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Abstract: We use the advanced proximal policy optimization (PPO) reinforcement learning algorithm to optimize the stochastic 
control strategy to achieve speed control of the “model-free” quadrotor. The model is controlled by four learned neural networks, 
which directly map the system states to control commands in an end-to-end style. By introducing an integral compensator into the 
actor-critic framework, the speed tracking accuracy and robustness have been greatly enhanced. In addition, a two-phase learning 
scheme which includes both offline- and online-learning is developed for practical use. A model with strong generalization ability 
is learned in the offline phase. Then, the flight policy of the model is continuously optimized in the online learning phase. Finally, 
the performances of our proposed algorithm are compared with those of the traditional PID algorithm. 
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1  Introduction 
 

In the past few decades, unmanned aerial vehi-
cles (UAVs) have received much attention, and have 
been applied in many fields, such as agricultural ser-
vices (Valente et al., 2013), aerial photography 
(Valenti et al., 2016), industrial inspection (Fumagalli 
et al., 2012), and search and rescue (Tomic et al., 
2012). This has directly led to a great deal of research 
on the quadrotor. Because of its simple structure, it 
has been put into use in many practical applications. 

Although quadrotor research has made signifi-
cant progress, it still faces some problems. First, real- 

time control of the aircraft means real-time data ac-
quisition and computation, which requires high time 
sensitivity and advanced equipment. Second, the 
aircraft should be able to adapt to various complex 
and harsh environments during the flight, and possi-
ble malfunctions have to be considered. Taking these 
factors into consideration, flight control is still an 
open research question. 

Flight control systems are critical elements in a 
variety of missions and applications for unmanned 
aerial vehicles. They usually have two application 
levels: one is an advanced mission-planning control 
system, such as path planning, navigation, and ob-
stacle avoidance; the other is a low-level stable flight 
system that performs simple motion control. In this 
study, we are concerned mainly with the second level. 
We update the control strategy by tracking the speed 
state to achieve stability and accuracy of the flight 
control system. However, the quadrotor is a highly 
nonlinear, multi-input multi-output underactuated 
coupling system, which makes the controller design 
very difficult and complicated. More seriously, usu-
ally a large number of unmodeled dynamic and  
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nonlinear external disturbances are contained. 
Therefore, designing a quadrotor controller capable 
of anti-interference has gradually become a research 
issue. At present, many control strategies have 
emerged for anti-interference control of the quadrotor, 
such as proportional–integral–derivative (PID) con-
trol (Salih et al., 2010), adaptive control (Antonelli et 
al., 2018), and active disturbance rejection attitude 
control (Yang et al., 2018).  

The PID control method is a common control 
method in practical applications of the quadrotor, and 
PID control acts as a baseline controller in many 
studies (Bouabdallah et al., 2004). However, since the 
anti-interference relies on its integral term, the control 
accuracy becomes very poor when the interference is 
not constant, and the interference is suppressed only 
after it is affected. It has become more and more dif-
ficult to achieve high-precision control of the quad-
ruple drone. Moreover, the PID gain is selected 
through trial and error, and it is difficult to meet the 
dynamic performance requirements. Therefore, 
model-based control is more practical. Researchers 
have proposed many advanced control strategies, 
such as model predictive control (MPC) (Alexis et al., 
2012), robust control (Lee, 2013), and sliding mode 
control (SMC) (Xu R and Ozguner, 2006; Xu B, 2018), 
to deal with the nonlinearity and uncertainty of the 
model. These methods have their strengths and 
weaknesses. For example, adaptive control estimates 
the unknown parameters in the model of a quadrotor; 
adaptive control relies on an accurate model of the 
controlled system, and the control performance will 
decrease when the system has large external inter-
ferences. For these model-based control strategies, 
the control performance is dependent on the accuracy 
and comprehensiveness of the preset dynamic model. 
Even if the uncertainty and disturbance are consid-
ered, the accuracy and comprehensiveness of the 
model cannot be achieved. If the model is too com-
plicated, it will lead to more complex control strate-
gies. In the past decade, the rapid development of 
artificial intelligence technology has affected the 
traditional control field. The intelligent flight control 
system based on machine learning is a hot research 
topic (Santoso et al., 2018), and it can be known from 
Yechiel and Guterman (2017) that good control per-
formance is achieved even if the model is nonlinear 
and uncertain. We can also use deep artificial neural 

networks as approximators to reduce the noise 
(Miglino et al., 1995). The advantage of online 
learning methods is the ability to continuously learn 
aircraft dynamics in real time (Dierks and Jaganna-
than, 2010). Since online learning is based on expe-
rience to learn aircraft dynamics models, this directly 
leads to limited system performance when the flight 
system is operating in a new environment. It is also 
not advisable to train the aircraft control strategy 
based on the supervised learning method, mainly due 
to the inaccuracy of the sample data used for super-
vised training. The data is obtained using a PID con-
trol method similar to the aircraft model which is not 
accurate. The sample data is inaccurate and the cost of 
collecting data is high, which make the model based 
on supervised learning training not the optimal (Wil-
liams-Hayes, 2005; Bobtsov et al., 2016). To build a 
high-performance flight control system, it is neces-
sary to find more suitable solutions. 

An alternative to machine learning and optimi-
zation is reinforcement learning (RL) applied to con-
tinuous tasks, and the RL algorithm has proven to be a 
successful machine learning method for practical 
applications. The application of the RL algorithm to 
the quadrotor model flight control problem was first 
proposed by Waslander et al. (2005). They used the 
local weighted linear regression method to model the 
quadrotor as a Markov decision process. The final 
learned linear strategy has similar performance to the 
integral sliding mode controller. In recent years, due 
to the rise of deep learning, deep neural networks 
have been introduced into RL as value function ap-
proximators. This deep neural network based RL 
algorithm has outperformed human experts in com-
plex scenes such as video games (Mnih et al., 2015) 
and board games (Silver et al., 2016). Some well- 
known deep RL algorithms, such as deterministic 
policy gradient (DPG) (Silver et al., 2014), deep de-
terministic policy gradient (DDPG) (Lillicrap et al., 
2016), trust region policy optimization (TRPO) 
(Schulman et al., 2015), and proximal policy opti-
mization (PPO) (Schulman et al., 2017), show sig-
nificant control performance in the continuous state 
action space (Duan et al., 2016). Hwangbo et al. 
(2017) used the RL algorithm to train the aircraft 
model, and successfully learned a deterministic 
strategy by mapping a given state to a set of aircraft 
executable action vectors through a neural network, 
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using a natural gradient descent method to optimize 
deterministic strategies (Amari, 1998). However, 
there are many differences between the real envi-
ronment and the simulation environment. Direct ap-
plication of the aircraft model learned from the sim-
ulation environment to the actual one will cause many 
problems, such as decreased accuracy and stability. It 
is necessary to increase the authenticity of the simu-
lation, and even to place the quadrotor model in the 
real environment to train the learning control strategy. 

In this work, we use an advanced RL algorithm, 
i.e., PPO, to train the controller. We introduce a state 
integrator in the actor critic framework to reduce the 
steady-state error by integrating the error state. This 
improves the accuracy of tracking control and the 
robustness of the controller. We compare the perfor-
mance of the improved controller with that of the 
traditional PID controller. Experimental results show 
that the controller trained by the PPO algorithm with 
state integration is superior to the PID controller. We 
then adopt a two-stage learning mode to train the 
aircraft model. In the offline phase, we train a sim-
plified aircraft model in the simulation to learn a 
controller with robustness. Then, we train a real 
quadrotor in the actual scene, and optimize the control 
strategies to build a high-performance flight control-
ler in the online phase. In summary, the main contri-
butions of this paper are as follows: 

1. We propose a PPO with integral compensator 
(PPO-IC) algorithm by introducing a state integrator. 
The algorithm significantly improves the tracking 
accuracy in motion control. 

2. We develop an offline and online learning 
scheme. We train a model with strong generalization 
ability in the offline phase, and optimize the control 
model in the online learning phase. The online 
learning phase is aimed to ensure safe and stable 
flight in practical applications of the quadrotor. The 
network weight in the online learning phase is not 
randomly initialized; the network parameters of the 
model that has been learned in the offline phase are 
used as the initial parameters, to ensure stable flight of 
the quadrotor at the beginning of the online learning 
phase. On this basis the networks can be learned and 
updated. An offline strategy is adopted so that if the 
quadrotor takes dangerous actions or some state com-
ponents are outside the safe range during the online 
learning phase, the quadrotor can switch to the offline 
learning mode to ensure a safe and stable flight. 

2  Background 
 
In this section we introduce the dynamic model 

and basic principle of RL. 

2.1  Dynamic model of the quadrotor 

We set up two coordinate systems to describe the 
position and attitude of the quadrotor. The first is the 
inertial coordinate system, fixed on the earth, where 
Newton’s laws of motion are applicable. The second 
is the body-fixed coordinate system, fixed on the 
quadrotor, with the origin being the center of mass of 
the quadrotor. The two coordinate systems are coin-
cident initially, and then become different during the 
flight of the quadrotor. The inertial coordinate system 
remains unchanged during the flight; in contrast, the 
body-fixed coordinate frame will rotate and move in 
this process. Three Euler angles φ, φ, and ψ are used 
to describe the process and degree of rotation, which 
are around the X, Y, and Z axes, respectively. The 
center of mass of the quadrotor in the inertial coor-
dinate system is defined as P=[x, y, z]T. The velocity 
and acceleration of the quadrotor can be defined as P  
and ,P  respectively. The model of the quadrotor is 
shown in Fig. 1 (Rozi et al., 2017). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
The quadrotor has four rotors. Each rotor is dis-

tributed at the end of the cruciform frame. The dis-
tance between each rotor and the center of mass is L. 
Viewed from the forward Z axis, rotors 1 and 3 turn 
clockwise, while rotors 2 and 4 rotate counterclock-
wise. The speed of rotation is controlled by the pulse- 
width modulation (PWM) signals generated by the 
electronic speed controllers. Advanced electronic 
speed controllers ensure that the thrusts generated by 

Fig. 1  The quadrotor model and body-fixed frame (Rozi 
et al., 2017) 
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the four rotors are almost proportional to the PWM 
signals sent to the four rotors, that is, 

 
,   1,  2,  3,  4.i iT Ku i= =                    (1) 

 
Herein Ti (i=1, 2, 3, 4) represent the thrusts generated 
by the four rotors. ui (i=1, 2, 3, 4) represent the PWM 
signals transmitted to the four rotors; ui are normal-
ized to [0, 1], with ui=0 standing for zero thrust pro-
duced by the rotor and ui=1 meaning that the rotor 
generates the maximum thrust. K represents the thrust 
gain. Then, we analyze the dynamic characteristics of 
the translational motion driven by force and the rota-
tional motion driven by torque, and establish the dy-
namic model. 

For translational motion characteristics, in the 
inertial coordinate system, according to Newton’s 
second law, we have 

 

e l d ,= + +F RF F G                       (2) 

e .m=F p                              (3) 
 

Here, we take the positive direction of the Z axis as 
the positive direction of the Z-axis force, and Fe rep-
resents the combined external force. F1 is the lift force 
vector, F1=[0, 0, Tz]T, where Tz is the sum of upward 
lift forces generated by the four rotors relative to the 

quadrotor frame, 
4

1
,z ii

T T
=

=∑  with Ti (i=1, 2, 3, 4) 

being the lift force generated by each rotor. 
T

d [ , , ]x y zf x f y f z= − − −F     is the air resistance, where 

fx , fy, and fz are air drag coefficients in three directions. 
G=[0, 0, −mg]T is the gravity, where g is the acceler-
ation of gravity. R is a transformation matrix, used to 
transform the lift force defined in the body-fixed 
coordinate system to the inertial coordinate system. 
As the position and velocity are defined in the inertial 
coordinate system, unity of the coordinate system is 
achieved with R: 
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For translational motion characteristics, the Eu-
ler equation of rotation is applied to a fixed quadrotor 
frame: 

 

c f ,τ= + + = + +M M M M Iw w Iw         (4) 
 

where M is the sum of torques applied to the quad-
rotor, w is the angular velocity of the three axes of the 
quadrotor, T[ , , ] ,ϕφ ψ=w 



  I is the diagonal inertia 
matrix of the quadrotor, I=diag(Ix, Iy, Iz), and Mτ=[τφ, 
τφ, τψ]T is the control torque of the quadrotor, which is 
the result of differential lift thrusts: 
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Herein the control torques τφ and τφ are around the X 
and Y axes, respectively. The control torque τψ is the 
result of lift thrusts of all the four rotors around the Z 
axis, with Kψ being a coefficient. Because of the ex-
istence of the four rotating rotors, a gyroscope effect 
Mc= T

p p[ , ,0]I IϕΩ φΩ− 

  is generated, where Ip is the 

inertia moment of each rotor and Ω is the disturbance 
effect generated by each rotor. Mf is the resistance 
moment suffered by the quadrotor during the flight, 

T
f [ , , ] ,d d dϕφ ψψϕφ− − −=M 

  where dφ, dφ, and dψ are 
the three axial drag coefficients. 

Finally, we obtain the nonlinear dynamic model 
in the following form: 
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(6) 

2.2  Reinforcement learning and policy gradient 

RL is learning how to map situations to actions 
so as to maximize a numerical reward signal. The 
learner is not told which actions to take, but must 
discover which actions yield the most reward. It uses 
the formal framework of Markov decision processes 
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(MDPs) to define the interaction between a learning 
agent and the environment concerning states, actions, 
and rewards (Sutton and Barto, 1998). The core idea 
of RL actually comes from psychology, where agents 
interact with the environment to obtain information 
about rewards and punishments and then improve 
their behavior to maximize the rewards. The envi-
ronment is often modeled as an MDP, described by a 
four-tuple (S, A, P, R), where S is the set of states, A 
the set of actions, P the state transition matrix, and R 
the reward function. In recent years, with the rapid 
development of deep learning, a new learning agent 
different from the traditional RL agents has emerged, 
which is usually called a deep RL agent. The cyclic 
process is shown in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 

 
It is well known that describing a task as MDP 

can better guarantee the resolution of RL tasks, which 
means that the future state of a Markov process de-
pends only on the current state. That is, for any tra-
jectory s1, a1, …, sN, aN in the state-action space, we 
have 

1 1 1 1( | , ,..., , ) ( | , ).t t t t t tP s s a s a P s s a+ +=      (7) 
 
The goal of RL is to train a strategy π which can 

map states to executable actions, and to continuously 
improve π by maximizing a goal reward function, 

which is generally set as ( )1
1

( ) |N t
tt

J E rπ γ π−
=

= ∑
 

and is called the expected cumulative discount reward 
function, where the discount factor γ∈[0, 1), rt is the 
reward that the agent obtains after taking action at at 
state st. Policy π can be either stochastic π(a|s) or 
deterministic π(s), where π(a|s) means that each ac-
tion a∈A(s) that an agent can perform at state s satis-
fies a probability distribution, and π(s) directly maps a 

state s to a determined action a. In the literature, the 
steps of the RL algorithm can be summarized as fol-
lows: (1) generating samples by executing policy π;  
(2) evaluating the reward to generate a model; (3) 
improving policy π; (4) repeating this process until 
optimal parameter values are obtained. 

There are many types of RL algorithms. The 
main approaches are value-function-based algorithms, 
such as SARSA (Sutton, 1995) and Q-learning 
(Watkins and Dayan, 1992). We consider the best 
action by estimating the return, and then repeatedly 
improve policy π(s). Another classical RL algorithm 
is based on policy gradient. In policy gradient ap-
proaches, there are usually two networks, actor net-
work and critic network. The actor network is used to 
select an appropriate action under the current state, 
unlike value-function-based methods which select the 
action with the largest value. Approaches based on 
policy gradient use the actor network to select the 
actions. The parameters of the network are a set of 
vectors that can be trained repeatedly. The critic 
network can be used to evaluate the value of the cur-
rent action produced by the actor network. In actor- 
critic algorithms the parameters of the critic neural 
network can also be trained repeatedly. 

In general, we use a gradient descent algorithm 
to optimize the policy weights. Policy πθ is commonly 
a deep or shallow neural network. From Schulman  
et al. (2017), the most commonly used form of the 
gradient approximator is 

 
ˆˆˆ log ( | ) ,t t tg E a s Aπ

 = ∇ θθ               (8) 
 

where ˆ
tA  is called the advantage function, 

ˆ ˆ( , ) ( , ) ( ),t t t t t tA s a Q s a V s= −  representing the empiri-
cal average of a limited number of samples generated 
during the interaction between agents and the envi-
ronment at each time step t. The estimator is obtained 
by differentiating the objective function: 
 

PG ˆˆ( ) log ( | ) .t t tL E a s Aπ
 =  θ

θ            (9) 

 
This approach can be applied to deep learning, 

and makes RL tasks more like general optimization 
problems (Schulman, 2016). In the RL problem, what 
we are trying to solve is an unknown dynamic model 

Fig. 2  The agent-environment interaction in a Markov 
decision process 
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that needs continuous learning and may even be 
non-differentiable. Such a property makes the vari-
ance of the gradient estimate increase when calcu-
lating the gradient. In most deep learning problems, 
we can know the target loss function and the param-
eters of the neural network, and the input data is not 
relevant to the current neural network. In contrast, in 
RL, the input data is the states of the agent, which are 
produced by the previous policy neural network and 
have strong correlation. This is harmful to the stabil-
ity and convergence of the policy neural network. 
Taking these factors into account, we use PPO to 
optimize the policy in a more stable and efficient way 
and improve the performance of the RL agent. The 
main reasons are as follows: (1) PPO is considered to 
be a suitable RL algorithm for quadrotor control tasks;  
(2) PPO is known to outperform state-of-the-art 
methods in challenging environments. PPO is a policy 
gradient method and is similar to TRPO, while it is 
easier to implement and tune. It is therefore the de-
fault choice of algorithm in OpenAI’s projects. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3  The proposed approach 
 

In this section, the PPO-IC algorithm is proposed, 
and the control structure and implementation process 
are given for the quadrotor. A two-stage learning and 
training technique is proposed for the actual flight. 

3.1  Network structure 

The actor-critic network structure of the PPO-IC 
algorithm is shown in Fig. 3. Two types of neural 
networks are used for training. One is the actor neural 
network θ, which is composed of four policy 
sub-networks θi (i=1, 2, 3, 4), whose weights can be 
optimized by training. The other is the critic neural 
network. These two neural networks have the same 
network input; that is, a batch of new state vectors 

c c c[ , , , , , , , , ]x y zφ ϕ ψ φ ϕ ψ

      are used as the network 

input, where c c c, ,x y z    are the differences between the 
expected velocity and the current velocity after inte-
gration. The nine-dimensional state vector is fed to  
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the four policy sub-networks at the same time. The 
outputs of the four sub-networks are ui and δi (i=1, 2, 
3, 4), which are the mean and variance of the four 
Gaussian distributions, respectively. For each 
Gaussian we sample a random action ai (i=1, 2, 3, 4). 
Then each collected action is normalized to [0, 1]. 
The four actions constitute a group of actions ai (i=1, 
2, 3, 4), which would be used as the input to the four 
rotors, and the quadrotor changes to a new state. Since 
we use batch training, after the batch group action 
vectors are collected by the current policy network, 
we copy the network parameters of the current four 
policy sub-networks to another four networks, which 
we call the old policy networks. The parameters of the 
old network remain fixed, and then the four policy 
networks used to sample new actions are trained in 
the next batch training. We need to record the new 
states into a buffer. After the integration and com-
pensation process, a batch of state vectors are fed to 
the critic neural network. A batch of advantage values 
can thus be generated to evaluate the quality of the 
actions taken to achieve these states. The critic neural 
network updates its parameters by minimizing these 
values through the gradient descent method. After the 
state vectors of the batch group are extracted from 
buffer and compensated for by integration, we feed 
the advantage values to the policy neural network 
together with the action vectors and the state vectors 
after integral compensation. Thus, the updating pro-
cess of the policy neural network is completed. 

The four sub-networks of the policy network 
have the same structure (Fig. 4). It takes the nine-  
dimensional state vector after integral compensation 
as the input. Such a network structure can maintain 
balance between the control performance and the 
training speed of the quadrotor. Each sub-policy 
network has two fully connected hidden layers, and 
each hidden layer has 128 hidden nodes with the 
sigmoid activation function. Finally, there are two 
outputs: one is the mean μ of the Gaussian distribution, 
and the tanh activation function is adopted in this 
output layer; the other is the standard deviation δ of 
the Gaussian distribution, and the softplus activation 
function is adopted in this output layer. 

The structure of the critic neural network is 
similar to that of the policy sub-network (Fig. 5). The 
critic neural network also has two fully connected 
hidden layers, and each hidden layer has 128 hidden 

nodes with the sigmoid activation function. The final 
output is an advantage value used to evaluate how 
well a given action is taken in a given state. In fact, we 
do not try different numbers of nodes and layers. 
From our experience, both neural networks are ver-
satile and can cope with a variety of problems with a 
single structure. We use the PPO-IC algorithm, which 
is helpful in reducing static errors. For details, refer to 
Fig. 3. 

 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

3.2  PPO-IC algorithm 

The PPO-IC algorithm is developed based on the 
traditional PPO algorithm, adding an integral part to 
reduce the steady-state error, so as to achieve higher 
precision in quadrotor control and make the tracking 
error close to zero. PPO is model-free, on-policy, 
actor-critic, and is based on the policy gradient 
learning algorithm. It has reliable performance simi-
lar to the TRPO algorithm and is much easier to im-
plement. When only first-order optimization is used, 
the improvement of monotonicity can be guaranteed 
by introducing the Kullback-Leibler (KL) divergence 
related to policy updates. In TRPO and PPO methods, 
the objective function is the following surrogate ob-
jective function LCPI (conservative policy iteration) 

Fig. 4  The structure of four policy sub-networks used in 
this work 
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…
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tanh softplus

Angular velocity Angle Linear velocity error

μ δ
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Angular velocity Angle Linear velocity error

adv

Fig. 5  The structure of the critic neural network used in 
this work 
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proposed in Kakade and Langford (2002), and we 
want to maximize this objective function. 

 

old

CPI ( | ) ˆ ˆˆ ˆ( ) ( ) .
( | )

t t
t t t t t

t t
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a s

π
π

 
 = =     

θ

θ

θ θ    (10) 

 
Here, θold is the vector of policy parameters before the 
update. rt(θ) is the probability ratio, in the form of 

old
( ) ( | ) ( | ),t t t t tr a s a sπ π= θ θθ  so rt(θold)=1. In the 

absence of constraint conditions, maximizing the 
objective function of LCPI will lead to excessive up-
dating of the policy network, which is not conducive 
to network convergence and stability. Therefore, we 
need to punish the updating policy that keeps rt(θ) 
away from 1. Although both TRPO and PPO algo-
rithms use this surrogate objective function, they use 
different methods to constrain the update step size of 
the policy network. The TRPO algorithm optimizes 
the surrogate objective function by introducing KL 
divergence; that is, it is subject to a constraint 

{ }old
ˆ KL ( | ), ( | )t t tE s sπ π d ⋅ ⋅ ≤ θ θ  in the process of 

maximizing the objective function. By linear ap-
proximation of the objective function and quadratic 
approximation of the constraint condition, a conju-
gate gradient algorithm can be used to solve the 
problem. An alternative approach is to add penalty 
terms to the surrogate objective function to limit ex-
cessive updating of the policy network, which can 
also solve the unconstrained optimization problem. 

The optimization method of the TRPO algorithm 
is described above. The PPO algorithm is similar to 
the TRPO algorithm, inheriting some advantages of 
the TRPO algorithm, and is much simpler to imple-
ment. The PPO algorithm is more universal and can 
take multiple optimization steps. From experience, it 
has a better sample utilization rate than TRPO. The 
new objective function proposed is the following: 

 

( )( )CPI ˆ ˆˆ( ) min ( ) ,clip ( ),1 ,1+ ,t t t t tL E r A r Aε ε = − θ θ θ  

(11) 
 

where 
old

( ) ( | ) ( | )t t t t tr a s a sπ π= θ θθ  is the probability 

ratio, ˆ
tA  represents the advantage of taking action at 

at state st, and ε is a hyperparameter (generally ε=0.2). 
There are two main terms. The second term in min(), 

( ) ˆclip ( ),1 ,1 ,t tr Aε ε− +θ  is adjusted based on the 
surrogate objective function by clipping the proba-
bility ratio. This adjustment could limit the size of rt(θ) 
to the set interval [1−ε, 1+ε], that is, setting the values 
of rt(θ) greater than 1+ε to 1+ε, setting the values of 
rt(θ) less than 1−ε to 1−ε, and taking the value of rt(θ) 
within [1−ε, 1+ε] without adjustment. Finally, we take 
the minimum of these two terms (clipped and un-
clipped objective). Note that the probability ratio rt(θ) 
is clipped at 1−ε or 1+ε depending on whether the 
advantage ˆ

tA  is positive or negative. If ˆ
tA  is positive, 

then rt(θ) is clipped at 1+ε; otherwise, rt(θ) is clipped 
at 1−ε.  

Through the above adjustment, the PPO algo-
rithm can avoid excessive updating of the policy 
network, and it is easier to train the policy neural 
network. Previous work showed that the PPO algo-
rithm is very suitable for the control of continuous 
action space missions, and the learning strategy is 
very fast and stable. However, through the many ex-
periments that we have conducted, it is found that the 
PPO algorithm will lead to obvious steady-state errors 
when dealing with tracking control tasks; no matter 
increasing the number of training rounds or using 
other return functions, the control strategy finally 
learned cannot eliminate this tracking error. An im-
portant reason is that the estimation of the action- 
value function is not accurate. Even in very simple 
control tasks, the exact action value cannot be ob-
tained using the same action value function approx-
imation strategy (Lillicrap et al., 2016), and for more 
complex control tasks, the estimation accuracy of the 
action-value function decreases greatly. The cause of 
the tracking error is the result of off-policy learning, 
TD-learning, and nonlinear function approximators. 
These factors will lead to a large deviation and vari-
ance in the estimation of the action-value function 
(van Hasselt, 2010; van Hasselt et al., 2016). For 
discrete action space control tasks, the Q-learning 
method can avoid this problem to some extent (Mnih 
et al., 2015). However, in the case of the continuous 
action control task, the update and optimization of the 
policy network function in the PPO algorithm is based 
on the advantage value generated by the critic neural 
network. The inaccurate estimation of the advantage 
value will lead to the updating and iteration of the 
policy network based on gradient updating in the 



Hu and Wang / Front Inform Technol Electron Eng   2020 21(5):777-795 785 

wrong direction, and thus cannot achieve accurate and 
effective tracking. 

To solve the above problems, we improve the 
policy neural network and the critic neural network. 
The integrator is used to reduce the steady-state error. 
We know that the proportional-integral controller will 
generate a control deviation based on the given value 
and the actual output value, and form a control 
amount through the combination of the proportional 
deviation and integral deviation, so that the tracking 
error of the controlled object approaches zero. The 
state vector is extended by the linear quadratic inte-
gral control method, and the tracking error can be 
greatly reduced by calculating the optimal state 
feedback controller. However, increasing the dimen-
sion of the state vector will make it more difficult to 
train the policy network and the critic network. 
Therefore, considering various factors, we propose 
the PPO-IC algorithm to reduce the tracking error. 
The core idea is to introduce the error integral under 
the condition that the dimension of the state vector 
remains unchanged (Wang et al., 2019). By integrat-
ing the error state vectors of the previous time steps 
and combined with the current state vector, a new 
compensation state vector is formed: 

 

c e e
1

.
t

t t i

i
β

=

= + ∑s s s                       (12) 

 
Here, β is the integral gain coefficient of the error 
state vector, c

ts  is the state vector after compensation, 

and e
ts  is the state vector for each time step. Super-

scripts represent time steps. The state vector after 
integral compensation is used as the input of the 
network. When there is a steady-state error, the input 
of the network can be adjusted to update the network 
towards the direction of error reduction, and finally 
the tracking error can be reduced. 

To use the PPO-IC algorithm to deal with the 
quadrotor control task, we first need to choose the 
state observation quantity satisfying the Markov 
property. We choose three axial Euler angles and their 
corresponding angular velocities to describe the rota-
tion motion, and the angular limit and failure condi-
tions are set to avoid approaching a dangerous attitude 
during the flight. Then the translational motion is 
described using three axial linear velocity states. 
Although our final control object is position control, 

we still choose its speed state here, considering the 
following: First, the position value depends on the 
flight mission. For an indoor flight mission, a narrow 
operational space inevitably leads to a smaller posi-
tion. However, for the outdoor wide sky space, the 
position value changes greatly due to the large oper-
able space. After comparison, it is found that the po-
sition value may be different by several orders of 
magnitude. This makes it difficult to set the sampling 
range. Second, because of the different sampling 
ranges in different control tasks, the state space may 
be greatly increased, which is not only not conducive 
to strategy training and learning, but also more time 
consuming. Thus, we choose to track and control the 
speed along the three axes. Finally, the state vector is 
represented as e e e( , , , , , , , , ).t x y zφ ϕ ψ φ ϕ ψ=s 

      Here 

e d ,x x x= −    e dy y y= −   , and e dz z z= −    represent the 
difference between the current velocity and the de-
sired velocity. We use the speed state represented by 
the speed error to form part of the state vector, and 
design an integral compensator to compensate for the 
speed error. After error compensation, the state vector 
is sent to the neural network for training. This can 
better complete the control task and reduce the 
tracking error. 

Considering the stability of flight and real-time 
error tracking, we should make the return signal as 
simple as possible. For the speed tracking task, to 
minimize the accumulated speed error in the shortest 
time, we design the following return function: 

 
2 2 2 2
e e e ,tr x y z ψ= − + + +                (13) 

 
where e ,x  e ,y  and ez  are velocity errors between the 
expected velocity and the current velocity in the 
global velocity frame, and the sum of the three terms 
constitutes the velocity tracking error. In the above 
equation, ψ represents the heading angle. Since the 
quadrotor structure adopts the drive mode of four 
symmetrical rotors, it can fly at a constant speed or 
hover at a given heading angle. Here we need only to 
consider speed control, so we can simply set ψ to zero. 
It can be seen that the maximum value of the return 
function is zero. As shown in Fig. 3, the velocity error 
state is changed from e ,x  e ,y  and ez  to c ,x  c ,y  and 

cz  respectively through the integral compensator. 
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Then the new nine-dimensional state vector is sent to 
the neural network. 

3.3  Two-stage learning and training scheme 

Because the RL algorithm we use is model-free 
(that is, there is no prior information of any dynamic 
model of the given agent), we learn from experience 
through the interaction between the agent and the 
environment. This idea limits the application of 
quadrotor control. Because the quadrotor is inherently 
an unstable system, the parameters of the initial pol-
icy θi (i=1, 2, 3, 4) are randomly initialized and are 
unknown. We train the model in batches by sampling 
the state data, and finally the model learns the policy 
that meets the requirements. This process is learned 
by the velocity error. Since there is an error, the 
quadrotor cannot fly stably as expected. This will 
cause the aircraft to lose control or even fall. There-
fore, to transfer the flight strategy learned by the 
simulation model to the actual flight, we propose the 
two-stage learning and training scheme.  

This technique consists of two learning phases, 
offline learning phase and online learning phase. In 
the offline learning phase, we use a simplified model 
to learn a flight control strategy. It can also be under-
stood as the simulation training phase of the model, 
which prepares for the control of the quadrotor during 
the online flight. In the online learning phase, we use 
the flight strategy learned in the offline phase as the 
initial one, and the quadrotor continues to optimize 
the strategy, while it also runs the offline flight 
strategy. Once the aircraft in the online phase reaches 
the limit condition, it immediately switches to the 
offline strategy to ensure that the quadrotor can al-
ways fly safely and steadily. Through this technique, 
we can simulate the learning process of the actual 
flight strategy as much as possible to ensure the safe 
and stable operation of the aircraft. 

The following algorithm is used in the offline 
learning and training phase. First, the network pa-
rameters of the four policy sub-networks and the critic 
network are randomly initialized. In addition, a 
mini-batch-sized buffer E is defined to store the ex-
perience data. Then the model is loaded, and an epi-
sodic style algorithm is used to train the network 
parameters with PPO-IC. The simplified model has a 
maximum number of training rounds. In each episode, 
the initial state is randomly initialized. The random 
initialization states include three axial angular veloc-

ities, three angular attitudes, three linear velocities, 
and the expected linear velocities. To train the quad-
rotor safely and effectively and meet the actual needs, 
we set a safe range for each state component. These 
randomly initialized state components are generated 
within the safe range, and the maximum number of 
training steps is set for each episode. For each training 
step, we run the strategy network and record the ex-
perience data generated in each step into buffer E. 
When the empirical data in the buffer reaches the set 
minimum batch, all will be collected. Then, this batch 
of data will be used to train and update the policy 
network and the critic network using the gradient 
descent method, to make the network gradually con-
verge and stabilize. At any given step, as long as there 
is a state component out of the safe range, the episode 
is terminated. This episode is regarded as a failed 
round. Note that in an episode of sampling, if the 
sampled data reaches the set minimum batch, the 
minimum batch of data collected in the previous steps 
will be used to repeatedly train the policy network and 
the critic network to update the network parameters, 
and then empty the buffer and resample the data; if the 
state has exceeded the safe range when the sampled 
data has not reached the set minimum batch size, the 
experience data collected in the previous steps will be 
cleared and the next episode will be entered, which 
leads to the waste of data collected and increases the 
training time. Selection of the minimum batch size is 
very important. If the size is too large, the network 
learning update is too slow; if the size is too small, the 
networks will easily oscillate and do not converge. 
We have conducted a large number of experiments, 
and find that the effect of learning every four batches 
is good. Of course, if the number of training steps in 
the episode reaches the maximum, this episode 
training will be suspended to the next episode. The 
speed tracking in the offline learning phase of the 
quadrotor is summarized in Algorithm 1. 

This multi-round training algorithm has several 
advantages. First, randomly initializing the starting 
point of exploration is an effective way of learning 
because it can improve the ability to explore the state 
space (Sutton and Barto, 1998). Second, by setting a 
safe range for each state component, the model can 
learn and train more effectively and safely, which is of 
great significance for practical applications, and also 
facilitates the normalization of state components. 
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In the offline learning phase, i.e., the simulation 
training phase, we use a highly simplified four-rotor 
model to learn and train the flight strategy. All the 
aerodynamic drag, external disturbances, and gyro-
scope effects are ignored, but the most basic four- 
rotor dynamics model is used. The advantage is that 
the generalization ability and robustness of the sim-
plified model are strong enough to ensure the most 

basic normal flight control of the model in the online 
learning stage. The simplified dynamic model equa-
tions are as follows: 
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After the offline learning phase, we obtain a 

robust quadrotor model which can ensure the stable 
and safe flight of the aircraft. However, in actual 
flight control, to improve the flight performance, it is 
necessary to go through the online learning phase to 
continue the learning and training. 

The purpose of the online learning phase is to 
ensure safe and stable flight in practical applications. 
The network structure and network parameters in this 
phase are the same as in the offline learning phase. 
The difference lies in the training method. First, the 
network weight of the online learning phase is not 
randomly initialized. The network parameters of the 
model that has been learned in the offline phase are 
used as the initial parameters, to ensure a stable flight 
at the beginning of the online learning phase. The 
networks can be learned and updated on this basis. 
Second, the offline learning phase takes multiple 
rounds of exploration training to obtain a stable model. 
In the online learning phase we do not use multiple 
rounds of repeated training, but a continuous flight 
process. While learning new strategies, we also run an 
offline strategy so that if a dangerous action is taken 
or some state components are outside the safe range 
during the online learning phase, the quadrotor can 
switch to the offline learning mode to ensure safe and 
stable fly. We need only to randomly initialize a state, 
let the quadrotor learn in the above way, and finally 
achieve a stable and safe flight strategy. 

 
 

4  Experiments and results 
 

In this section, we evaluate the speed tracking 
accuracy of a neural network based attitude flight 
controller using RL training. The execution details of 

Algorithm 1  Offline learning with PPO-IC  
1   Initialize: 

Randomly initialize the weights of the four policy 
sub-networks θi (i=1, 2, 3, 4) 

Randomly initialize the weights of the critic network 
Initialize the mini-batch-sized buffer E 
Load the simplified quadrotor dynamic model 

2   for episode=1 to max_episode do 
3      Initialize the state integrator (clear all integrators) 
4      Randomly initialize the quadrotor states 
5      Randomly initialize the desired velocity 
6      Observe the initial quadrotor states S1 
7      for time step t=1 to max_step do 
8         Run policy θ with state St to generate action at 
9         Run a dynamic model with control signal at 

10         Observe reward rt and the next state St+1 
11         Process velocity errors with the state integrator 
12         Store transition (St, at, rt, St+1) into mini-batch-sized 

buffer E 
13         if the data in buffer reaches mini-batch then 
14            Sample mini-batch group experience from the 

buffer 
15            Estimate the batch group advantages from the 

above experience: ˆ ( )t t
t t tt t

A r V sφγ ′−
′′>

= −∑  

16           oldπ π← θ  
17            for update step i=1 to max_update_step do 
18              ppo

ˆ ˆˆ( )= [min( ( ) ,clip( ( ),1 ,1 ) )]t t t t tJ E r A r Aε ε− +θ θ θ  

       and 
old

( | )( )
( | )

t t
t

t t

a sr
a s

π
π

= θ

θ

θ  

19               Update θ w.r.t. Jppo(θ) 
20            end for 
21            for update step j=1 to max_update_step do 

22               ( )2

1
( ) ( )T t t

t tt t t
L r V sφφ γ ′−

′′= >
= −∑ ∑  

23                Update φ w.r.t. L(φ) 
24            end for 
25            Empty buffer E 
26         end if 
27         if St+1 exceeds the safe range then 
28           Empty buffer E 
29             break 
30         end if 
31      end for  
32  end for  
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the above mentioned methods, the experimental  
parameters used, and the final results will be pre-
sented. For episodic tasks, they are comparable to 
those of the baseline (PID). 

4.1  Setup of simulation 

The dynamics model used for simulation is as 
shown in Section 2.1, which is a Qball-2 quadrotor 
designed by Quanser Inc. Some basic parameters such 
as size, mass, and moment of inertia are known from 
the official manual. Other parameters such as aero-
dynamic coefficients refer mainly to the multirotor 
aircraft performance evaluation article (Shi et al., 
2017; http://www.flyeval.com/). The parameters of 
the simplified quadrotor model are shown in Table 1. 
In each episode of training, the maximum number of 
sampling steps is 500, and the sampling time per step 
is 0.01 s. Due to the small batch training method, the 
data sampled every two steps is sent to the network 
for learning and updating once. In each episode the 
largest step size is 250. It allows the aircraft to have 
sufficient time to respond to commands and explore 
as many unknown states as possible to learn more 
strategies. The range of the target angular velocity is 
set to Ωmin=−2.27 rad/s, Ωmax=2.27 rad/s (±130 deg/s), 
the range of the target sampling attitude angle is set 
from −45° to 45°, and the range of the target sampling 
linear velocity is set to Vmin=−5 m/s, Vmax=5 m/s. 
These limits are set by examining the performance of 
the PID to ensure physically feasible constraints 
while meeting the safety requirements of the actual 
flight of the quadrotor. In this study four policy sub-
networks and one evaluation network are run at the 
same time, which is equivalent to paralleling four 
PPO-IC algorithms. Four policy sub-networks are 
used to generate the actions required by the four ro-
tors respectively, which is better than using only one 
network, because this can avoid mutual interference 
between actions, and it is more conducive to stable 
generation of actions and network convergence. 
Training and evaluations are run on the Ubuntu 16.04 
operating system with an Inter eight-core i7-8550U 
CPU and an NVIDIA GeForce MX150 graphics card. 
The simulated aircraft is developed with Python, the 
networks for learning and training are built with 
TensorFlow (Abadi et al., 2016) using Python, and the 
algorithm for optimizing the networks is the Adam 
optimizer (Kingma and Ba, 2014). 

4.2  Offline learning phase evaluation and test 

In the offline learning phase, the PPO-IC algo-
rithm is used. The training parameters of the algo-
rithm are shown in Table 2. The learning rate of the 
critic network is larger than that of the four policy 
sub-networks, which is reasonable. First, from the 
experimental point of view, it is very effective. Sec-
ond, because the critic network is used to judge the 
current action and then generate the advantage value 
to update the policy network, the current critic net-
work is required to judge the action as accurately as 
possible. Hence, having a higher learning rate for the 
critic network can improve the evaluation ability of 
the critic network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.1  Training performance evaluation 

There are two indicators for evaluating the effect 
of learning and training at this phase: (1) average 

Table 1  Parameters used in the simulation 
Parameter Meaning Value 

m Mass 1.79 kg 
L Rotor to center distance 0.2 m 
g Gravity acceleration 9.81 m/s2 
K Thrust gain 8.78 
Kψ

 
Reaction torque gain 0.4 

Jp
 

Propeller moment of inertia 0.002 kg·m2 
Ix

 
X-axis moment of inertia 0.04 kg·m2 

Iy
 

Y-axis moment of inertia 0.04 kg·m2 

Iz
 

Z-axis moment of inertia 0.03 kg·m2 

dx
 

X-axis air resistance coefficient 0.01 
dy

 
Y-axis air resistance coefficient 0.01 

dz
 

Z-axis air resistance coefficient 0.02 

 
Table 2  PPO-IC algorithm parameters 

Parameter Value 
Reward discount factor γ 0.9 
Maximum number of episodes 6000 
Learning rate for actor 0.0001 
Learning rate for critic 0.0002 
Minimum batch size for updating 2 
Loop update operation 10 
ε for the clipping surrogate objective 0.2 
Sampling time per step 0.01 s 
Integral gain factor β 0.01 
Maximum number of steps in an episode 500 
PPO-IC parallel number 4 

 

https://cn.bing.com/dict/search?q=step&FORM=BDVSP6&mkt=zh-cn
https://cn.bing.com/dict/search?q=size&FORM=BDVSP6&mkt=zh-cn
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accumulated reward and (2) average steady-state error. 
There is a negative correlation between these two 
indicators. In each step, the larger the return value 
returned, the smaller the error of the current state from 
the expected state. The process of quadrotor learning 
is toward the direction of the error becoming smaller 
and smaller. A maximum return value of zero means 
that the current state is exactly the desired one; 
however, because an error inevitably exists during the 
learning and training process, the ideal state will 
never be reached. It is only possible to approach the 
ideal state as much as possible. With the error in an 
acceptable range, it can still fly safely and stably. 
Hence, a larger accumulated reward value means a 
faster, more stable, and more accurate policy network. 
In this study, we train the model 50 times, and in each 
experiment 6000 episodes are performed to record the 
error and return the value generated by each step of 
the training process. The errors are based on the dif-
ference between the current velocities and the ex-
pected velocities and then the absolute values of the 
errors are summed. When the 50 experiments are 
completed, the average accumulated reward and the 
average steady-state error are calculated based on the 
50 sets of data recorded previously. The algorithm 
used in this work is PPO-IC. One of its significant 
advantages is to reduce the steady-state error. We 
make an experimental comparison to highlight this 
advantage. The results of the PPO-IC algorithm are 
compared with those of the PPO algorithm (baseline). 
The results are shown in Fig. 6. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

The network structure and algorithm and simu-
lation model parameters are the same. The initial 
network parameters are randomly initialized, and the 

state generated is uncertain. Therefore, the two errors 
at the beginning of the training are different. As the 
number of training rounds increases, for both algo-
rithms the error gradually decreases to zero, and both 
are stable in the many experiments. However, the 
PPO-IC algorithm approaches zero faster, and the 
error is smaller. Moreover, the PPO algorithm always 
has an error after training a certain number of rounds, 
and the error does not decrease with the increase of 
the number of training rounds. This does not appear 
for the PPO-IC algorithm. 

The comparison of the average cumulative re-
ward is shown in Fig. 7. The network structure and 
the model and algorithm parameters are the same. The 
initial weights of the networks are randomly initial-
ized. Because of the large deviation between the 
current state and the target state at the beginning of 
training, the reward values returned are different and 
very small. With the increase in the number of train-
ing rounds, the reward value is getting larger and 
larger. The PPO-IC algorithm has a higher conver-
gence speed, and the network is faster and more ac-
curate and more stable than the network trained with 
the PPO algorithm. The training times of the two 
algorithms are both around 136 s. The PPO-IC algo-
rithm does not show an advantage in reducing the 
training time. However, this training time is much less 
than those of other deep RL algorithms in controlling 
the quadrotor. As mentioned in Hwangbo et al. (2017), 
using a high-performance GPU graphics card, it still 
takes at least 10 min to learn a control strategy that 
meets the requirements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We use the PPO-IC and PPO algorithms to train 
the simplified model 50 times, training 6000 rounds 
per experiment, and learning the final control strategy 
by tracking the velocities. 

Fig. 7  Averaged accumulated reward in the evaluation 
of polices learned by PPO-IC and PPO 
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Fig. 6  Averaged steady-state error in the evaluation of 
polices learned by PPO-IC and PPO 
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In the 50 experiments, we set the target speed to 
be [1, −1, 1] m/s, and record the velocity tracking 
during the 6000 iterations. The results are shown in 
Fig. 8. We calculate the mean absolute steady-state 
errors of the two algorithms in the steady state that 
meet the accuracy requirements. In this experiment, 
we believe that the steady state is reached after 5000 
rounds of training, after which 1000 rounds of train-
ing data are used to calculate the mean absolute 
steady-state error. The comparison diagram is shown 
in Fig. 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The models of these two algorithms have zero 
initialization velocities, and the models start training 
from zero velocity. The dynamic performances of the 
two algorithms are shown in Fig. 8. Both algorithms 
can eventually learn a stable strategy, but the PPO-IC 
algorithm achieves higher tracking accuracy and is 
more conducive to reducing the steady-state error 
than the PPO algorithm for the quadrotor velocity 

tracking task. In addition, we compare the attitude 
angle changes learned by the two algorithms. The 
attitude angles are not initialized to zero, but are 
randomly initialized within the set safety range, so at 
the beginning of the training, the attitude angles are 
different. As the number of training rounds increases, 
the three attitude angles learned by the two algorithms 
eventually approach zero. The results of the two al-
gorithms are shown in Fig. 10. 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 

To highlight the advantage of the PPO-IC algo-
rithm in reducing the error, we compare the average 
absolute errors between the attitude angles learned by 
the two algorithms and the ideal zero state at the 
steady state. As shown in Fig. 11, the control per-
formance of the PPO-IC algorithm is better than that 
of the PPO algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2.2  Simulated quadrotor model test 

In the offline learning phase, the simplified 
model finally learns a stable control strategy through 
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a large number of rounds of trial-and-error training. 
We have conducted a test on the final model that has 
been learned. In the experiment, we show a two- 
dimensional plane flight path diagram (Fig. 12). The 
slope represents the flight speed of each axis. The 
slopes of the three axes are 1, −1, and 1, respectively, 
coinciding with the preset expected speed [1, −1, 1] 
m/s, which verifies that the model we have trained is 
effective. Because the quadrotor uses the PPO-IC 
algorithm to track the target velocity, we set the target 
velocity to [1, −1, 1] m/s. The model learns a steady 
flight speed which is very close to the set target speed. 
With this model, the quadrotor flies from the original 
position [0, 0, 0] for 10 s, and the trajectory is rec-
orded. Fig. 13 shows the flight path of the aircraft 
from three dimensions. Taking the flight distance 
along the X axis as an example, since the expected 
speed along the X axis is 1 m/s, the distance is 10 m 
after 10 s of flight. The Y- and Z-axis flight analysis is 
similar. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4.3  Generalization ability test and comparison 
with PID 

The quadrotor offline learning phase is to learn a 
stable, robust control strategy that allows the real 
four-rotor model to cope with differences in the actual 
flight. Through experimental demonstration, we be-
lieve that a powerful model is learned. In this sub-
section we test the generalized ability of the trained 
model. To do a comprehensive generalization test, we 
set up three different types of robustness testing for 
comparison with PID control.  

4.3.1  Model generalization test of different sizes 

We change the load and distance from the four 
rotors to the centroid to test the robustness and gen-
eralization ability of the control strategy learned in the 
offline phase of different sizes. The robust compari-
son is done by letting the model track the preset de-
sired velocity. The specific implementation process of 
the control task is as follows: The initial flight veloc-
ity vector is set to [0, 0, 0]. Then the simulated aircraft 
flies for 10 s with the flight strategy learned during 
the offline phase and the speed curve is recorded. It is 
found that the quadrotor of different sizes converges 
to the desired speed [1, −1, 1] m/s set in offline 
learning according to the control strategy that has 
been learned in the offline phase. We use a traditional 
PID controller for comparison. The PID parameters 
have been set using the Qball-2 model (Quanser, 
2015). Under these parameters, the aircraft can fly 
quickly and stably in the actual flight. We use the PID 
controller instead of advanced control methods for 
comparison, due mainly to the following reasons: 
First, the PID controller repeatedly adjusts the output 
by the error between the desired input and the actual 
output of the quadrotor state to achieve a given de-
sired input value. This is similar to the PPO-IC algo-
rithm; both use the trial-and-error strategy to achieve 
the control target. Second, the PPO-IC method is a 
model-free learning algorithm, but the design of other 
control methods is based on the analysis of the dy-
namics of the model, so it is not comparable to other 
control methods. In the robustness test, we select the 
sum of the absolute errors generated in each step 
during the flight to evaluate the performance. Obvi-
ously, the smaller the sum of errors, the more precise 
and faster the control strategy. 

We perform two sets of experiments to test the 
control performance of the proposed PPO-IC algo-
rithm under different quadrotor specification models, 
and compare the results with those of PID control to 
verify the generalization ability of the model. One 
type of experiments is conducted under different 
payloads. The results are shown in Fig. 14. Consid-
ering that the load should have the same effect on the 
four rotors, the payload is added to the centroid of the 
four rotors. As shown in Fig. 14c, the weight of the 
payload added at the centroid of the quadrotor is 
gradually increased. The quadrotor is not loaded from 
the beginning; that is, it is flying at the standard 

Fig. 12  Ten-second two-dimensional flight trajectory 
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weight of the offline learning phase. Then 10% of the 
standard weight is used for each load increase, and the 
payload increase eventually reaches 50% of the 
standard weight. The weight of the whole quadrotor is 
increased due to the load on the center, which has 
some influence on the moment of inertia of the model. 
New inertia moment parameters for different payload 
models can be estimated by the online evaluation 
package (Shi et al., 2017). Under the premise of 
keeping the air resistance coefficient of the model and 
the maximum trust of the four rotors unchanged, we 
conduct six sets of experiments. In each set of ex-
periment only the quadrotor payload weight is 
changed. The aircraft starts flying at a zero initial 
velocity for 10 s in each experiment, and the speed 
tracking response curve is recorded (Figs. 13a and 
13b). Because the expected speed we set is [1, −1, 1] 
m/s, the speed will eventually converge to the given 
target value in different experiments. Both the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PPO-IC algorithm and the PID control method 
achieve the control requirements under the condition 
of increased load. The quadrotor controlled by the 
two algorithms achieves stable flight attitude and 
flight speed under different loads. However, Fig. 14a 
shows that although the quadrotor finally achieves a 
steady state by PID control under different loads, as 
the load increases, this final steady state deviates 
much from the desired one, and the quadrotor re-
sponds more slowly to the desired speed tracking. The 
increase of the payload has little effect on the speed 
tracking control of the X and Y axes, but the influence 
on the Z axis is obvious. The larger the payload on the 
quadrotor increases, the farther the final linear veloc-
ity of the Z axis deviates from the desired one. The 
main reason is that, as the weight of the payload in-
creases, most of the upward thrust balances the in-
creased gravity due to the increased payload, and only 
a small portion of the thrust is used to adjust the  
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attitude and speed of the aircraft, which directly leads 
to slower speed tracking response. This is verified by 
Fig. 14c. As the load increases, the speed error of the 
PID control method is larger and larger. In fact, the 
error increase is derived mainly from the speed devi-
ation increment along the Z axis. In sharp contrast, the 
flight performance of the model under the control of 
the PPO-IC algorithm is very stable, and the speed 
tracking response curve is not subject to large fluctu-
ations with the increase of the load. The quadrotor is 
still able to reach the desired speed quickly and ac-
curately. The sum of the final speed errors of the 
models under different payloads is almost constant, 
even if the payload is increased by 50%. The speed 
tracking task has no large error, in sharp contrast with 
the large deviation in case of PID control. This proves 
the robustness of the model learned with PPO-IC. 

In the offline learning phase, the radius of the 
quadrotor is 0.2 m. We take this as the standard radius. 
We select the other sets of models with different radii, 
from 0.1 m to 1.1 m (Fig. 15). That is, the radius is 
increased from 50% to 550% of the standard, which is 
a wide range, and a total of 12 experiments are con-
ducted. In these experiments, only the radius is 
changed. The mass of the quadrotor model and the 
maximum thrust of the four rotors remain unchanged. 
The change in the radius directly results in a change in 
the inertia moment and the air resistance coefficient. 
These new parameters can be estimated by the online 
evaluation package (Shi et al., 2017). When the radius 
is relatively small, from 0.2 to 0.4 m, the control 
performances of the PPO-IC algorithm and the PID 
control method are similar. The quadrotor can 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

complete the speed tracking control task quickly and 
stably. However, as the radius continues to increase, 
the PID-controlled quadrotor model becomes slower 
and slower in response to speed tracking, and the final 
state deviates more and more from the desired setting 
state. When the radius is increased to 0.8 m, although 
the steady state can be finally achieved, there are 
obviously some fluctuations compared with the 
steady state at small radii. When the radius is in-
creased to 1 m and above, the final oscillating state of 
the model controlled by PID is unstable. This is veri-
fied by Fig. 15c. In contrast, the response of the model 
controlled by the PPO-IC algorithm to speed tracking 
is not much affected. During the change of the radius 
from 0.2 to 1.0 m, the model controlled by the 
PPO-IC algorithm is still fast, accurate, and stable. 
Note that with the increase of the radius, the control 
performances of the quadrotor models controlled by 
the two algorithms degrade; the performance degra-
dation of PID control is more obvious.  

To conclude, the quadrotor model learned by the 
PPO-IC algorithm in the offline phase shows ro-
bustness in the tests with different payloads and radii 
separately. Although the model based on PID control 
has good and even better generalization ability, over-
all PPO-IC control is superior to PID control.  

4.3.2  Model generalization test in different initial 
states 

We also test the control performance of the 
four-rotor model with the PPO-IC algorithm in dif-
ferent initial states. The control task is to make the 
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four rotors run in different initial states and finally 
reach the desired steady state. The attitude angles of 
the four rotors and the linear velocities along the three 
axes are randomly initialized from the respective 
safety ranges. We perform each experiment 20 times. 
Each experiment runs for 10 s. The three linear ve-
locities start from different values and finally con-
verge to the desired one (Fig. 16a). The three attitude 
angles start from different initial values and finally 
converge (Fig. 16b). The control strategy learned by 
the PPO-IC algorithm can drive the four-rotor model 
with different initial states to reach a stable state 
within 10 s, and the error is very small, which shows 
that the strategies learned in the offline phase have 
good generalization ability. 

 
 

5  Conclusions and future work 
 

We have proposed a PPO-IC algorithm with state 
integration for the development of the UAV intelli-
gent controller, which effectively reduces the steady- 
state error in speed tracking and significantly im-
proves the tracking accuracy. This method, together 
with the proposed reward signal, provides good 
sample efficiency and reduces the convergence time. 
A two-stage learning program has been proposed to 
develop a high-performance flight controller.  

In future work, we would explore new reward 
signals to reduce the observed steady-state errors. 
Various initialization strategies can be considered to 
improve the flight controller performance.  

 
Contributors 

Qing-ling WANG guided the research. Huan HU per-
formed the experiments, drafted, revised, and finalized the 
paper. 

 
Compliance with ethics guidelines 

Huan HU and Qing-ling WANG declare that they have no 
conflict of interest. 

 
References 
Abadi M, Barham P, Chen JM, et al., 2016. TensorFlow: a 

system for large-scale machine learning. Proc 12th USE-
NIX Conf on Operating Systems Design and Implemen-
tation, p.265-283.  

Alexis K, Nikolakopoulos G, Tzes A, 2012. Model predictive 
quadrotor control: attitude, altitude and position experi-
mental studies. IET Contr Theory Appl, 6(12):1812-1827. 
https://doi.org/10.1049/iet-cta.2011.0348 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Amari SI, 1998. Natural gradient works efficiently in learning. 

Neur Comput, 10(2):251-276.  
https://doi.org/10.1162/089976698300017746 

Antonelli G, Cataldi E, Arrichiello F, et al., 2018. Adaptive 
trajectory tracking for quadrotor MAVs in presence of 
parameter uncertainties and external disturbances. IEEE 
Trans Contr Syst Technol, 26(1):248-254.  
https://doi.org/10.1109/TCST.2017.2650679 

Bobtsov A, Guirik A, Budko M, et al., 2016. Hybrid parallel 
neuro-controller for multirotor unmanned aerial vehicle. 
Proc 8th Int Congress on Ultra Modern Telecommunica-
tions and Control Systems and Workshops, p.1-4.  
https://doi.org/10.1109/ICUMT.2016.7765223 

Bouabdallah S, Noth A, Siegwart R, 2004. PID vs LQ control 
techniques applied to an indoor micro quadrotor. Proc 
IEEE/RSJ Int Conf on Intelligent Robots and Systems, 
p.2451-2456. 
https://doi.org/10.1109/IROS.2004.1389776 

Dierks T, Jagannathan S, 2010. Output feedback control of a 
quadrotor UAV using neural networks. IEEE Trans Neur 
Netw, 21(1):50-66.  
https://doi.org/10.1109/TNN.2009.2034145 

Fig. 16  PPO-IC control performance test in 20 different 
initial states: (a) linear velocity; (b) attitude angle 

(a)

1.4
1.2
1.0
0.8
0.6

0              2              4              6             8             10

V
el

oc
ity

_X
 

(m
/s

)
V

el
oc

ity
_Y

 
(m

/s
) −0.6

−0.8
−1.0
−1.2
−1.4

V
el

oc
ity

_Z
 

(m
/s

)

Target

1.4
1.2
1.0
0.8
0.6

Target

Target

0              2              4              6             8             10

0              2              4              6             8             10
Time (s)

 (b)

0.75
0.50
0.25
0.00

−0.25
−0.50
−0.75

0             2              4              6              8             10

A
ng

le
_X

 (r
ad

)
A

ng
le

_Y
 (r

ad
)

A
ng

le
_Z

 (r
ad

)

0             2              4              6              8            10
Time (s)

0.75
0.50
0.25
0.00

−0.25
−0.50
−0.75

0.75
0.50
0.25
0.00

−0.25
−0.50
−0.75

0             2              4              6              8             10

Target

Target

Target



Hu and Wang / Front Inform Technol Electron Eng   2020 21(5):777-795 795 

Duan Y, Chen X, Houthooft R, et al., 2016. Benchmarking 
deep reinforcement learning for continuous control. Proc 
33rd Int Conf on Machine Learning, p.1329-1338.  

Fumagalli M, Naldi R, Macchelli A, et al., 2012. Modeling and 
control of a flying robot for contact inspection. Proc 
IEEE/RSJ Int Conf on Intelligent Robots and Systems, 
p.3532-3537. 
https://doi.org/10.1109/IROS.2012.6385917 

Hwangbo J, Sa I, Siegwart R, et al., 2017. Control of a quad-
rotor with reinforcement learning. IEEE Robot Autom 
Lett, 2(4):2096-2103.  
https://doi.org/10.1109/LRA.2017.2720851 

Kakade S, Langford J, 2002. Approximately optimal ap-
proximate reinforcement learning. Proc 19th Int Conf on 
Machine Learning, p.267-274.  

Kingma DP, Ba J, 2014. ADAM: a method for stochastic 
optimization. https://arxiv.org/abs/1412.6980  

Lee T, 2013. Robust adaptive attitude tracking on SO(3) with 
an application to a quadrotor UAV. IEEE Trans Contr Syst 
Technol, 21(5):1924-1930.  
https://doi.org/10.1109/TCST.2012.2209887 

Lillicrap TP, Hunt JJ, Pritzel A, et al., 2016. Continuous con-
trol with deep reinforcement learning.  
https://arxiv.org/abs/1509.02971 

Miglino O, Lund HH, Nolfi S, 1995. Evolving mobile robots in 
simulated and real environments. Artif Life, 2(4):417-434.  
https://doi.org/10.1162/artl.1995.2.4.417 

Mnih V, Kavukcuoglu K, Silver D, et al., 2015. Human-level 
control through deep reinforcement learning. Nature, 
518(7540):529-533. https://doi.org/10.1038/nature14236 

Quanser, 2015. User Manual Qball 2 for QUARC: Set Up and 
Configuration. Quanser, Inc., Markham, ON, Canada. 

Rozi HA, Susanto E, Dwibawa IP, 2017. Quadrotor model 
with proportional derivative controller. Proc Int Conf on 
Control, Electronics, Renewable Energy and Communi-
cations, p.241-246.  
https://doi.org/10.1109/ICCEREC.2017.8226676  

Salih AL, Moghavvemi M, Mohamed HAF, et al., 2010. Flight 
PID controller design for a UAV quadrotor. Sci Res Es-
says, 5(23):3660-3667.  

Santoso F, Garratt MA, Anavatti SG, 2018. State-of-the-art 
intelligent flight control systems in unmanned aerial ve-
hicles. IEEE Trans Autom Sci Eng, 15(2):613-627.  
https://doi.org/10.1109/TASE.2017.2651109 

Schulman J, 2016. Optimizing Expectations: from Deep Re-
inforcement Learning to Stochastic Computation Graphs. 
PhD Thesis, University of California, Berkeley, USA.  

Schulman J, Levine S, Moritz P, et al., 2015. Trust region 
policy optimization. Proc 31st Int Conf on Machine 
Learning, p.1889-1897.  

Schulman J, Wolski F, Dhariwal P, et al., 2017. Proximal 
policy optimization algorithms.  
https://arxiv.org/abs/1707.06347  

Shi DJ, Dai XH, Zhang XW, et al., 2017. A practical perfor-
mance evaluation method for electric multicopters. 
IEEE/ASME Trans Mechatr, 22(3):1337-1348.  
https://doi.org/10.1109/TMECH.2017.2675913 

Silver D, Lever G, Heess N, et al., 2014. Deterministic policy 

gradient algorithms. Proc 31st Int Conf on Machine 
Learning, p.1-9.  

Silver D, Huang A, Maddison CJ, et al., 2016. Mastering the 
game of Go with deep neural networks and tree search. 
Nature, 529(7587):484-489.  
https://doi.org/10.1038/nature16961 

Sutton RS, 1995. Generalization in reinforcement learning: 
successful examples using sparse coarse coding. Proc 8th 

Int Conf on Neural Information Processing Systems, 
p.1038-1044.  

Sutton RS, Barto AG, 1998. Reinforcement Learning: an 
Introduction. MIT Press, Cambridge, USA.  

Tomic T, Schmid K, Lutz P, et al., 2012. Toward a fully au-
tonomous UAV: research platform for indoor and outdoor 
urban search and rescue. IEEE Robot Autom Mag, 19(3): 
46-56. https://doi.org/10.1109/MRA.2012.2206473 

Valente J, del Cerro J, Barrientos A, et al., 2013. Aerial cov-
erage optimization in precision agriculture management: 
a musical harmony inspired approach. Comput Electron 
Agric, 99:153-159.  
https://doi.org/10.1016/j.compag.2013.09.008 

Valenti RG, Jian YD, Ni K, et al., 2016. An autonomous flyer 
photographer. Proc IEEE Int Conf on Cyber Technology 
in Automation, Control, and Intelligent Systems, p.273- 
278. https://doi.org/10.1109/CYBER.2016.7574835 

van Hasselt H, 2010. Double Q-learning. Proc 23rd Int Conf on 
Neural Information Processing Systems, p.2613-2621.  

van Hasselt H, Guez A, Silver D, 2016. Deep reinforcement 
learning with double Q-learning. Proc 30th AAAI Conf on 
Artificial Intelligence, p.2094-2100.  

Wang YD, Sun J, He HB, et al., 2019. Deterministic policy 
gradient with integral compensator for robust quadrotor 
control. IEEE Trans Syst Man Cybern Syst, p.1-13. 

 https://doi.org/10.1109/TSMC.2018.2884725 
Waslander SL, Hoffmann GM, Jang JS, et al., 2005. Multi- 

agent quadrotor testbed control design: integral sliding 
mode vs. reinforcement learning. Proc IEEE/RSJ Int Conf 
on Intelligent Robots and Systems, p.3712-3717.  

 https://doi.org/10.1109/IROS.2005.1545025 
Watkins CJCH, Dayan P, 1992. Q-learning. Mach Learn, 

8(3-4):279-292. https://doi.org/10.1007/BF00992698 
Williams-Hayes PS, 2005. Flight test implementation of a 

second generation intelligent flight control system. Proc 
Infotech@Aerospace, p.26-29.  
https://doi.org/10.2514/6.2005-6995 

Xu B, 2018. Composite learning finite-time control with ap-
plication to quadrotors. IEEE Trans Syst Man Cybern Syst, 
48(10):1806-1815. 
https://doi.org/10.1109/TSMC.2017.2698473 

Xu R, Ozguner U, 2006. Sliding mode control of a quadrotor 
helicopter. Proc 45th IEEE Conf on Decision and Control, 
p.4957-4962. https://doi.org/10.1109/CDC.2006.377588 

Yang HJ, Cheng L, Xia YQ, et al., 2018. Active disturbance 
rejection attitude control for a dual closed-loop quadrotor 
under gust wind. IEEE Trans Contr Syst Technol, 26(4): 
1400-1405. https://doi.org/10.1109/TCST.2017.2710951 

Yechiel O, Guterman H, 2017. A survey of adaptive control. Int 
Rob Autom J, 3(2):290-292.  
https://doi.org/10.15406/iratj.2017.03.00053 

https://arxiv.org/abs/1707.06347

	Huan HU, Qing-ling WANG†‡
	Key words: Reinforcement learning; Proximal policy optimization; Quadrotor control; Neural network

