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Abstract: Keyword search is an alternative for structured languages in querying graph-structured data. A result to a keyword 
query is a connected structure covering all or part of the queried keywords. The textual coverage and structural compactness have 
been known as the two main properties of a relevant result to a keyword query. Many previous works examined these properties 
after retrieving all of the candidate results using a ranking function in a comparative manner. However, this needs a 
time-consuming search process, which is not appropriate for an interactive system in which the user expects results in the least 
possible time. This problem has been addressed in recent works by confining the shape of results to examine their coverage and 
compactness during the search. However, these methods still suffer from the existence of redundant nodes in the retrieved results. 
In this paper, we introduce the semantic of minimal covered r-clique (MCCr) for the results of a keyword query as an extended 
model of existing definitions. We propose some efficient algorithms to detect the MCCrs of a given query. These algorithms can 
retrieve a comprehensive set of non-duplicate MCCrs in response to a keyword query. In addition, these algorithms can be exe-
cuted in a distributive manner, which makes them outstanding in the field of keyword search. We also propose the approximate 
versions of these algorithms to retrieve the top-k approximate MCCrs in a polynomial delay. It is proved that the approximate 
algorithms can retrieve results in two-approximation. Extensive experiments on two real-world datasets confirm the efficiency and 
effectiveness of the proposed algorithms. 
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1  Introduction 
 
Keyword search is an alternative for structured 

languages in querying over graph-shaped structured 
and semi-structured data such as relational databases, 
XML databases, and RDF databases. Keyword search 
is proposed with respect to the convenience of com-
mon users in querying datasets. In this type of search, 
the user expresses his/her query by entering just some 
keywords without knowing the underlying schema of 

data or having familiarity with the complex syntax of 
a structured query language. 

Since the queries in keyword search are syntax- 
free, the semantic of the query should be extracted 
from the existing graph data. A result to a keyword 
query is a compact connected structure which covers 
all or part of the queried keywords. As an example, 
Fig. 1a shows a part of the DBLP dataset. Suppose 
that keyword query Q={Ba, Liu, 2016} has been 
expressed on this graph. Fig. 1b shows three results to 
this query. Each of results A1 and A2 shows a common 
paper written by “Ba” and “Liu,” which was pub-
lished in 2016. Similarly, A3 shows the paper “Blue-
tooth low energy,” which was written by Ba and Liu, 
and refers to paper “Fully integrated Bluetooth,” 
which was also written by the two authors. Although 
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this result is also relevant to the query, it provides 
some additional information which may not be sig-
nificant for the user.  

In the literature, the following three conditions 
have been considered as the basis for ranking the 
results of a keyword query: 

1. coverage of queried keywords (the result 
which covers a greater number of queried keywords is 
ranked higher), 

2. closeness of queried keywords, and 
3. minimality of results (a result is minimal if it 

does not contain any subtree/subgraph that also sat-
isfies the result conditions). 

In these works, the results are retrieved based on 
different strategies and then ranked based on the 
mentioned properties. This implies that all the rele-
vant results should be retrieved before ranking. To 
have more efficient algorithms, the desired properties 
of results should be checked sooner and in the search 
step. To this goal, the concepts of Steiner tree, distinct 
root-based semantics, Steiner graph, and r-clique are 
proposed as the desired results that should be 
searched. A Steiner tree considered in Kimelfeld and 
Sagiv (2006), Ding et al. (2007), and Hao et al. (2015) 
covers all the given keywords with the minimum sum 
of edge weights. Since the problem of finding Steiner 
trees in a graph is an NP-hard problem (He et al., 
2007), distinct root-based semantics was proposed to 
define the results of keyword queries. According to 
this semantics, a result covers all given keywords 
with minimum central distances to a root node. 
However, there are two problems with this. First, it is 
aimed mainly at compacting the structure of results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

based on the closeness of their nodes to a central node, 
while this does not guarantee the closeness of key-
word nodes (the nodes covering at least one of the 
queried keywords). Second, using the distinct root- 
based semantics, the root of retrieved results would be 
distinct. This means losing many of the results with 
the same root of the retrieved results. The recent 
works in keyword search tend to find subgraphs in-
stead of subtrees because they are more informative. 
The concepts of r-radius Steiner graph (Li et al., 2008) 
and r-clique (Kargar et al., 2014; Kargar and An, 
2015) are for retrieving the compact subgraphs as the 
results of keyword queries. The coverage of keywords 
and the closeness of keyword nodes are well em-
bedded in these concepts. However, these definitions 
do not emphasize the minimality of results. 

In this study, we propose to find minimal cov-
ered r-cliques (MCCrs) of a graph as the results of a 
keyword query. An MCCr is a compact structure of 
vertices with three properties: (1) It covers all the 
queried keywords; (2) The distance between every 
pair of its vertices is no larger than r; (3) It does not 
have a proper subgraph that is also an MCCr. An 
MCCr is a compact and meaningful structure which 
contains some relevant intermediate nodes for im-
proving the answerability. Moreover, MCCr is more 
concise than the previous semantics since it contains 
no irrelevant nodes. 

The precise form of MCCrs makes identifying 
them in a large graph difficult. In this paper, we in-
troduce some algorithms to identify the MCCrs of a 
keyword query in efficient ways. The proposed algo-
rithms employ effective pruning techniques to reduce 

Fig. 1  A part of the DBLP dataset (a) and some of results to query Q={Ba, Liu, 2016} (b) 

(a) (b) 
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the time complexity of search. The main contributions 
of this paper are summarized as follows: 

1. We propose a new semantics for the results of 
a keyword search in which the keyword vertices are 
close to each other. 

2. We present the Bron-Kerbosch-based key-
word search algorithm (BKS) as the base algorithm 
for retrieving all the MCCrs of a homogenous graph, 
in which pruning methods are employed as in the 
Bron-Kerbosch algorithm (Bron and Kerbosch, 1973). 
BKS uses pivoting and type restrictions to reduce the 
exploration cost of finding MCCrs. 

3. Algorithm BKSR is proposed as an improved 
version of BKS. This algorithm searches the graph 
more efficiently by imposing a frequency-based or-
dering on the graph’s vertices. 

4. We propose BKSM and BKSRM as distrib-
uted versions of BKS and BKSR algorithms, respec-
tively. These algorithms rely on the distributive nature 
of the base algorithms for parallel search of the search 
space.  

5. A heuristic algorithm is presented to produce 
top-k results of a keyword query in a polynomial 
delay. This algorithm can incrementally generate 
results by observing the distance restrictions. Using 
this algorithm, an approximate version is proposed for 
each of the exact algorithms. 

6. A set of extensive experiments is conducted 
on two real datasets IMDb and DBLP with a com-
parison to the existing algorithms to show the effi-
ciency and effectiveness of the proposed algorithms. 

 
 

2  Related works 
 
Research on keyword search can be followed in 

four categories: keyword search on relational data-
bases (Liu et al., 2006; Ding et al., 2007; Park J and 
Lee, 2011; Bergamaschi et al., 2013, 2016; Xu et al., 
2013), keyword search on XML databases (Guo et al., 
2003; Le et al., 2015), keyword search on the Se-
mantic Web (Ning et al., 2009; Wang et al., 2015), and 
keyword search on schema-free graphs (Ghanbarpour 
and Naderi, 2018). All the relational, XML, and RDF 
datasets are associated with the predefined schemas. 
The existence of a schema does not impose any re-
striction on the graph, and facilitates the determina-
tion of the query meaning. However, there are many 
graphs for which the schema is not defined. Keyword 

search over schema-free graphs has been widely 
examined in the literature (He et al., 2007; Golenberg 
et al., 2008; Kim et al., 2012; Yuan et al., 2013; Park 
CS and Lim, 2015). Even though these works provide 
a general framework for keyword search over any 
type of graph, they face more challenges because of 
having less prior knowledge about the examined data. 
In the following, some of these works are mentioned. 

BLINKS (He et al., 2007) partitions graph data 
into some blocks and uses a bi-level indexing to 
process keyword queries. One group of indices is 
used to travel between the blocks and the other is used 
to access the data within the blocks. In retrieving an 
answer, BLINKs begins from a keyword node and 
searches its block with the help of intra-block indices. 
If searching for an answer is expanded to the neigh-
borhood blocks, it uses multiple cursors and sends 
each of them to a neighbor block to continue the 
search. According to the claim of the authors, 
BLINKS is m-optimal, where m is the number of 
input keywords. Ease, which was introduced in Li et 
al. (2008), defines the concept of r-radius subgraphs 
on an undirected graph and provides a method to 
group them. It uses two indices for storing data: the 
first index saves the structural distance between each 
pair of keywords and the second index stores the 
contained r-radius subgraphs for each keyword. In 
this approach, the size of the final answers is limited 
to the size of the initial processed subgraphs. So, there 
may be answers that have not been found. This ap-
proach contains a ranking step to sort retrieved an-
swers according to their structural compression and 
some information retrieval measures. LABRADOR 
(Mesquita et al., 2007), as an extension of the system 
proposed by Calado et al. (2004), is a keyword search 
system over attributed graphs. It uses Bayesian-based 
probabilities to estimate the relevance of answers to a 
given query. After retrieval, the candidate answers are 
ranked according to the probability that they have of 
representing the best assignment between the key-
words provided by the user and the attributes of the 
database schema. de Virgilio et al. (2009) proposed an 
approach based on the paths which led to the keyword 
nodes. In this approach, a path of graph is selected in 
each step to be added to an incomplete answer. The 
paths are grouped based on their template and as-
signed with a score. The score of paths is used not 
only in the expanding phase, but also in the final 
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ranking of answers.  
Kargar and An (2011) focused on finding an-

swers in the form of r-cliques. An r-clique is a set of 
nodes which covers all the query keywords and whose 
shortest path between every two nodes is not greater 
than r. r is a user-defined parameter and indicates the 
maximum value of the answer’s diameter. Two ap-
proximate algorithms r-clique and r-clique-rare were 
proposed in this work to find results of keyword 
queries. In both algorithms, the search space is di-
vided based on the Lawler algorithm and the answers 
are detected in the distinct subspaces. In the r-clique 
algorithm, all the covered star-shaped structures with 
different keywords as the roots are examined, and the 
one with the maximum weight is selected as the best 
result in each subspace. The authors claimed that, in 
the worst case, the weight of an answer produced by 
their algorithm is twice the weight of the optimal 
answer. However, since the time complexity of this 
algorithm is relatively high, they proposed algorithm 
r-clique-rare. In this algorithm, instead of considering 
all the star-shaped structures, only the ones with the 
rarest nodes in their roots are considered. Although 
r-clique-rare is faster than r-clique, the accuracy of its 
results is lower. Kargar et al. (2014) proposed a 
Lawler-based method to retrieve the top-k non- 
duplicate answers. The duplicate answers are the ones 
covering the same set of keyword nodes, although 
these nodes may be connected differently.  

Nguyen and Cao (2012) presented an approach 
by selecting the top-k data sources from potentially 
numerous data sources. Their method derives infor-
mation patterns from each data source as succinct 
synopses that act as representatives of the corre-
sponding data sources. The patterns (subgraphs) are 
then scored based on their relevance to the given 
query using a structure-aware ranking function. A 
new type of keyword search query, ROU-query, was 
defined in Pan and Wu (2013). It uses input keywords 
in three categories, required, optional, and unwanted, 
and returns nodes of the underlying graph whose 
neighborhood satisfies the keyword requirements. It 
applies a new data structure named the query induced 
partite graph (QuIP) to capture the constraints related 
to the neighborhood size and unwanted keywords. 
The authors proposed a family of algorithms which 
take advantage of the information in QuIP for effi-
cient evaluation of ROU-queries. 

The problem of finding duplication-free and 
minimal answers was addressed in Kargar et al. 
(2014), and an algorithm on the basis of Lawler’s 
procedure was proposed as a solution. Park CS and 
Lim (2015) proposed an approach to aggregate the 
best keyword nodes gained from a pre-computed 
process in order to produce the top-k relevant answers 
in an approximate order. They used a queuing system 
over the data extracted from an extended inverted 
index. Their method prefers more extended and rel-
evant answers having more coverage of keywords 
instead of minimal answers. 

 
 

3  Preliminaries and problem statement 
 
Given a keyword query with l keywords as 

Q={k1, k2, …, kl} over a data graph, the problem of 
keyword search in the graph is to find a set of con-
nected structures as results, where each of them sat-
isfies the keyword query. The results of a keyword 
query can be in the form of subtrees or subgraphs. 
According to the “AND semantic,” any result should 
cover all of the queried keywords and, based on the 
“OR semantic,” any result should cover at least one 
queried keyword. In this work, relying on the AND 
semantic, we define the MCCr as a result to a key-
word query. An MCCr is structurally compact and 
textually covers all the queried keywords. 
Definition 1 (Covered r-clique)    A covered r-clique 
C of graph G is a set of connected keyword vertices in 
G that together cover all of the queried keywords and 
in which the shortest distance between any pair of the 
keyword vertices is equal to or lower than r (Kargar 
and An, 2015).  
Definition 2 (Minimal covered r-clique)    A covered 
clique C of G is minimal if there exists no covered 
clique C′ in G such that C′ is a subset of C. 

Retrieving MCCr as the result of a keyword 
query has two advantages: (1) The semantics of 
MCCr guarantees that the inside distances between 
any two keyword nodes would not be larger than r. It 
shows the structural compactness of the retrieved 
results. (2) An MCCr is a specific subgraph that can 
be detected in a graph more efficiently than subgraphs 
with no predefined shapes.  

Since there may be numerous results to a key-
word query, it is expected that results will be  
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presented in a ranked order based on their weights. 
We use the sum-based semantic to define the weight 
of an MCCr. 
Definition 3 (Weight of MCCr)    According to the 
sum-based semantic, the weight of an MCCr of G 
retrieved in response to query Q with l keywords is 
calculated as follows: 

 

1 1

Weight dist( , ),
l l

i j
i j i

v v
  

                (1) 

 

where vi and vj are vertices of MCCr, and dist(vi, vj) 
shows the shortest distance between vi and vj in G. In 
this work, the results with smaller weights are ranked 
higher. 

In Kargar et al. (2014) and Kargar and An (2015), 
it was shown that finding covered r-cliques with the 
minimum weight (based on Eq. (1)) is an NP-hard 
problem. By a reduction of MCCr to covered r-clique, 
it is easily proved that finding the minimum-weight 
MCCr is also an NP-hard problem. 

 
 

4  The proposed algorithms 
 

In this section, we present some algorithms to 
find MCCr to a keyword query. In the first algorithm, 
the MCCrs are detected based on a classification on 
the graph’s vertices based on the covered keywords. 
The idea of this algorithm is derived from the 
Bron-Kerbosch (Bron and Kerbosch, 1973) and To-
mita (Tomita et al., 2006) algorithms, which have 
been proposed to find the maximal cliques of a ho-
mogeneous graph. However, in this work, we aim to 
find the MCCr of a heterogeneous graph. The pro-
posed algorithm uses a recursive procedure to inves-
tigate the search space by building search trees rooted 
at different vertices. In this procedure, the branches of 
search trees are pruned based on the keywords of the 
given query. In the improved version of this algorithm, 
for better performance, the range of pruning the 
search space is extended by maintaining an order on 
the keyword vertices. The next two algorithms con-
centrate on distributed finding of MCCrs in the graph. 
Then detecting results in an approximate order is 
handled. 

To solve the keyword search problem by finding 
minimal covered cliques, the graph G is augmented 

with an edge between any two connected nodes of G. 
This augmentation can be achieved in an efficient 
way by considering the following two optimizations: 

1. Since the keywords are the base of search, just 
the connections to the keyword vertices are added to 
the graph. To this goal, a breadth-first search is per-
formed over any keyword vertex to recognize its 
connections. 

2. In keyword search, the results in which the 
vertices are far away from each other are not worth 
much. Therefore, the graph is augmented only by 
connecting the pairs of vertices whose distance is 
lower than a specified threshold. 

The problem of detecting minimal covered 
cliques in the augmented graph is mapped to the 
problem of finding covered cliques. 
Theorem 1    The set of MCCr related to query Q={k1, 
k2, …, kl} in graph G is equivalent to the set of cov-
ered cliques in subgraph gG(V, E) such that 
V(g)={uV(G)|uQ≠} and E(g) is a set of edges 
connecting any vi, vjV(g) whose distance is no larger 
than r, when ignoring the possible edges between the 
covering vertices of the same keyword. 
Proof    Since there are at most l groups of vertices in 
g covering distinct keywords and any possible edges 
between vertices of a group are ignored, the number 
of vertices of covered cliques is at most l. With regard 
to the MCCr definition and according to the facts that 
the number of distinct vertices in graph G is at most l 
and that there are no connections in G between the 
vertices with a distance greater than r, the set of 
covered cliques of l keywords in G is equivalent to the 
set of MCCr of l distinct keywords in G(V, E). 

Using Theorem 1, the problem of solving a 
keyword query in graph G is reduced to the problem 
of finding the covered r-cliques in subgraph g(V, E) 
containing those nodes of G with at least one given 
keyword being covered. All the algorithms proposed 
in this study solve the latter problem. 

4.1 Finding all non-duplicate MCCrs (BKS  
algorithm) 

Finding cliques has been widely studied in the 
domain of graph mining (Bron and Kerbosch, 1973; 
Tomita et al., 2006; Segundo et al., 2016, 2018; Yu 
and Liu, 2017). However, this group of methods 
generates cliques with any size and does not impose 
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any restriction on the type of vertices. In this subsec-
tion, we propose BKS with the idea derived from the 
Bron-Kerbosch and Tomita algorithms to detect all 
the non-duplicate MCCrs of a given query with 
keywords. In BKS, a number of combination trees of 
keywords are searched based on the depth-first search 
strategy. During the search, a large set of unessential 
branches of combination trees is pruned for efficiency. 
Suppose that the set of vertices covering keyword 
kiQ is shown by Ci. In BKS, two sets of vertices are 
considered in each step: the set of candidate vertices, 
P, which can be added to the MCCr that are being 
built, and the set R of vertices which are already 
added to the MCCr. The algorithm begins by letting R 
be an empty set, and expands R level by level using a 
recursive procedure to reach a complete MCCr. In 
each recursion, a vertex v of candidate vertices is 
selected to be added to R, and the set P is restricted to 
the neighbors of v. In addition, we restrict the set of 
candidate vertices of P in each level of expansion to 
CiP. Therefore, if the set R contains {v1, v2, …, vi−1} 
in the entrance of level i, the set of candidate vertices 
would be  

 

1 2 1Γ( ) Γ( ) ... Γ( ) ,i iP v v v C              (2) 

 
where Γ(v) shows the neighbor set of vertex v. This 
setting retains the connectivity of vertices in the 
MCCr. The recursion would not be followed if the 
number of vertices added to R plus that of candidate 
vertices is not greater than l. This is owing to the 
essential need to present the vertices of all types of 
keywords in the MCCr. The pseudo code of BKS is 
shown in Algorithm 1. The pivoting step (according 
to the Tomita algorithm) in statement five of proce-
dure BKS is to develop the range of pruning when 
searching the graph. 
 

Algorithm 1    BKS algorithm 
Input: input graph G, query {k1, k2, …, kl}  
Output: MCCrs 

1  for i←1 to l do 

2    Ci←set of nodes in G containing ki 

3    P←PCi 

4  end for 
5  i←1 

6  R←{} 
7  BKS(P, R, i) 

8  return 

Proc BKS(P, R, i) 
1  if P={} then 
2    report R as an answer 
3  end if 
4  i←i+1 

5  choose a pivot uCiP 
   // choose u to maximize |(CiP)Γ(u)| 
6  for each vertex v(CiP)\Γ(u) do 
7    if size ((PΓ(v))(R{v}))≥l then 
8      BKS(PΓ(v), R{v}, i) 
9    end if 
10   P←P\{v} 
11 end for 
12 return 

 
Theorem 2    Algorithm BKS generates all and only 
the MCCr of l keywords with no duplication. 
Proof    See the Appendix. 
Theorem 3    The time complexity of algorithm BKS 
is O(|Cmax|

l+1), where l shows the size of the given 
query and |Cmax| the maximum size of vertex set Ci 
containing keyword ki for 1≤i≤l. 
Proof    The height of recursive trees of the BKS 
algorithm is at most l, each level associated to the 
vertex set of a keyword, i.e., CiP. Since |Ci|≤|Cmax| 
for any 1≤i≤l, the number of times of calling proce-
dure BKS is at most equal to |Cmax|

l. For any of re-
cursive calls of BKS, the time required for calculating 
(CiP)Γ(u) is equal to the maximum size of (CiP), 
which is |Cmax| multiplied by O(1), needed for calcu-
lating the intersection of Γ(u) and any vertices of 
(CiP) using the bit intersection proposed in Dasari  
et al. (2014). Therefore, the time complexity of BKS 
is obtained as O(|Cmax|

l+1) according to Eq. (3): 
 

1

max max max .
l l

C C C
                  (3) 

 
Note that BKS is used just as a baseline to 

compare with the polynomial delay approximation 
algorithm, which will be discussed in the next sub-
sections. After ranking the results generated by BKS, 
an exact and optimal list of results would exist for any 
given query. 

The most similar works to ours are Kargar and 
An (2011, 2015), which aim to find all the r-cliques (a 
similar concept to MCCr) of a graph as the results of a 
given query, using a branch and bound algorithm with 
time complexity O(l2|Cmax|

l+1). Fig. 2 shows an  
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example graph and the schema of traversing this 
graph with the Kargar-An and BKS algorithms. The 
BKS algorithm has several advantages over the Kar-
gar-An algorithm: (1) The time complexity of BKS is 
lower; (2) BKS is an incremental algorithm which can 
incrementally present results before terminating the 
algorithm, while the Kargar-An algorithm can present 
results just after being terminated; (3) BKS can be 
easily adapted to run on a distributed framework, 
while the Kargar-An algorithm does not have this 
ability. 

 
 
 
 

 
 
 
 
 
 
 
 
 

4.2  Using the frequency of keywords in MCCr 
detection (BKSR algorithm) 

In the recursive trees of BKS, it is observed that 
the pruning is more in the lower levels. Therefore, the 
efficiency of BKS can be improved by delaying the 
examination of high-frequency keywords to the lower 
levels of recursion trees. In BKSR, the vertex set of 
keywords is arranged in increasing order of size and 
injected to the recursive calls of the algorithm based 
on this order. In this way, the roots of recursive trees 
are keyword vertices covering the less frequent 
keywords of the query. Using this strategy, the num-
ber of recursive trees decreases (or remains un-
changed), and the number of candidates in the lower 
levels of the tree increases (or remains unchanged), 
resulting in a wider range of branches for the pruning. 
Fig. 3 shows the schema of traversing the graph rep-
resented in Fig. 2a by algorithm BKSR. 

4.3  Distributed finding of MCCrs 

To increase the efficiency of the algorithms, es-
pecially in the large volume graphs, the capabilities of 
parallel processing can be employed. In BKS and 

BKSR algorithms, the recursive trees are built com-
pletely independent of each other. Therefore, they can 
be built in parallel. This is the base idea of BKSM and 
BKSRM algorithms, to parallel detection of MCCrs 
under a distributed shared memory architecture. In 
these algorithms, to increase the degree of parallelism, 
the larger set of Ci is selected as the entries of the first 
level of recursion, resulting in more independent 
recursive trees. However, in other levels of recursion, 
the vertex sets are injected the same as in the base 
algorithms. The isolated recursive trees are executed 
in parallel. The pseudo code of BKSRM is shown in 
Algorithm 2. In this algorithm, the injection of vertex 
sets to each level of recursion (except the first level) is 
based on ascending order of their size to maintain a 
high possibility of pruning. 

 
 
 
 
 
 
 
 
 
 

 
 

 
 

Algorithm 2    BKSRM algorithm 
Input: input graph G, query {k1, k2, …, kl} 
Output: MCCrs 

1  for i←1 to l do 
2    Ci←set of nodes in G containing ki 
3    orderi←Ci 
4  end for 
5  sort orderi in ascending order based on the size of Ci 
6  for i←1 to l−1 do 
7    P←Porderi 
8  end for 
9  for j←1 to size(orderl) do 
10   i←1 
11   R←{orderl 

j} 
12   P←PΓ(orderl 

j) 
13   process(j, BKS(P, R, i)) 
14 end for 
15 return 

 
Theorem 4    BKSRM detects all of the covered 
cliques of l queried keywords with T parallel  

Fig. 2  An example data graph (a), schema of traversing 
the graph by r-clique (b), and schema of traversing the 
graph by BKS (c) 

(a) 

(b) 

(c) 
(b) 

Fig. 3  An example data graph (a), schema of traversing 
the graph by BKS (b), and schema of traversing the graph 
by BKSR (c) 

(a) (c) 
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processors for 1≤T≤|Cmax| with time complexity 
O(|Cmax|

l+1/T), where |Cmax| shows the maximum size 
of Ci containing keyword ki for 1≤i≤l. 
Proof    According to algorithm BKSRM, the recur-
sive procedure is called at most for (l−1) levels, and 
each level is associated to the vertex set of one of the 
queried keywords except the most frequent one. 
Therefore, the number of recursive calls would be 
equal to |Cmax|

l−1. For any recursive call, (CiP)Γ(u) 
should be calculated. This needs at most O(|Cmax|). 
Therefore, processing each recursive tree would take 
at most O(|Cmax|

l). In the vertex set related to the more 
frequent keyword, there are at most |Cmax| vertices, 
each of them considered as the root of a recursive tree. 
These vertices are assigned to different processors to 
be investigated in parallel. By considering the T par-
allel processors, the time complexity of BKSRM 
would be at most  
 

1

max max
max

( )
( ) .

l
lC O C

O C
T T



            (4) 

 
Since the degree of locality in the processing of 

the graph is high in these algorithms, they can be 
efficiently adapted to run on a large-scale graph pro-
cessing system such as ExPregel (Sagharichian et al., 
2015). 

4.4  Top-k polynomial delay algorithm 

One of the main properties of a keyword search 
engine is its efficiency in incrementally producing the 
top-k results to a given keyword query. The com-
plexity of delay between producing two subsequent 
answers is a standard measure to estimate the effi-
ciency of the search. If this delay is polynomial based 
on the size of the given query, the search algorithm is 
called a polynomial delay algorithm (Golenberg et al., 
2008). In this subsection, a polynomial delay algo-
rithm is proposed to incrementally enumerate the 
top-k results (MCCr) of a given query. The general 
framework of this algorithm is based on the Lawler- 
based strategy to divide the search space. The results 
of each subspace are retrieved by an adaptation of the 
BKS algorithm. The low-weight results among those 
retrieved are presented as the top-k best results.  

The basic Lawler algorithm (Lawler, 1972) was 
introduced to compute the top-k solutions to discrete 
optimization problems. This algorithm was then 

adapted to the keyword search problem (Golenberg et 
al., 2008; Kargar and An, 2011, 2015; Mass and Sagiv, 
2012; Kargar et al., 2014). According to the adopted 
Lawler-based strategy (Kargar and An, 2011), the 
search space is divided into some overlapping sub-
spaces proportional to the number of query keywords. 
Assume that the given query contains three keywords 
Q={k1, k2, k3} and that the set of vertices covering any 
ki is denoted by Ci. Therefore, C1×C2×C3 shows the 
initial search space. The best result of this space is 
detected and added to a priority queue. Suppose that 
the best result is shown by {v1, v2, v3} such that vi 
contains keyword ki. According to this result, the 
initial search space is divided into four subspaces 
(Table 1). After dividing the search space, the algo-
rithm for finding the best result is executed in each of 
the subspaces except SB0. The detection results are 
added to the priority queue. At the end of this step, the 
lowest weight element of the priority queue is pre-
sented as the next best global result. The subspace to 
which the last result belongs is further divided to the 
sub-subspaces in a similar way, as shown in Table 1. 
 
 
 
 
 
 
 
 

 

The best results of sub-subspaces are also added 
to the priority queue and the lowest weight of the 
queue’s elements is presented as the next best global 
result. This process continues until presenting k re-
sults. We use Algorithm 3, which is a modified ver-
sion of Algorithm 2 presented in Kargar and An 
(2015), as the outer layer of our keyword search  
engine. 

 

Algorithm 3    Lawler-based retrieval algorithm  
Input: graph G, query Q, and k 
Output: set of top-k ordered approx-MCCrs 

1  for i←1 to l do 
2    Ci←set of nodes in G containing ki 
3  C←<C1, C2, …, Cl> 
4  Queue←0 
5  A←BKSRA(C, G, l) 
6  if A≠ then 
7    insert <A, C> into Queue 

Table 1  Dividing the search space* 

Subspace Representative set 
SB0 {v1}×{v2}×{v3} 
SB1 (C1−{v1})×C2×C3 
SB2 {v1}×(C2−{v2})×C3 
SB3 {v1}×{v2}×(C3−{v3}) 

* Kargar and An (2015) 
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8  while Queue≠ do 
9    <A, S>←top element of Queue 
10   output(A) 
11   k←k−1 
12   if k=0 then 
13     return 
14   <SB1, SB2, …, SBl>←subspaces(A, S) 
15   for i←1 to l do 
16     Ai←BKSRA(SBi, G, l) 
17     if Ai≠ then 
18       insert <Ai, SBi> into Queue 

Proc subspaces (Kargar and An, 2015) 
Input: the best answer of the previous step, 

  A=<v1, v2, …, vl>, and search space C 
Output: l new subspaces 

1  for i←1 to l do 

2    for j←1 to i−1 do 

3      SBi
j←{vj} 

4    SBi
i←Ci−{vi} 

5    for j←i+1 to l do 

6      SBi
j←Cj 

7  return <SB1, SB2, …, SBl> where SBi=<SBi
1, 

SBi
2, …, SBi

l> represents space SBi
1×SBi

2×…×SBi
l. 

 
The procedure of finding the best answer recurs 

(k×l−l+1) times in the Lawler-based top-k answer 
retrieval. Therefore, its performance can significantly 
affect the overall performance of the algorithm. In this 
work, we propose algorithm BKSR(A), which is an 
approximate version of algorithm BKSR, to find the 
best approximate result of a subspace. Algorithm 
BKSR(A) receives a search space as C=<C1, C2, …, 
Cl> and sorts it based on the size of the subsets. Then, 
for each vertex of the smallest size subset, the set P is 
set equal to the sum of the other subsets and the set R 
is set to empty. The vertices of the smallest size subset 
are considered as the roots of recursive trees. The 
recursive trees are expanded by selecting a vertex of 
each level that has the least distance to the vertices of 
R. The only MCCr retrieved from each recursive tree 
is added to the priority queue based on its weight. The 
minimum weight element of the priority queue is then 
returned as the best result. The pseudo code is shown 
in Algorithm 4. 

 
Algorithm 4    BKSR(A) 
Input: search space C, graph G, and number of keywords l 
Output: the best approximate MCCr in C 

1  Queue←{} 

2  for i←1 to l do 

3    orderi←Ci 
4  end for 
5  sort orderi in ascending order of size  
6  for i←2 to l do 

7    P←Porderi 
8  end for 
9  for j←1 to size(order1) do 

10   i←1 

11   R←{order1
j} 

12   P←PΓ(order1
j) 

13   BKSW(P, R, i) 
14 end for 
15 return top element of Queue 

Proc BKSW(P, R, i) 
1  if P={} then 
2    insert R into Queue 
3  end if 
4  i←i+1 

5  choose a pivot uCiP 
  // choose u to maximize |(CiP)Γ(u)| 
6  S←(CiP)\Γ(u) 

7  v←S1 

8  for i←2 to size(S) do 

9    for j←1 to size(R) 
10     if dist(Si, Rj)<dist(v, Rj) then 
11       v←Si 
12     end if 
13   end for 
14   if size((PΓ(v))(R{v}))≥l then 
15     BKSW(PΓ(v), R{v}, i) 
16   end if 
17 end for 
18 return 

 
In algorithm BKSR(A), orderl 

j shows the jth 
vertex of the lth set of order. Similarly, in the other 
expressions, the superscript is related to the vertices 
and the subscript is related to the sets. 
Theorem 5    Procedure BKSR(A) produces an an-
swer with two-approximation. 
Proof    The answers of BKSR(A) are always MCCrs 
in which the distance between every two vertices is  
no larger than r. Therefore, the weight of any  
MCCr retrieved by BKSR(A) satisfies the following 
equation: 

approx_weight(MCC ) ( 1) / 2.r l l r          (5) 

 
Algorithm r-clique generates answers with 

two-approximation. The answers generated by this 
algorithm are star-shaped trees with a center node that 
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directly connects to (l−1) leaf nodes. Therefore, the 
maximum weight of answers retrieved by algorithm 
r-clique is  

 

clique

2

( 1)
max_weight( ) ( 1) 2 ( 1)

2

( 1) .

l l
r l r r l

l r

       
 

 

(6) 
 

In Kargar and An (2015), it was proved that the 
weight of answers retrieved by r-clique is at most 
twice the optimal weight. Therefore, it can be con-
cluded that 

 

clique cliquemax weight( ) 2opt_ weight( ).r r_     (7) 

 
It can be simply proved that the optimal r-clique 

is always an MCCr and that this MCCr is the optimal 
one among all the relevant MCCrs to the query. It 
means that 

 

cliqueopt _weight( )= opt_ weight(MCC ).rr       (8) 

 
Considering Eqs. (5)–(7), it is concluded that 

 

2

clique

( 1)
approx_weight(MCC ) ( 1)

2
2opt_weight( ).

r

l l r
l r

r


  


   (9) 

 
According to Eq. (8) and inequality (9), we have 

 
approx_weight(MCC ) 2opt_ weight(MCC ).r r  (10) 

 
It shows that the weight of answers retrieved by 

BKSR(A) is lower than twice that of the optimal 
MCCr. 
Theorem 6    The time complexity of algorithm 
BKSR(A) in the worst case is O(l2|Cmin||Cmax|). 
Proof    Suppose the smallest size set is shown by Cmin. 
In algorithm BKSR(A), the procedure BKSW is 
called |Cmin| times. This procedure is recursive and its 
recursive tree is similar to a chain containing at most l 
recalls of BKSW. In any of recursive calls of BKSW, 
the intersection operations need O(|Cmax|) for calcu-
lation. The statement 8 repeats at most |Cmax|l times. 
Each time, the candidate vertex is compared with a 
vertex of R (the current clique), while the size of R is 
at most l. Therefore, the time complexity of BKSW, in 

the worst case, is equal to O(|Cmax|)l
2+|Cmax|l= 

O(|Cmax|l
2). In BKSR(A), procedure BKSW is called 

for |Cmin| vertices. Therefore, the time complexity of 
BKSR(A) is O(l2|Cmin||Cmax|). 

Kargar and An (2011, 2015) also proposed a 
greedy algorithm to approximate r-cliques. This al-
gorithm estimates results in two-approximate order. It 
means that the weight of each result generated is no 
higher than twice the weight of the optimal results. 
However, results produced by this algorithm are not 
essentially r-clique and can have the radius of 2r. The 
time complexity of this algorithm is O(l2|Cmax|

2). In 
contrast, BKSR(A) produces results with the maxi-
mum radius r. Therefore, it is more accurate than 
r-clique. On the other hand, in the time complexity 
calculations of BKSR, we assume that all of a group’s 
keyword nodes are tested in each recursion call, while 
in practice, only the set of vertices that are connected 
to the selected ones in the earlier levels are examined 
at each level. Thus, the runtime of BKSR(A) is in 
practice lower than that of r-clique. The experimental 
comparisons of these algorithms are presented in 
Section 5. 

 
 

5  Experiments 
 

To evaluate the effectiveness and efficiency of 
the proposed algorithms, we conduct extensive ex-
periments on the two large-scale real-world datasets 
IMDb (http://www.grouplens.org/node/73) and DBLP 
(http://dblp.uni-trier.de/xml/). A corresponding graph 
is extracted from each of the datasets by considering 
any tuple as a vertex and any connection between two 
tuples through foreign keys as an edge of the graph. 
Similar to Ding et al. (2007), Qin et al. (2009), and 
Kargar and An (2015), any edge between vertices vi 
and vj is weighted based on Eq. (11) such that deg(vk) 
shows the degree of vertex vk: 

 

1
( , ) log(1 deg( )) log(1 deg( )) .

2i j i jw v v v v       (11) 

 

We also use uniform weighting as an alternative 
way to determine the weights of graph’s edges, which 
gives each edge a weight of one.  

In this section, we evaluate the results retrieved 
by approximate versions of BKS, BKSR, BKSM, and 
BKSRM algorithms, which are named BKS(A), 
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BKSR(A), BKSM(A), and BKSRM(A), respectively. 
Any of the approximate algorithms is extracted from 
its corresponding exact algorithm by adapting them to 
Algorithm 4. The results are presented in comparison 
with the results of r-clique and r-clique-rare algo-
rithms (Kargar and An, 2015). The reasons why we 
choose r-clique algorithms for comparison are that:  
(1) they are among the most recent work in the key-
word search domain; (2) the definition of r-cliques (as 
the results) is more similar to that of the MCCr;  
(3) they produce top-k answers in a polynomial delay, 
similar to our algorithms.  

All of the algorithms are implemented using 
Java and on an Intel® CoreTM i7@2.80 GHz laptop 
with 16 GB RAM and the Windows 8 operating sys-
tem. PostgreSQL is used to store the relational data. 
The different systems are compared in terms of ef-
fectiveness and efficiency. To keep the comparison 
fair, all the experiments are executed on the same set 
of queries as in Kargar and An (2015).  

5.1  Datasets and queries 

In the experiments, the two large-scale real- 
world datasets IMDb and DBLP are employed to 
evaluate the effectiveness and efficiency of the pro-
posed algorithms. The IMDb dataset shows the rela-
tionships among the users and the movies of website 
IMDb and the rating of the users to the movies. The 
numbers of tuples in three relations (user, movie, and 
rating) in the IMDb dataset are 138 493, 131 262, and 
20 000 263, respectively. The DBLP dataset contains 
information about papers, authors, and paper citations. 
The numbers of tuples in author, paper, authorship, 
and citations are 613 000, 929 000, 2 375 000, and 
82 000, respectively. The set of queries and their 
frequencies in the graphs of DBLP and IMDb are 
presented in Table 2. Note that the queries used for 
testing are the same as the queries used in Qin et al. 
 
 
 
 
 
 
 
 

 
 

(2009) and Kargar and An (2011, 2015) for better 
evaluation and comparison. 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2  Efficiency evaluation 

In this subsection, the runtime of different sys-
tems is compared based on the performance affecting 
factors including the value of r (radius of results), the 
number of keywords (l), and the frequency of key-

words (
ikf ). In the diagrams, the fixed factors are set 

to r=11, l=4, 0.0009
ikf   for all the queried key-

words. The average execution times of the systems 
when varying the radius of results (r) are shown in  
Fig. 4a, showing that the execution times of different 
systems are increased by increasing the value of r. 
This is because of the greater number of edges which 
should be examined when increasing the radius of 
results. Fig. 4 shows that algorithms BKS(A) and 
BKSR(A) are faster than r-clique and that the execu-
tion time of BKSR(A) is close to that of r-clique-rare, 
while as we will show later, the accuracy of BKSR(A) 
is higher than that of r-clique-rare. The same behavior 
is maintained in Figs. 4b and 4c, showing that the 
execution times grow exponentially with an increased 
number of queried keywords or querying the more 
 

 
 
 
 
 
 
 
 
 

Table 2  The queries on DBLP and IMDb datasets 

Frequency DBLP query IMDb query 
0.0003 Q1: distance, discovery, 

scalable, protocols 
Q6: game, summer, 

bride, dream 
0.0006 Q2: Graph, routing, space, 

scheme 
Q7: Friday, street, 

party, heaven 
0.0009 Q3: fuzzy, optimization, 

development, support, 
environment, database 

Q8: girl, lost, blood, 
star, death, all 

0.0012 Q4: modeling, logic, 
dynamic, application 

Q9: city, world, blue, 
American 

0.0015 Q5: control, web, parallel, 
algorithms 

Q10: king, house, 
night, story 

Fig. 4  Execution times of the systems based on different factors over the IMDb dataset: (a) query time vs. r; (b) query 
time vs. the number of keywords; (c) query time vs. the keyword frequency 

(a) (b) (c) 
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frequent keywords. The BKS(A) and BKSR(A) sys-
tems over the IMDb dataset are approximately two 
and four times faster than r-clique, respectively.  

As mentioned before, one of the advantages of 
the proposed algorithms is their ability for distributive 
execution with regard to the isolation building of the 
recursive trees. The approximate versions of the dis-
tributed algorithms BKSM and BKSRM, named 
BKSM(A) and BKSRM(A) respectively, have been 
executed with eight simultaneous processors in a 
distributed shared memory system. The runtimes of 
these algorithms for different frequencies of key-
words are shown in Fig. 5a. The outperformance of 
BKSRM(A) over BKSM(A) is evident. Comparing 
Fig. 5a with the similar diagram in Fig. 4 shows that 
the execution times of BKSM(A) and BKSRM(A) are 
much lower than those of the r-clique and r-clique- 
rare systems. Note that r-clique-based systems cannot 
be executed in a distributive manner because any of 
their results are formed by considering all of the 
keyword nodes in the graph. We also show the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 

 
 
 

execution times of BKSM(A) and BKSRM(A) sys-
tems when varying the number of processors over the 
queries with an average frequency 0.0015 in Fig. 5b. 
As expected, by increasing the number of processors, 
the execution time of distributed systems decreases 
due to the increase of degree of parallelism. However, 
managing multiple processors imposes an overhead, 
which causes a slowing of the performance im-
provement gained by the large number of processors. 

The same experiments are conducted on the 
DBLP dataset (Fig. 6). Because of the greater number 
of relationships in the DBLP dataset than in the IMDb, 
the average time to respond to the DBLP queries is on 
average higher than that to IMDb queries. Fig. 6a 
shows that the execution times of all the examined 
systems increase with the increase of the radius of 
results. Fig. 6a also shows that algorithms BKS(A) 
and BKSR(A) are faster than r-clique and that the 
execution time of BKSR(A) is close to that of 
r-clique-rare. This behavior is also maintained when 
varying the number of queried keywords and the 
frequency of keywords.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  The time of executing the distributed systems with eight processors over the IMDb dataset (a) and the exe-
cution time of distributed systems when varying the number of processors (b) 

(a) (b) 

Fig. 6  Execution times of different algorithms over the DBLP dataset: (a) query time vs. r; (b) query time vs. the 
number of keywords; (c) query time vs. the keyword frequency 

(a) (b) (c) 
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5.3  Effectiveness evaluation based on the com-
pactness measure 

As we mentioned before, the proposed algo-
rithms can generate results in which no distances are 
larger than r. However, the radius of results generated 
by r-clique and r-clique-rare algorithms may reach 2r. 
Fig. 7a shows the average percentage of cliques with 
the maximum distance r on the IMDb dataset using 
algorithm BKS(A) as an envoy of all of the other 
proposed algorithms. The diagram is plotted based on 
the top 10, 20, 30, 40, and 50 results of the examined 
queries.  

Since BKS(A) generates MCCrs with maximum 
distance r, its average percentage of generating such 
results is always 100%. According to Fig. 7a, for the 
top-10 retrieved results, 90% and 58% of results 
generated by r-clique and r-clique-rare systems re-
spectively are cliques with maximum distance r. This 
shows that the r-clique system can generate more 
high-quality results than the r-clique-rare. However, 
by increasing the number of top results, the ability of 
both algorithms in generating the compact results is 
reduced such that when retrieving the top-50 results 
for each query, their percentages of generating desired 
results are 62.12% and 31.5%, respectively. Fig. 7b is 
plotted based on the different frequencies of key-
words. This diagram also shows that the compactness 
of results decreases in the r-clique and r-clique-rare 
algorithms by increasing the frequency of keywords. 
It is because of the greater number of candidate re-
sults when querying high-frequency keywords. In 
contrast, the results retrieved by the proposed system 
all satisfy the maximum distance r independent of the 
frequency of keywords. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

5.4  Effectiveness evaluation based on the average 
weight measure 

To make quality measurement possible, all the 
results of a keyword query are detected using the 
exact BKSR and among them, top-k minimum weight 
results are selected as the ground-truth results of the 
query. For example, for the keywords with frequency 
0.0003, there are 3 043 836 results in the IMDb da-
taset, and retrieving them takes two hours and forty 
minutes. Among them, top-50 results are selected and 
used as the “Exact” ones to measure the quality of 
results generated by different systems. In the above 
example, the average uniform weight of the selected 
top-50 results is six and their average logarithmic 
weight is 38.1731. Generating top-50 results by ap-
proximate algorithms BKSRM(A), BKSM(A), 
r-clique-rare, BKSR(A), BKS(A), and r-clique sys-
tems takes 0.062, 0.097, 0.287, 0.377, 0.6, and 1.117 
ms, respectively. Note that the uniform weight of each 
answer is determined by Eq. (1) when the weight of 
each edge is set to one. Similarly, the logarithmic 
weight of an answer is determined by Eq. (1) when 
the weight of each edge is calculated by Eq. (11). 

Figs. 8a and 8b show the average uniform weight 
of results retrieved by the approximate algorithms 
over the IMDb dataset when the frequencies of key-
words are 0.0003 and 0.0015, respectively. As is ev-
ident, the uniform weights of results generated by 
BKS(A) and BKSR(A) algorithms are equal to the 
weight of the exact results, while r-clique and 
r-clique-rare produce results with higher uniform 
weights. In addition, the uniform weights of r-clique 
are closer to the exact weights rather than those of 
r-clique-rare. Fig. 8b shows that, in the best and 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

Fig. 7  The average percentage of generating results of the maximum distance r by different systems on the IMDb 
dataset when varying the value of k (a) and the average percentage of generating results of the maximum distance r 
when varying the frequency of keywords (b) 
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worst cases, the r-clique system produces results 
weighted 1.67% and 6.67% higher than the exact 
weights, respectively. These values are 10% and 
26.67% for the results of the r-clique-rare system.  

Fig. 9a shows the average logarithmic weights of 
results retrieved by the different systems on the IMDb 
dataset when the frequency of keywords is 0.0003. 
The closeness of the weight of the results produced by 
the proposed systems to the exact weights indicates 
the success of these systems in retrieving high-quality 
results. However, as expected, the logarithmic 
weights of results produced by r-clique and r-clique- 
rare are very much higher than the exact weights.  
Fig. 9b, which is plotted based on the more frequent 
keywords, shows the close performance of BKS(A), 
BKSR(A), and r-clique in terms of the average loga-
rithmic weight of results. However, as shown previ-
ously, BKS(A) and BKSR(A) are significantly faster 
than r-clique in retrieving results.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

 
 
 

 

6  Conclusions 
 
In this paper, we have proposed a group of 

scalable branch and bound algorithms which retrieve 
MCCr as the results of a keyword query. These algo-
rithms employ different strategies of pruning to re-
duce the time of answering a keyword query. In ad-
dition, the isolated recursive recalls of different roots 
provide the ability for parallel processing of these 
algorithms. The time complexity of the proposed 
algorithms shows, in theory, the performance of the 
proposed algorithms in comparison to the previous 
works. This efficiency is proved in practice by ex-
periments on two real-words datasets. The experi-
mental results showed that algorithms BKS(A) and 
BKSR(A) are two and four times faster than the 
r-clique system, respectively, which is also a clique- 
based retrieval system. In addition, algorithms 
BKSM(A) and BKSRM(A) with the ability of parallel  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

Fig. 8  The average uniform weights of results when querying the keywords with frequency 0.0003 (a) and 0.0015 (b) 

(a) (b) 

Fig. 9  The average logarithmic weight of results when querying the keywords with frequency 0.0003 (a) and 0.0015 (b) 
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processing are more efficient than the r-clique and 
r-clique-rare systems. In the effectiveness evaluation 
based on a compactness measure, the proposed algo-
rithms significantly outperformed those in the pre-
vious works in terms of generating results with 
maximum distance r. This is because of observing the 
maximum radius r in generating all of the results by 
the proposed systems. The effectiveness of these al-
gorithms was also confirmed by examining the av-
erage weights of results. 
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Appendix: Proof of Theorem 2 
 

Let R={vq1, vq2, …, vqd} show the set of all the 
vertices that have been added to the MCCr so far. In 
this situation, the set of P contains 

 
g=VΓ(vq1)Γ(vq2)…Γ(vqd), 

 
where in the initial state, g=V and R=. 

Assume that Xi=RiPi shows the set of all the 
vertices that are involved in the MCCr construction, 
and suppose that all the MCCrs containing Q{q′} 
have been retrieved without duplication for any q′R. 
Consider vertex u is selected as a pivot in statement 5 
of procedure BKS. According to this selection, the set 
of nodes that can be added to the subgraph would be  

 
Candi=(CiP)\Γ(u)={v1, v2, …, vi}. 

 
At statement 6, vertex vj is chosen from Candi to 

expand the subgraph. Accordingly, sets P and R 
would be updated as follows for the next call: 

 
Pi+1=PiΓ(vj), Ri+1=Ri{vj}. 

 
We claim that: (1) by expanding every vjCandi, 

all non-duplicate MCCrs containing g{vj} will be 
generated; (2) when finishing the generation of 
MCCrs following this expansion, there is no new 
MCCr containing g{vj}. 

We prove our claims by induction on |Xi|=n.  
When 1≤n≤2, the satisfying of the claim is easily 

confirmed.  
Now, we assume that the claim is true for all n≤N 

and prove that this claim is true for n=N+1. 
To this end, consider step i of the recursion when 

working with Candi as the candidate vertices to ex-
pand the subgraph in step i, Ri as the set of selected 
vertices so far, and Pi as the set of all the vertices that 
can be added to the uncompleted MCCr. By assuming 
that the candidate vertices are selected in order, first 
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we examine the expansion of the subgraph by vertex 
v1. In this case, two states may occur:  

1. If Pi=, then the set of vertices Ri{v1} is 
considered as an MCCr. The current recursion of BKS 
has been executed just because |Ri{v1}|≥l is satisfied 
in the previous step of recursion. In other words, if 
this inequality is not satisfied in step i−1, the algo-
rithm will never enter step i. On the other hand, since 
there are at most l different types of vertices in the 
graph, the height of recursion is not larger than l. 
Therefore, in this case, the size of Ri{v1} is exactly 
equal to l. Since there is not an edge among the ver-
tices of each type, the vertices of the MCCr involved 
are from different types. Consequently, no subgraph 
of the MCCr can cover the query. It shows that Ri{v1} 
is a minimal r-clique covering l keywords of the 
query. 

2. If Pi≠, then the stages of pivoting and re-
cursion would be followed. Let in this step vertex 
u′CiPi be selected as the pivot. The following two 
states may occur in processing the loop: 

(1) If (CiPi)\Γ(u′)≠, then one vertex (e.g., vk) 
of this set is selected to be added to the subgraph and 
the BKS procedure is recalled if statement 7 is satis-
fied. Executing this procedure leads to producing all 
MCCrs containing Ri{v1} and without duplication 
because |Xi+1|=|Pi+1+Ri+1|≤N and the induction hy-
pothesis holds true for it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(2) If (CiPi)\Γ(u′)=, then the recall of the 
BKS procedure would not proceed and no subgraph 
containing Ri{v1} would be presented as MCCr. 
More precisely, in this case, there is no new vertex to 
expand the subgraph while the depth of recursion 
does not reach l. It means that the uncompleted sub-
graph does not cover all the query keywords and it is 
not truly an MCCr. 

After the examination of vertex v1, if (CiPi)\ 
Γ(u′)–{v1}=, its other vertices are selected step by 
step and for them, the above discussions follow. 

In what follows, we discuss the completeness of 
the result set generated by the proposed algorithms. 
Since any MCCr should contain a vertex of every type, 
and all its vertices are directly connected, the order of 
applying type restrictions would not be affected in the 
final set of MCCrs. However, there may be a covered 
r-clique g′G(V, EE′), where E′ is the set of deleted 
edges that connect the vertices with the same type and 
g′ contains some edges e′E′. If g′ is retrieved by 
BKS, it certainly covers all the queried keywords. 
However, any edge of e′ shows the existence of two 
vertices with the same keyword in g′. Therefore, 
subgraph g″=g′–e′ also covers the query, and this 
implies that g′ is not a minimal covered clique.  

The above discussions show that the claim holds 
for any positive integer n as a result of induction. 

 
 


