875
Ning XM, Jin H, Jia WJ, et al., 2009. Practical and effective

IR-style keyword search over semantic web. Inform
Process Manag, 45(2):263-271.

 https://doi.org/10.1016/j.ipm.2008.12.005
Pan YF, Wu YQ, 2013. ROU: advanced keyword search on

graph. Proc 22nd ACM Int Conf on Information &
Knowledge Management, p.1625-1630.

 https://doi.org/10.1145/2505515.2505743
Park CS, Lim S, 2015. Efficient processing of keyword queries

over graph databases for finding effective answers.
Inform Process Manag, 51(1):42-57.

 https://doi.org/10.1016/j.ipm.2014.08.002
Park J, Lee SG, 2011. Keyword search in relational databases.

Knowl Inform Syst, 26(2):175-193.
 https://doi.org/10.1007/s10115-010-0284-1
Qin L, Yu JX, Chang LJ, et al., 2009. Querying communities in

relational databases. Proc IEEE 25th Int Conf on Data
Engineering, p.724-735.

 https://doi.org/10.1109/ICDE.2009.67
Sagharichian M, Naderi H, Haghjoo M, 2015. ExPregel: a new

computational model for large‐scale graph processing.
Concurr Comput Pract Exp, 27(17):4954-4969.

 https://doi.org/10.1002/cpe.3482
Segundo PS, Lopez A, Batsyn M, et al., 2016. Improved initial

vertex ordering for exact maximum clique search. Appl
Intell, 45(3):868-880.

 https://doi.org/10.1007/s10489-016-0796-9
Segundo PS, Artieda J, Strash D, 2018. Efficiently enumerat-

ing all maximal cliques with bit-parallelism. Comput
Oper Res, 92:37-46.

 https://doi.org/10.1016/j.cor.2017.12.006
Tomita E, Tanaka A, Takahashi H, 2006. The worst-case time

complexity for generating all maximal cliques and com-
putational experiments. Theor Comput Sci, 363(1):28-42.

 https://doi.org/10.1016/j.tcs.2006.06.015
Wang D, Zou L, Zhao DY, 2015. Top-k queries on RDF graphs.

Inform Sci, 316:201-217.
 https://doi.org/10.1016/j.ins.2015.04.032
Xu YW, Guan JH, Li FR, et al., 2013. Scalable continual top-k

keyword search in relational databases. Data Knowl Eng,
86:206-223. https://doi.org/10.1016/j.datak.2013.03.004

Yu T, Liu MC, 2017. A linear time algorithm for maximal
clique enumeration in large sparse graphs. Inform Process

Lett, 125:35-40. https://doi.org/10.1016/j.ipl.2017.05.005
Yuan Y, Wang GR, Chen L, et al., 2013. Efficient keyword

search on uncertain graph data. IEEE Trans Knowl Data
Eng, 25(12):2767-2779.

 https://doi.org/10.1109/TKDE.2012.222

Appendix: Proof of Theorem 2

Let R={vq1, vq2, …, vqd} show the set of all the
vertices that have been added to the MCCr so far. In
this situation, the set of P contains

g=VΓ(vq1)Γ(vq2)…Γ(vqd),

where in the initial state, g=V and R=.

Assume that Xi=RiPi shows the set of all the
vertices that are involved in the MCCr construction,
and suppose that all the MCCrs containing Q{q′}
have been retrieved without duplication for any q′R.
Consider vertex u is selected as a pivot in statement 5
of procedure BKS. According to this selection, the set
of nodes that can be added to the subgraph would be

Candi=(CiP)\Γ(u)={v1, v2, …, vi}.

At statement 6, vertex vj is chosen from Candi to

expand the subgraph. Accordingly, sets P and R
would be updated as follows for the next call:

Pi+1=PiΓ(vj), Ri+1=Ri{vj}.

We claim that: (1) by expanding every vjCandi,

all non-duplicate MCCrs containing g{vj} will be
generated; (2) when finishing the generation of
MCCrs following this expansion, there is no new
MCCr containing g{vj}.

We prove our claims by induction on |Xi|=n.
When 1≤n≤2, the satisfying of the claim is easily

confirmed.
Now, we assume that the claim is true for all n≤N

and prove that this claim is true for n=N+1.
To this end, consider step i of the recursion when

working with Candi as the candidate vertices to ex-
pand the subgraph in step i, Ri as the set of selected
vertices so far, and Pi as the set of all the vertices that
can be added to the uncompleted MCCr. By assuming
that the candidate vertices are selected in order, first

Ghanbarpour et al. / Front Inform Technol Electron Eng 2020 21(3):448-464 464

we examine the expansion of the subgraph by vertex
v1. In this case, two states may occur:

1. If Pi=, then the set of vertices Ri{v1} is
considered as an MCCr. The current recursion of BKS
has been executed just because |Ri{v1}|≥l is satisfied
in the previous step of recursion. In other words, if
this inequality is not satisfied in step i−1, the algo-
rithm will never enter step i. On the other hand, since
there are at most l different types of vertices in the
graph, the height of recursion is not larger than l.
Therefore, in this case, the size of Ri{v1} is exactly
equal to l. Since there is not an edge among the ver-
tices of each type, the vertices of the MCCr involved
are from different types. Consequently, no subgraph
of the MCCr can cover the query. It shows that Ri{v1}
is a minimal r-clique covering l keywords of the
query.

2. If Pi≠, then the stages of pivoting and re-
cursion would be followed. Let in this step vertex
u′CiPi be selected as the pivot. The following two
states may occur in processing the loop:

(1) If (CiPi)\Γ(u′)≠, then one vertex (e.g., vk)
of this set is selected to be added to the subgraph and
the BKS procedure is recalled if statement 7 is satis-
fied. Executing this procedure leads to producing all
MCCrs containing Ri{v1} and without duplication
because |Xi+1|=|Pi+1+Ri+1|≤N and the induction hy-
pothesis holds true for it.

(2) If (CiPi)\Γ(u′)=, then the recall of the
BKS procedure would not proceed and no subgraph
containing Ri{v1} would be presented as MCCr.
More precisely, in this case, there is no new vertex to
expand the subgraph while the depth of recursion
does not reach l. It means that the uncompleted sub-
graph does not cover all the query keywords and it is
not truly an MCCr.

After the examination of vertex v1, if (CiPi)\
Γ(u′)–{v1}=, its other vertices are selected step by
step and for them, the above discussions follow.

In what follows, we discuss the completeness of
the result set generated by the proposed algorithms.
Since any MCCr should contain a vertex of every type,
and all its vertices are directly connected, the order of
applying type restrictions would not be affected in the
final set of MCCrs. However, there may be a covered
r-clique g′G(V, EE′), where E′ is the set of deleted
edges that connect the vertices with the same type and
g′ contains some edges e′E′. If g′ is retrieved by
BKS, it certainly covers all the queried keywords.
However, any edge of e′ shows the existence of two
vertices with the same keyword in g′. Therefore,
subgraph g″=g′–e′ also covers the query, and this
implies that g′ is not a minimal covered clique.

The above discussions show that the claim holds
for any positive integer n as a result of induction.

