
Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 777

Proximal policy optimization with an
integral compensator for quadrotor control*

Huan HU, Qing-ling WANG†‡

School of Automation, Southeast University, Nanjing 210096, China
†E-mail: qlwang@seu.edu.cn

Received Nov. 22, 2019; Revision accepted Feb. 24, 2020; Crosschecked Apr. 27, 2020

Abstract: We use the advanced proximal policy optimization (PPO) reinforcement learning algorithm to optimize the stochastic
control strategy to achieve speed control of the “model-free” quadrotor. The model is controlled by four learned neural networks,
which directly map the system states to control commands in an end-to-end style. By introducing an integral compensator into the
actor-critic framework, the speed tracking accuracy and robustness have been greatly enhanced. In addition, a two-phase learning
scheme which includes both offline- and online-learning is developed for practical use. A model with strong generalization ability
is learned in the offline phase. Then, the flight policy of the model is continuously optimized in the online learning phase. Finally,
the performances of our proposed algorithm are compared with those of the traditional PID algorithm.

Key words: Reinforcement learning; Proximal policy optimization; Quadrotor control; Neural network
https://doi.org/10.1631/FITEE.1900641 CLC number: TP183; TP273

1 Introduction

In the past few decades, unmanned aerial vehi-
cles (UAVs) have received much attention, and have
been applied in many fields, such as agricultural ser-
vices (Valente et al., 2013), aerial photography
(Valenti et al., 2016), industrial inspection (Fumagalli
et al., 2012), and search and rescue (Tomic et al.,
2012). This has directly led to a great deal of research
on the quadrotor. Because of its simple structure, it
has been put into use in many practical applications.

Although quadrotor research has made signifi-
cant progress, it still faces some problems. First, real-

time control of the aircraft means real-time data ac-
quisition and computation, which requires high time
sensitivity and advanced equipment. Second, the
aircraft should be able to adapt to various complex
and harsh environments during the flight, and possi-
ble malfunctions have to be considered. Taking these
factors into consideration, flight control is still an
open research question.

Flight control systems are critical elements in a
variety of missions and applications for unmanned
aerial vehicles. They usually have two application
levels: one is an advanced mission-planning control
system, such as path planning, navigation, and ob-
stacle avoidance; the other is a low-level stable flight
system that performs simple motion control. In this
study, we are concerned mainly with the second level.
We update the control strategy by tracking the speed
state to achieve stability and accuracy of the flight
control system. However, the quadrotor is a highly
nonlinear, multi-input multi-output underactuated
coupling system, which makes the controller design
very difficult and complicated. More seriously, usu-
ally a large number of unmodeled dynamic and

Frontiers of Information Technology & Electronic Engineering
www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com
ISSN 2095-9184 (print); ISSN 2095-9230 (online)
E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Key R&D Program of China (No.
2018AAA0101400), the National Natural Science Foundation of
China (Nos. 61973074, U1713209, 61520106009, and 61533008), the
Science and Technology on Information System Engineering Labor-
atory (No. 05201902), and the Fundamental Research Funds for the
Central Universities, China

 ORCID: Huan HU, https://orcid.org/0000-0001-5022-0771;
Qing-ling WANG, https://orcid.org/0000-0003-2045-2920
© Zhejiang University and Springer-Verlag GmbH Germany, part of
Springer Nature 2020

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 778

nonlinear external disturbances are contained.
Therefore, designing a quadrotor controller capable
of anti-interference has gradually become a research
issue. At present, many control strategies have
emerged for anti-interference control of the quadrotor,
such as proportional–integral–derivative (PID) con-
trol (Salih et al., 2010), adaptive control (Antonelli et
al., 2018), and active disturbance rejection attitude
control (Yang et al., 2018).

The PID control method is a common control
method in practical applications of the quadrotor, and
PID control acts as a baseline controller in many
studies (Bouabdallah et al., 2004). However, since the
anti-interference relies on its integral term, the control
accuracy becomes very poor when the interference is
not constant, and the interference is suppressed only
after it is affected. It has become more and more dif-
ficult to achieve high-precision control of the quad-
ruple drone. Moreover, the PID gain is selected
through trial and error, and it is difficult to meet the
dynamic performance requirements. Therefore,
model-based control is more practical. Researchers
have proposed many advanced control strategies,
such as model predictive control (MPC) (Alexis et al.,
2012), robust control (Lee, 2013), and sliding mode
control (SMC) (Xu R and Ozguner, 2006; Xu B, 2018),
to deal with the nonlinearity and uncertainty of the
model. These methods have their strengths and
weaknesses. For example, adaptive control estimates
the unknown parameters in the model of a quadrotor;
adaptive control relies on an accurate model of the
controlled system, and the control performance will
decrease when the system has large external inter-
ferences. For these model-based control strategies,
the control performance is dependent on the accuracy
and comprehensiveness of the preset dynamic model.
Even if the uncertainty and disturbance are consid-
ered, the accuracy and comprehensiveness of the
model cannot be achieved. If the model is too com-
plicated, it will lead to more complex control strate-
gies. In the past decade, the rapid development of
artificial intelligence technology has affected the
traditional control field. The intelligent flight control
system based on machine learning is a hot research
topic (Santoso et al., 2018), and it can be known from
Yechiel and Guterman (2017) that good control per-
formance is achieved even if the model is nonlinear
and uncertain. We can also use deep artificial neural

networks as approximators to reduce the noise
(Miglino et al., 1995). The advantage of online
learning methods is the ability to continuously learn
aircraft dynamics in real time (Dierks and Jaganna-
than, 2010). Since online learning is based on expe-
rience to learn aircraft dynamics models, this directly
leads to limited system performance when the flight
system is operating in a new environment. It is also
not advisable to train the aircraft control strategy
based on the supervised learning method, mainly due
to the inaccuracy of the sample data used for super-
vised training. The data is obtained using a PID con-
trol method similar to the aircraft model which is not
accurate. The sample data is inaccurate and the cost of
collecting data is high, which make the model based
on supervised learning training not the optimal (Wil-
liams-Hayes, 2005; Bobtsov et al., 2016). To build a
high-performance flight control system, it is neces-
sary to find more suitable solutions.

An alternative to machine learning and optimi-
zation is reinforcement learning (RL) applied to con-
tinuous tasks, and the RL algorithm has proven to be a
successful machine learning method for practical
applications. The application of the RL algorithm to
the quadrotor model flight control problem was first
proposed by Waslander et al. (2005). They used the
local weighted linear regression method to model the
quadrotor as a Markov decision process. The final
learned linear strategy has similar performance to the
integral sliding mode controller. In recent years, due
to the rise of deep learning, deep neural networks
have been introduced into RL as value function ap-
proximators. This deep neural network based RL
algorithm has outperformed human experts in com-
plex scenes such as video games (Mnih et al., 2015)
and board games (Silver et al., 2016). Some well-
known deep RL algorithms, such as deterministic
policy gradient (DPG) (Silver et al., 2014), deep de-
terministic policy gradient (DDPG) (Lillicrap et al.,
2016), trust region policy optimization (TRPO)
(Schulman et al., 2015), and proximal policy opti-
mization (PPO) (Schulman et al., 2017), show sig-
nificant control performance in the continuous state
action space (Duan et al., 2016). Hwangbo et al.
(2017) used the RL algorithm to train the aircraft
model, and successfully learned a deterministic
strategy by mapping a given state to a set of aircraft
executable action vectors through a neural network,

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 779

using a natural gradient descent method to optimize
deterministic strategies (Amari, 1998). However,
there are many differences between the real envi-
ronment and the simulation environment. Direct ap-
plication of the aircraft model learned from the sim-
ulation environment to the actual one will cause many
problems, such as decreased accuracy and stability. It
is necessary to increase the authenticity of the simu-
lation, and even to place the quadrotor model in the
real environment to train the learning control strategy.

In this work, we use an advanced RL algorithm,
i.e., PPO, to train the controller. We introduce a state
integrator in the actor critic framework to reduce the
steady-state error by integrating the error state. This
improves the accuracy of tracking control and the
robustness of the controller. We compare the perfor-
mance of the improved controller with that of the
traditional PID controller. Experimental results show
that the controller trained by the PPO algorithm with
state integration is superior to the PID controller. We
then adopt a two-stage learning mode to train the
aircraft model. In the offline phase, we train a sim-
plified aircraft model in the simulation to learn a
controller with robustness. Then, we train a real
quadrotor in the actual scene, and optimize the control
strategies to build a high-performance flight control-
ler in the online phase. In summary, the main contri-
butions of this paper are as follows:

1. We propose a PPO with integral compensator
(PPO-IC) algorithm by introducing a state integrator.
The algorithm significantly improves the tracking
accuracy in motion control.

2. We develop an offline and online learning
scheme. We train a model with strong generalization
ability in the offline phase, and optimize the control
model in the online learning phase. The online
learning phase is aimed to ensure safe and stable
flight in practical applications of the quadrotor. The
network weight in the online learning phase is not
randomly initialized; the network parameters of the
model that has been learned in the offline phase are
used as the initial parameters, to ensure stable flight of
the quadrotor at the beginning of the online learning
phase. On this basis the networks can be learned and
updated. An offline strategy is adopted so that if the
quadrotor takes dangerous actions or some state com-
ponents are outside the safe range during the online
learning phase, the quadrotor can switch to the offline
learning mode to ensure a safe and stable flight.

2 Background

In this section we introduce the dynamic model

and basic principle of RL.

2.1 Dynamic model of the quadrotor

We set up two coordinate systems to describe the
position and attitude of the quadrotor. The first is the
inertial coordinate system, fixed on the earth, where
Newton’s laws of motion are applicable. The second
is the body-fixed coordinate system, fixed on the
quadrotor, with the origin being the center of mass of
the quadrotor. The two coordinate systems are coin-
cident initially, and then become different during the
flight of the quadrotor. The inertial coordinate system
remains unchanged during the flight; in contrast, the
body-fixed coordinate frame will rotate and move in
this process. Three Euler angles φ, φ, and ψ are used
to describe the process and degree of rotation, which
are around the X, Y, and Z axes, respectively. The
center of mass of the quadrotor in the inertial coor-
dinate system is defined as P=[x, y, z]T. The velocity
and acceleration of the quadrotor can be defined as P
and ,P respectively. The model of the quadrotor is
shown in Fig. 1 (Rozi et al., 2017).

The quadrotor has four rotors. Each rotor is dis-

tributed at the end of the cruciform frame. The dis-
tance between each rotor and the center of mass is L.
Viewed from the forward Z axis, rotors 1 and 3 turn
clockwise, while rotors 2 and 4 rotate counterclock-
wise. The speed of rotation is controlled by the pulse-
width modulation (PWM) signals generated by the
electronic speed controllers. Advanced electronic
speed controllers ensure that the thrusts generated by

Fig. 1 The quadrotor model and body-fixed frame (Rozi
et al., 2017)

T4

T1

T2

T3

X

Y

Z

φ

ψ

ϕ

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 780

the four rotors are almost proportional to the PWM
signals sent to the four rotors, that is,

, 1, 2, 3, 4.i iT Ku i= = (1)

Herein Ti (i=1, 2, 3, 4) represent the thrusts generated
by the four rotors. ui (i=1, 2, 3, 4) represent the PWM
signals transmitted to the four rotors; ui are normal-
ized to [0, 1], with ui=0 standing for zero thrust pro-
duced by the rotor and ui=1 meaning that the rotor
generates the maximum thrust. K represents the thrust
gain. Then, we analyze the dynamic characteristics of
the translational motion driven by force and the rota-
tional motion driven by torque, and establish the dy-
namic model.

For translational motion characteristics, in the
inertial coordinate system, according to Newton’s
second law, we have

e l d ,= + +F RF F G (2)

e .m=F p (3)

Here, we take the positive direction of the Z axis as
the positive direction of the Z-axis force, and Fe rep-
resents the combined external force. F1 is the lift force
vector, F1=[0, 0, Tz]T, where Tz is the sum of upward
lift forces generated by the four rotors relative to the

quadrotor frame,
4

1
,z ii

T T
=

=∑ with Ti (i=1, 2, 3, 4)

being the lift force generated by each rotor.
T

d [, ,]x y zf x f y f z= − − −F is the air resistance, where

fx , fy, and fz are air drag coefficients in three directions.
G=[0, 0, −mg]T is the gravity, where g is the acceler-
ation of gravity. R is a transformation matrix, used to
transform the lift force defined in the body-fixed
coordinate system to the inertial coordinate system.
As the position and velocity are defined in the inertial
coordinate system, unity of the coordinate system is
achieved with R:

cos sin sin sin sin
cos cos

cos sin cos cos sin
sin sin sin cos sin sin

sin cos .
cos cos cos sin

sin cos sin cos cos

φ ϕ φ φ ψ
φ ϕ

φ ψ φ ψ ϕ
φ ϕ ψ φ ϕ ψ

ψ ϕ
φ ψ ψ φ

ϕ ϕ φ φ ϕ

− +

 + −

=

 −

R

For translational motion characteristics, the Eu-
ler equation of rotation is applied to a fixed quadrotor
frame:

c f ,τ= + + = + +M M M M Iw w Iw (4)

where M is the sum of torques applied to the quad-
rotor, w is the angular velocity of the three axes of the
quadrotor, T[, ,] ,ϕφ ψ=w

 I is the diagonal inertia
matrix of the quadrotor, I=diag(Ix, Iy, Iz), and Mτ=[τφ,
τφ, τψ]T is the control torque of the quadrotor, which is
the result of differential lift thrusts:

2 4

1 3

1 2 3 4

()
() .

()

L T T
L T T

K T T T T

φ

τ

ψ ψ

ϕ

τ
τ
τ

 −
 = = −
 − + −

M

 (5)

Herein the control torques τφ and τφ are around the X
and Y axes, respectively. The control torque τψ is the
result of lift thrusts of all the four rotors around the Z
axis, with Kψ being a coefficient. Because of the ex-
istence of the four rotating rotors, a gyroscope effect
Mc= T

p p[, ,0]I IϕΩ φΩ−

 is generated, where Ip is the

inertia moment of each rotor and Ω is the disturbance
effect generated by each rotor. Mf is the resistance
moment suffered by the quadrotor during the flight,

T
f [, ,] ,d d dϕφ ψψϕφ− − −=M

 where dφ, dφ, and dψ are
the three axial drag coefficients.

Finally, we obtain the nonlinear dynamic model
in the following form:

p

p

[(cos sin cos sin sin)] / ,
[(cos sin sin sin cos)] / ,

(cos cos) / ,

[()] / ,

[()] / ,

[()]

z x

z y

z z

y z x

z x y

x y

x T d x m
y T d y m
z T d z mg m

I d I I I

I d I I I

d I I

φ

ϕ

φ

ϕ

ψ ψ

ϕφ ψ φ ψ
φ ψ φ ψ

φ

φ τ Ω φ ψ

τ φΩ φψ

ψ τ ψ φ

ϕ

ϕ

ϕ ϕ

ϕ ϕ

ϕ

= + −

= − −

= − −

= − − + −

= − − + −

= − + −

 / .zI

(6)

2.2 Reinforcement learning and policy gradient

RL is learning how to map situations to actions
so as to maximize a numerical reward signal. The
learner is not told which actions to take, but must
discover which actions yield the most reward. It uses
the formal framework of Markov decision processes

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 781

(MDPs) to define the interaction between a learning
agent and the environment concerning states, actions,
and rewards (Sutton and Barto, 1998). The core idea
of RL actually comes from psychology, where agents
interact with the environment to obtain information
about rewards and punishments and then improve
their behavior to maximize the rewards. The envi-
ronment is often modeled as an MDP, described by a
four-tuple (S, A, P, R), where S is the set of states, A
the set of actions, P the state transition matrix, and R
the reward function. In recent years, with the rapid
development of deep learning, a new learning agent
different from the traditional RL agents has emerged,
which is usually called a deep RL agent. The cyclic
process is shown in Fig. 2.

It is well known that describing a task as MDP

can better guarantee the resolution of RL tasks, which
means that the future state of a Markov process de-
pends only on the current state. That is, for any tra-
jectory s1, a1, …, sN, aN in the state-action space, we
have

1 1 1 1(| , ,..., ,) (| ,).t t t t t tP s s a s a P s s a+ += (7)

The goal of RL is to train a strategy π which can

map states to executable actions, and to continuously
improve π by maximizing a goal reward function,

which is generally set as ()1
1

() |N t
tt

J E rπ γ π−
=

= ∑

and is called the expected cumulative discount reward
function, where the discount factor γ∈[0, 1), rt is the
reward that the agent obtains after taking action at at
state st. Policy π can be either stochastic π(a|s) or
deterministic π(s), where π(a|s) means that each ac-
tion a∈A(s) that an agent can perform at state s satis-
fies a probability distribution, and π(s) directly maps a

state s to a determined action a. In the literature, the
steps of the RL algorithm can be summarized as fol-
lows: (1) generating samples by executing policy π;
(2) evaluating the reward to generate a model; (3)
improving policy π; (4) repeating this process until
optimal parameter values are obtained.

There are many types of RL algorithms. The
main approaches are value-function-based algorithms,
such as SARSA (Sutton, 1995) and Q-learning
(Watkins and Dayan, 1992). We consider the best
action by estimating the return, and then repeatedly
improve policy π(s). Another classical RL algorithm
is based on policy gradient. In policy gradient ap-
proaches, there are usually two networks, actor net-
work and critic network. The actor network is used to
select an appropriate action under the current state,
unlike value-function-based methods which select the
action with the largest value. Approaches based on
policy gradient use the actor network to select the
actions. The parameters of the network are a set of
vectors that can be trained repeatedly. The critic
network can be used to evaluate the value of the cur-
rent action produced by the actor network. In actor-
critic algorithms the parameters of the critic neural
network can also be trained repeatedly.

In general, we use a gradient descent algorithm
to optimize the policy weights. Policy πθ is commonly
a deep or shallow neural network. From Schulman
et al. (2017), the most commonly used form of the
gradient approximator is

ˆˆˆ log (|) ,t t tg E a s Aπ

 = ∇ θθ (8)

where ˆ
tA is called the advantage function,

ˆ ˆ(,) (,) (),t t t t t tA s a Q s a V s= − representing the empiri-
cal average of a limited number of samples generated
during the interaction between agents and the envi-
ronment at each time step t. The estimator is obtained
by differentiating the objective function:

PG ˆˆ() log (|) .t t tL E a s Aπ
 = θ

θ (9)

This approach can be applied to deep learning,

and makes RL tasks more like general optimization
problems (Schulman, 2016). In the RL problem, what
we are trying to solve is an unknown dynamic model

Fig. 2 The agent-environment interaction in a Markov
decision process

Agent

Environment

Action a(t)

R(t+1)

S(t+1)

Reward
R(t)

State
S(t)

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 782

that needs continuous learning and may even be
non-differentiable. Such a property makes the vari-
ance of the gradient estimate increase when calcu-
lating the gradient. In most deep learning problems,
we can know the target loss function and the param-
eters of the neural network, and the input data is not
relevant to the current neural network. In contrast, in
RL, the input data is the states of the agent, which are
produced by the previous policy neural network and
have strong correlation. This is harmful to the stabil-
ity and convergence of the policy neural network.
Taking these factors into account, we use PPO to
optimize the policy in a more stable and efficient way
and improve the performance of the RL agent. The
main reasons are as follows: (1) PPO is considered to
be a suitable RL algorithm for quadrotor control tasks;
(2) PPO is known to outperform state-of-the-art
methods in challenging environments. PPO is a policy
gradient method and is similar to TRPO, while it is
easier to implement and tune. It is therefore the de-
fault choice of algorithm in OpenAI’s projects.

3 The proposed approach

In this section, the PPO-IC algorithm is proposed,
and the control structure and implementation process
are given for the quadrotor. A two-stage learning and
training technique is proposed for the actual flight.

3.1 Network structure

The actor-critic network structure of the PPO-IC
algorithm is shown in Fig. 3. Two types of neural
networks are used for training. One is the actor neural
network θ, which is composed of four policy
sub-networks θi (i=1, 2, 3, 4), whose weights can be
optimized by training. The other is the critic neural
network. These two neural networks have the same
network input; that is, a batch of new state vectors

c c c[, , , , , , , ,]x y zφ ϕ ψ φ ϕ ψ

 are used as the network

input, where c c c, ,x y z are the differences between the
expected velocity and the current velocity after inte-
gration. The nine-dimensional state vector is fed to

NN θ1

NN θ4

NN θ3

NN θ2
Gaussian

distribution 2
Gaussian

distribution 3
Gaussian

distribution 4

a1→u1∈[0, 1]

a2→u2∈[0, 1]

a3→u3∈[0, 1]

a4→u4∈[0, 1]

Gaussian
distribution 1

Policy network
(trainable)

Gaussian
distribution Sample

Quadrotor
Buffer

State integrator
Action vector a

Normalization

Single

Critic neural network adv

NN θ1

NN θ2

NN θ3

NN θ4

Update policy
network per batch

Old policy network
(untrainable)

Gaussian
distribution 1

Gaussian
distribution 2

Gaussian
distribution 3

Gaussian
distribution 4

Record data per batch

Probability of
action vectors BatchBatch

Batch
data

Batch

Batch

Same batch
states

Batch
Advantage value

Update parameters by minimizing adv per batch

Batch adv

Update Copy parameters after recording
each batch data

Sc

Sc

u4, δ4

u3, δ3

u2, δ2

u1, δ1Action a1

Action a2

Action a3

Action a4

u4, δ4

u3, δ3

u2, δ2

u1, δ1

[u1, u2, u3, u4]

Action a1

Action a2

Action a3

Action a4

St

r

S_ r a

c c c[, , , , , , , ,]x y zφ ϕ ψ φ ϕ ψ

c c c[, , , , , , , ,]x y zφ ϕ ψ φ ϕ ψ

c c c

[, , , , ,
, , ,]x y z
φ ϕ ψ φ ϕ
ψ

Fig. 3 System network framework structure

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 783

the four policy sub-networks at the same time. The
outputs of the four sub-networks are ui and δi (i=1, 2,
3, 4), which are the mean and variance of the four
Gaussian distributions, respectively. For each
Gaussian we sample a random action ai (i=1, 2, 3, 4).
Then each collected action is normalized to [0, 1].
The four actions constitute a group of actions ai (i=1,
2, 3, 4), which would be used as the input to the four
rotors, and the quadrotor changes to a new state. Since
we use batch training, after the batch group action
vectors are collected by the current policy network,
we copy the network parameters of the current four
policy sub-networks to another four networks, which
we call the old policy networks. The parameters of the
old network remain fixed, and then the four policy
networks used to sample new actions are trained in
the next batch training. We need to record the new
states into a buffer. After the integration and com-
pensation process, a batch of state vectors are fed to
the critic neural network. A batch of advantage values
can thus be generated to evaluate the quality of the
actions taken to achieve these states. The critic neural
network updates its parameters by minimizing these
values through the gradient descent method. After the
state vectors of the batch group are extracted from
buffer and compensated for by integration, we feed
the advantage values to the policy neural network
together with the action vectors and the state vectors
after integral compensation. Thus, the updating pro-
cess of the policy neural network is completed.

The four sub-networks of the policy network
have the same structure (Fig. 4). It takes the nine-
dimensional state vector after integral compensation
as the input. Such a network structure can maintain
balance between the control performance and the
training speed of the quadrotor. Each sub-policy
network has two fully connected hidden layers, and
each hidden layer has 128 hidden nodes with the
sigmoid activation function. Finally, there are two
outputs: one is the mean μ of the Gaussian distribution,
and the tanh activation function is adopted in this
output layer; the other is the standard deviation δ of
the Gaussian distribution, and the softplus activation
function is adopted in this output layer.

The structure of the critic neural network is
similar to that of the policy sub-network (Fig. 5). The
critic neural network also has two fully connected
hidden layers, and each hidden layer has 128 hidden

nodes with the sigmoid activation function. The final
output is an advantage value used to evaluate how
well a given action is taken in a given state. In fact, we
do not try different numbers of nodes and layers.
From our experience, both neural networks are ver-
satile and can cope with a variety of problems with a
single structure. We use the PPO-IC algorithm, which
is helpful in reducing static errors. For details, refer to
Fig. 3.

3.2 PPO-IC algorithm

The PPO-IC algorithm is developed based on the
traditional PPO algorithm, adding an integral part to
reduce the steady-state error, so as to achieve higher
precision in quadrotor control and make the tracking
error close to zero. PPO is model-free, on-policy,
actor-critic, and is based on the policy gradient
learning algorithm. It has reliable performance simi-
lar to the TRPO algorithm and is much easier to im-
plement. When only first-order optimization is used,
the improvement of monotonicity can be guaranteed
by introducing the Kullback-Leibler (KL) divergence
related to policy updates. In TRPO and PPO methods,
the objective function is the following surrogate ob-
jective function LCPI (conservative policy iteration)

Fig. 4 The structure of four policy sub-networks used in
this work

…

…

128 nodes, sigmoid

128 nodes, sigmoid

tanh softplus

Angular velocity Angle Linear velocity error

μ δ

…

…

128 nodes, sigmoid

128 nodes, sigmoid

Angular velocity Angle Linear velocity error

adv

Fig. 5 The structure of the critic neural network used in
this work

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 784

proposed in Kakade and Langford (2002), and we
want to maximize this objective function.

old

CPI (|) ˆ ˆˆ ˆ() () .
(|)

t t
t t t t t

t t

a sL E A E r A
a s

π
π

 = =

θ

θ

θ θ (10)

Here, θold is the vector of policy parameters before the
update. rt(θ) is the probability ratio, in the form of

old
() (|) (|),t t t t tr a s a sπ π= θ θθ so rt(θold)=1. In the

absence of constraint conditions, maximizing the
objective function of LCPI will lead to excessive up-
dating of the policy network, which is not conducive
to network convergence and stability. Therefore, we
need to punish the updating policy that keeps rt(θ)
away from 1. Although both TRPO and PPO algo-
rithms use this surrogate objective function, they use
different methods to constrain the update step size of
the policy network. The TRPO algorithm optimizes
the surrogate objective function by introducing KL
divergence; that is, it is subject to a constraint

{ }old
ˆ KL (|), (|)t t tE s sπ π d ⋅ ⋅ ≤ θ θ in the process of

maximizing the objective function. By linear ap-
proximation of the objective function and quadratic
approximation of the constraint condition, a conju-
gate gradient algorithm can be used to solve the
problem. An alternative approach is to add penalty
terms to the surrogate objective function to limit ex-
cessive updating of the policy network, which can
also solve the unconstrained optimization problem.

The optimization method of the TRPO algorithm
is described above. The PPO algorithm is similar to
the TRPO algorithm, inheriting some advantages of
the TRPO algorithm, and is much simpler to imple-
ment. The PPO algorithm is more universal and can
take multiple optimization steps. From experience, it
has a better sample utilization rate than TRPO. The
new objective function proposed is the following:

()()CPI ˆ ˆˆ() min () ,clip (),1 ,1+ ,t t t t tL E r A r Aε ε = − θ θ θ

(11)

where
old

() (|) (|)t t t t tr a s a sπ π= θ θθ is the probability

ratio, ˆ
tA represents the advantage of taking action at

at state st, and ε is a hyperparameter (generally ε=0.2).
There are two main terms. The second term in min(),

() ˆclip (),1 ,1 ,t tr Aε ε− +θ is adjusted based on the
surrogate objective function by clipping the proba-
bility ratio. This adjustment could limit the size of rt(θ)
to the set interval [1−ε, 1+ε], that is, setting the values
of rt(θ) greater than 1+ε to 1+ε, setting the values of
rt(θ) less than 1−ε to 1−ε, and taking the value of rt(θ)
within [1−ε, 1+ε] without adjustment. Finally, we take
the minimum of these two terms (clipped and un-
clipped objective). Note that the probability ratio rt(θ)
is clipped at 1−ε or 1+ε depending on whether the
advantage ˆ

tA is positive or negative. If ˆ
tA is positive,

then rt(θ) is clipped at 1+ε; otherwise, rt(θ) is clipped
at 1−ε.

Through the above adjustment, the PPO algo-
rithm can avoid excessive updating of the policy
network, and it is easier to train the policy neural
network. Previous work showed that the PPO algo-
rithm is very suitable for the control of continuous
action space missions, and the learning strategy is
very fast and stable. However, through the many ex-
periments that we have conducted, it is found that the
PPO algorithm will lead to obvious steady-state errors
when dealing with tracking control tasks; no matter
increasing the number of training rounds or using
other return functions, the control strategy finally
learned cannot eliminate this tracking error. An im-
portant reason is that the estimation of the action-
value function is not accurate. Even in very simple
control tasks, the exact action value cannot be ob-
tained using the same action value function approx-
imation strategy (Lillicrap et al., 2016), and for more
complex control tasks, the estimation accuracy of the
action-value function decreases greatly. The cause of
the tracking error is the result of off-policy learning,
TD-learning, and nonlinear function approximators.
These factors will lead to a large deviation and vari-
ance in the estimation of the action-value function
(van Hasselt, 2010; van Hasselt et al., 2016). For
discrete action space control tasks, the Q-learning
method can avoid this problem to some extent (Mnih
et al., 2015). However, in the case of the continuous
action control task, the update and optimization of the
policy network function in the PPO algorithm is based
on the advantage value generated by the critic neural
network. The inaccurate estimation of the advantage
value will lead to the updating and iteration of the
policy network based on gradient updating in the

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 785

wrong direction, and thus cannot achieve accurate and
effective tracking.

To solve the above problems, we improve the
policy neural network and the critic neural network.
The integrator is used to reduce the steady-state error.
We know that the proportional-integral controller will
generate a control deviation based on the given value
and the actual output value, and form a control
amount through the combination of the proportional
deviation and integral deviation, so that the tracking
error of the controlled object approaches zero. The
state vector is extended by the linear quadratic inte-
gral control method, and the tracking error can be
greatly reduced by calculating the optimal state
feedback controller. However, increasing the dimen-
sion of the state vector will make it more difficult to
train the policy network and the critic network.
Therefore, considering various factors, we propose
the PPO-IC algorithm to reduce the tracking error.
The core idea is to introduce the error integral under
the condition that the dimension of the state vector
remains unchanged (Wang et al., 2019). By integrat-
ing the error state vectors of the previous time steps
and combined with the current state vector, a new
compensation state vector is formed:

c e e
1

.
t

t t i

i
β

=

= + ∑s s s (12)

Here, β is the integral gain coefficient of the error
state vector, c

ts is the state vector after compensation,

and e
ts is the state vector for each time step. Super-

scripts represent time steps. The state vector after
integral compensation is used as the input of the
network. When there is a steady-state error, the input
of the network can be adjusted to update the network
towards the direction of error reduction, and finally
the tracking error can be reduced.

To use the PPO-IC algorithm to deal with the
quadrotor control task, we first need to choose the
state observation quantity satisfying the Markov
property. We choose three axial Euler angles and their
corresponding angular velocities to describe the rota-
tion motion, and the angular limit and failure condi-
tions are set to avoid approaching a dangerous attitude
during the flight. Then the translational motion is
described using three axial linear velocity states.
Although our final control object is position control,

we still choose its speed state here, considering the
following: First, the position value depends on the
flight mission. For an indoor flight mission, a narrow
operational space inevitably leads to a smaller posi-
tion. However, for the outdoor wide sky space, the
position value changes greatly due to the large oper-
able space. After comparison, it is found that the po-
sition value may be different by several orders of
magnitude. This makes it difficult to set the sampling
range. Second, because of the different sampling
ranges in different control tasks, the state space may
be greatly increased, which is not only not conducive
to strategy training and learning, but also more time
consuming. Thus, we choose to track and control the
speed along the three axes. Finally, the state vector is
represented as e e e(, , , , , , , ,).t x y zφ ϕ ψ φ ϕ ψ=s

 Here

e d ,x x x= − e dy y y= − , and e dz z z= − represent the
difference between the current velocity and the de-
sired velocity. We use the speed state represented by
the speed error to form part of the state vector, and
design an integral compensator to compensate for the
speed error. After error compensation, the state vector
is sent to the neural network for training. This can
better complete the control task and reduce the
tracking error.

Considering the stability of flight and real-time
error tracking, we should make the return signal as
simple as possible. For the speed tracking task, to
minimize the accumulated speed error in the shortest
time, we design the following return function:

2 2 2 2
e e e ,tr x y z ψ= − + + + (13)

where e ,x e ,y and ez are velocity errors between the
expected velocity and the current velocity in the
global velocity frame, and the sum of the three terms
constitutes the velocity tracking error. In the above
equation, ψ represents the heading angle. Since the
quadrotor structure adopts the drive mode of four
symmetrical rotors, it can fly at a constant speed or
hover at a given heading angle. Here we need only to
consider speed control, so we can simply set ψ to zero.
It can be seen that the maximum value of the return
function is zero. As shown in Fig. 3, the velocity error
state is changed from e ,x e ,y and ez to c ,x c ,y and

cz respectively through the integral compensator.

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 786

Then the new nine-dimensional state vector is sent to
the neural network.

3.3 Two-stage learning and training scheme

Because the RL algorithm we use is model-free
(that is, there is no prior information of any dynamic
model of the given agent), we learn from experience
through the interaction between the agent and the
environment. This idea limits the application of
quadrotor control. Because the quadrotor is inherently
an unstable system, the parameters of the initial pol-
icy θi (i=1, 2, 3, 4) are randomly initialized and are
unknown. We train the model in batches by sampling
the state data, and finally the model learns the policy
that meets the requirements. This process is learned
by the velocity error. Since there is an error, the
quadrotor cannot fly stably as expected. This will
cause the aircraft to lose control or even fall. There-
fore, to transfer the flight strategy learned by the
simulation model to the actual flight, we propose the
two-stage learning and training scheme.

This technique consists of two learning phases,
offline learning phase and online learning phase. In
the offline learning phase, we use a simplified model
to learn a flight control strategy. It can also be under-
stood as the simulation training phase of the model,
which prepares for the control of the quadrotor during
the online flight. In the online learning phase, we use
the flight strategy learned in the offline phase as the
initial one, and the quadrotor continues to optimize
the strategy, while it also runs the offline flight
strategy. Once the aircraft in the online phase reaches
the limit condition, it immediately switches to the
offline strategy to ensure that the quadrotor can al-
ways fly safely and steadily. Through this technique,
we can simulate the learning process of the actual
flight strategy as much as possible to ensure the safe
and stable operation of the aircraft.

The following algorithm is used in the offline
learning and training phase. First, the network pa-
rameters of the four policy sub-networks and the critic
network are randomly initialized. In addition, a
mini-batch-sized buffer E is defined to store the ex-
perience data. Then the model is loaded, and an epi-
sodic style algorithm is used to train the network
parameters with PPO-IC. The simplified model has a
maximum number of training rounds. In each episode,
the initial state is randomly initialized. The random
initialization states include three axial angular veloc-

ities, three angular attitudes, three linear velocities,
and the expected linear velocities. To train the quad-
rotor safely and effectively and meet the actual needs,
we set a safe range for each state component. These
randomly initialized state components are generated
within the safe range, and the maximum number of
training steps is set for each episode. For each training
step, we run the strategy network and record the ex-
perience data generated in each step into buffer E.
When the empirical data in the buffer reaches the set
minimum batch, all will be collected. Then, this batch
of data will be used to train and update the policy
network and the critic network using the gradient
descent method, to make the network gradually con-
verge and stabilize. At any given step, as long as there
is a state component out of the safe range, the episode
is terminated. This episode is regarded as a failed
round. Note that in an episode of sampling, if the
sampled data reaches the set minimum batch, the
minimum batch of data collected in the previous steps
will be used to repeatedly train the policy network and
the critic network to update the network parameters,
and then empty the buffer and resample the data; if the
state has exceeded the safe range when the sampled
data has not reached the set minimum batch size, the
experience data collected in the previous steps will be
cleared and the next episode will be entered, which
leads to the waste of data collected and increases the
training time. Selection of the minimum batch size is
very important. If the size is too large, the network
learning update is too slow; if the size is too small, the
networks will easily oscillate and do not converge.
We have conducted a large number of experiments,
and find that the effect of learning every four batches
is good. Of course, if the number of training steps in
the episode reaches the maximum, this episode
training will be suspended to the next episode. The
speed tracking in the offline learning phase of the
quadrotor is summarized in Algorithm 1.

This multi-round training algorithm has several
advantages. First, randomly initializing the starting
point of exploration is an effective way of learning
because it can improve the ability to explore the state
space (Sutton and Barto, 1998). Second, by setting a
safe range for each state component, the model can
learn and train more effectively and safely, which is of
great significance for practical applications, and also
facilitates the normalization of state components.

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 787

In the offline learning phase, i.e., the simulation
training phase, we use a highly simplified four-rotor
model to learn and train the flight strategy. All the
aerodynamic drag, external disturbances, and gyro-
scope effects are ignored, but the most basic four-
rotor dynamics model is used. The advantage is that
the generalization ability and robustness of the sim-
plified model are strong enough to ensure the most

basic normal flight control of the model in the online
learning stage. The simplified dynamic model equa-
tions are as follows:

2 4

1 3

1 2 3 4

(cos sin cos sin sin) / ,
(cos sin sin sin cos) / ,

(cos cos) / ,

() / ,
() / ,

() / .

z

z

z

x

y

z

x T m
y T m
z T mg m

L T T I
L T T I
K T T T T Iψ

φ ϕ ψ φ ψ
φ ϕ ψ φ ψ
φ ϕ

φ
ϕ

ψ

= +
 = −
 = −
 = −
 = −

= − + −

 (14)

After the offline learning phase, we obtain a

robust quadrotor model which can ensure the stable
and safe flight of the aircraft. However, in actual
flight control, to improve the flight performance, it is
necessary to go through the online learning phase to
continue the learning and training.

The purpose of the online learning phase is to
ensure safe and stable flight in practical applications.
The network structure and network parameters in this
phase are the same as in the offline learning phase.
The difference lies in the training method. First, the
network weight of the online learning phase is not
randomly initialized. The network parameters of the
model that has been learned in the offline phase are
used as the initial parameters, to ensure a stable flight
at the beginning of the online learning phase. The
networks can be learned and updated on this basis.
Second, the offline learning phase takes multiple
rounds of exploration training to obtain a stable model.
In the online learning phase we do not use multiple
rounds of repeated training, but a continuous flight
process. While learning new strategies, we also run an
offline strategy so that if a dangerous action is taken
or some state components are outside the safe range
during the online learning phase, the quadrotor can
switch to the offline learning mode to ensure safe and
stable fly. We need only to randomly initialize a state,
let the quadrotor learn in the above way, and finally
achieve a stable and safe flight strategy.

4 Experiments and results

In this section, we evaluate the speed tracking
accuracy of a neural network based attitude flight
controller using RL training. The execution details of

Algorithm 1 Offline learning with PPO-IC
1 Initialize:

Randomly initialize the weights of the four policy
sub-networks θi (i=1, 2, 3, 4)

Randomly initialize the weights of the critic network
Initialize the mini-batch-sized buffer E
Load the simplified quadrotor dynamic model

2 for episode=1 to max_episode do
3 Initialize the state integrator (clear all integrators)
4 Randomly initialize the quadrotor states
5 Randomly initialize the desired velocity
6 Observe the initial quadrotor states S1
7 for time step t=1 to max_step do
8 Run policy θ with state St to generate action at
9 Run a dynamic model with control signal at

10 Observe reward rt and the next state St+1
11 Process velocity errors with the state integrator
12 Store transition (St, at, rt, St+1) into mini-batch-sized

buffer E
13 if the data in buffer reaches mini-batch then
14 Sample mini-batch group experience from the

buffer
15 Estimate the batch group advantages from the

above experience: ˆ ()t t
t t tt t

A r V sφγ ′−
′′>

= −∑

16 oldπ π← θ
17 for update step i=1 to max_update_step do
18 ppo

ˆ ˆˆ()= [min(() ,clip((),1 ,1))]t t t t tJ E r A r Aε ε− +θ θ θ

 and
old

(|)()
(|)

t t
t

t t

a sr
a s

π
π

= θ

θ

θ

19 Update θ w.r.t. Jppo(θ)
20 end for
21 for update step j=1 to max_update_step do

22 ()2

1
() ()T t t

t tt t t
L r V sφφ γ ′−

′′= >
= −∑ ∑

23 Update φ w.r.t. L(φ)
24 end for
25 Empty buffer E
26 end if
27 if St+1 exceeds the safe range then
28 Empty buffer E
29 break
30 end if
31 end for
32 end for

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 788

the above mentioned methods, the experimental
parameters used, and the final results will be pre-
sented. For episodic tasks, they are comparable to
those of the baseline (PID).

4.1 Setup of simulation

The dynamics model used for simulation is as
shown in Section 2.1, which is a Qball-2 quadrotor
designed by Quanser Inc. Some basic parameters such
as size, mass, and moment of inertia are known from
the official manual. Other parameters such as aero-
dynamic coefficients refer mainly to the multirotor
aircraft performance evaluation article (Shi et al.,
2017; http://www.flyeval.com/). The parameters of
the simplified quadrotor model are shown in Table 1.
In each episode of training, the maximum number of
sampling steps is 500, and the sampling time per step
is 0.01 s. Due to the small batch training method, the
data sampled every two steps is sent to the network
for learning and updating once. In each episode the
largest step size is 250. It allows the aircraft to have
sufficient time to respond to commands and explore
as many unknown states as possible to learn more
strategies. The range of the target angular velocity is
set to Ωmin=−2.27 rad/s, Ωmax=2.27 rad/s (±130 deg/s),
the range of the target sampling attitude angle is set
from −45° to 45°, and the range of the target sampling
linear velocity is set to Vmin=−5 m/s, Vmax=5 m/s.
These limits are set by examining the performance of
the PID to ensure physically feasible constraints
while meeting the safety requirements of the actual
flight of the quadrotor. In this study four policy sub-
networks and one evaluation network are run at the
same time, which is equivalent to paralleling four
PPO-IC algorithms. Four policy sub-networks are
used to generate the actions required by the four ro-
tors respectively, which is better than using only one
network, because this can avoid mutual interference
between actions, and it is more conducive to stable
generation of actions and network convergence.
Training and evaluations are run on the Ubuntu 16.04
operating system with an Inter eight-core i7-8550U
CPU and an NVIDIA GeForce MX150 graphics card.
The simulated aircraft is developed with Python, the
networks for learning and training are built with
TensorFlow (Abadi et al., 2016) using Python, and the
algorithm for optimizing the networks is the Adam
optimizer (Kingma and Ba, 2014).

4.2 Offline learning phase evaluation and test

In the offline learning phase, the PPO-IC algo-
rithm is used. The training parameters of the algo-
rithm are shown in Table 2. The learning rate of the
critic network is larger than that of the four policy
sub-networks, which is reasonable. First, from the
experimental point of view, it is very effective. Sec-
ond, because the critic network is used to judge the
current action and then generate the advantage value
to update the policy network, the current critic net-
work is required to judge the action as accurately as
possible. Hence, having a higher learning rate for the
critic network can improve the evaluation ability of
the critic network.

4.2.1 Training performance evaluation

There are two indicators for evaluating the effect
of learning and training at this phase: (1) average

Table 1 Parameters used in the simulation
Parameter Meaning Value

m Mass 1.79 kg
L Rotor to center distance 0.2 m
g Gravity acceleration 9.81 m/s2
K Thrust gain 8.78
Kψ

Reaction torque gain 0.4

Jp

Propeller moment of inertia 0.002 kg·m2
Ix

X-axis moment of inertia 0.04 kg·m2

Iy

Y-axis moment of inertia 0.04 kg·m2

Iz

Z-axis moment of inertia 0.03 kg·m2

dx

X-axis air resistance coefficient 0.01
dy

Y-axis air resistance coefficient 0.01

dz

Z-axis air resistance coefficient 0.02

Table 2 PPO-IC algorithm parameters

Parameter Value
Reward discount factor γ 0.9
Maximum number of episodes 6000
Learning rate for actor 0.0001
Learning rate for critic 0.0002
Minimum batch size for updating 2
Loop update operation 10
ε for the clipping surrogate objective 0.2
Sampling time per step 0.01 s
Integral gain factor β 0.01
Maximum number of steps in an episode 500
PPO-IC parallel number 4

https://cn.bing.com/dict/search?q=step&FORM=BDVSP6&mkt=zh-cn
https://cn.bing.com/dict/search?q=size&FORM=BDVSP6&mkt=zh-cn

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 789

accumulated reward and (2) average steady-state error.
There is a negative correlation between these two
indicators. In each step, the larger the return value
returned, the smaller the error of the current state from
the expected state. The process of quadrotor learning
is toward the direction of the error becoming smaller
and smaller. A maximum return value of zero means
that the current state is exactly the desired one;
however, because an error inevitably exists during the
learning and training process, the ideal state will
never be reached. It is only possible to approach the
ideal state as much as possible. With the error in an
acceptable range, it can still fly safely and stably.
Hence, a larger accumulated reward value means a
faster, more stable, and more accurate policy network.
In this study, we train the model 50 times, and in each
experiment 6000 episodes are performed to record the
error and return the value generated by each step of
the training process. The errors are based on the dif-
ference between the current velocities and the ex-
pected velocities and then the absolute values of the
errors are summed. When the 50 experiments are
completed, the average accumulated reward and the
average steady-state error are calculated based on the
50 sets of data recorded previously. The algorithm
used in this work is PPO-IC. One of its significant
advantages is to reduce the steady-state error. We
make an experimental comparison to highlight this
advantage. The results of the PPO-IC algorithm are
compared with those of the PPO algorithm (baseline).
The results are shown in Fig. 6.

The network structure and algorithm and simu-
lation model parameters are the same. The initial
network parameters are randomly initialized, and the

state generated is uncertain. Therefore, the two errors
at the beginning of the training are different. As the
number of training rounds increases, for both algo-
rithms the error gradually decreases to zero, and both
are stable in the many experiments. However, the
PPO-IC algorithm approaches zero faster, and the
error is smaller. Moreover, the PPO algorithm always
has an error after training a certain number of rounds,
and the error does not decrease with the increase of
the number of training rounds. This does not appear
for the PPO-IC algorithm.

The comparison of the average cumulative re-
ward is shown in Fig. 7. The network structure and
the model and algorithm parameters are the same. The
initial weights of the networks are randomly initial-
ized. Because of the large deviation between the
current state and the target state at the beginning of
training, the reward values returned are different and
very small. With the increase in the number of train-
ing rounds, the reward value is getting larger and
larger. The PPO-IC algorithm has a higher conver-
gence speed, and the network is faster and more ac-
curate and more stable than the network trained with
the PPO algorithm. The training times of the two
algorithms are both around 136 s. The PPO-IC algo-
rithm does not show an advantage in reducing the
training time. However, this training time is much less
than those of other deep RL algorithms in controlling
the quadrotor. As mentioned in Hwangbo et al. (2017),
using a high-performance GPU graphics card, it still
takes at least 10 min to learn a control strategy that
meets the requirements.

We use the PPO-IC and PPO algorithms to train
the simplified model 50 times, training 6000 rounds
per experiment, and learning the final control strategy
by tracking the velocities.

Fig. 7 Averaged accumulated reward in the evaluation
of polices learned by PPO-IC and PPO

0

−2

−4

−6

−8
PPO
PPO-IC
Target

 0 1000 2000 3000 4000 5000 6000

Number of epochs

A
ve

ra
ge

 a
cc

um
ul

at
ed

 re
w

ar
d

Fig. 6 Averaged steady-state error in the evaluation of
polices learned by PPO-IC and PPO

12

10

8

6

4

2

0

PPO
PPO-IC
Target

0 1000 2000 3000 4000 5000 6000

Number of epochs

A
ve

ra
ge

 s
te

ad
y-

st
at

e
er

ro
r (

m
/s

)

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 790

In the 50 experiments, we set the target speed to
be [1, −1, 1] m/s, and record the velocity tracking
during the 6000 iterations. The results are shown in
Fig. 8. We calculate the mean absolute steady-state
errors of the two algorithms in the steady state that
meet the accuracy requirements. In this experiment,
we believe that the steady state is reached after 5000
rounds of training, after which 1000 rounds of train-
ing data are used to calculate the mean absolute
steady-state error. The comparison diagram is shown
in Fig. 9.

The models of these two algorithms have zero
initialization velocities, and the models start training
from zero velocity. The dynamic performances of the
two algorithms are shown in Fig. 8. Both algorithms
can eventually learn a stable strategy, but the PPO-IC
algorithm achieves higher tracking accuracy and is
more conducive to reducing the steady-state error
than the PPO algorithm for the quadrotor velocity

tracking task. In addition, we compare the attitude
angle changes learned by the two algorithms. The
attitude angles are not initialized to zero, but are
randomly initialized within the set safety range, so at
the beginning of the training, the attitude angles are
different. As the number of training rounds increases,
the three attitude angles learned by the two algorithms
eventually approach zero. The results of the two al-
gorithms are shown in Fig. 10.

To highlight the advantage of the PPO-IC algo-
rithm in reducing the error, we compare the average
absolute errors between the attitude angles learned by
the two algorithms and the ideal zero state at the
steady state. As shown in Fig. 11, the control per-
formance of the PPO-IC algorithm is better than that
of the PPO algorithm.

4.2.2 Simulated quadrotor model test

In the offline learning phase, the simplified
model finally learns a stable control strategy through

1.0

0.5

0.0
0 1000 2000 3000 4000 5000 6000V

el
oc

ity
_X

 (m
/s

)

PPO-IC
PPO
Target

0

−0.5

−1.0
0 1000 2000 3000 4000 5000 6000V

el
oc

ity
_Y

 (m
/s

)

PPO-IC
PPO
Target

1.0

0.5

0.0
 0 1000 2000 3000 4000 5000 6000

Number of epochs

V
el

oc
ity

_Z
 (m

/s
)

PPO-IC
PPO
Target

Fig. 8 Velocity tracking curves during the learning and
training of PPO-IC and PPO

Fig. 9 Velocity errors at the steady state using the control
polices learned by PPO-IC and PPO

PPO
PPO-IC

0.12

0.10

0.08

0.06

0.04

0.02

0.00
MAE-Vx (m/s) MAE-Vy (m/s) MAE-Vz (m/s)

Group

E
rr

or
 (m

/s
)

Fig. 11 Angle errors at the steady state using the control
policies learned by PPO-IC and PPO

0.01735
0.01644
0.01552
0.01461
0.01370
0.01278
0.01187
0.01096
0.01004
0.00913
0.00822
0.00731
0.00639
0.00548
0.00457
0.00365
0.00274
0.00183
0.00091
0.00000

MAE-phi (rad) MAE-theta (rad) MAE-psi (rad)
Group

E
rro

r (
ra

d)

PPO
PPO-IC

Fig. 10 Attitude angle curves by PPO and PPO-IC

0.6

0.4

0.2

0.0

−0.2

−0.4

0 0.2 0.4 0.6 0.8 1.0
Number of epochs (×104)

A
tti

tu
de

 a
ng

le
 (r

ad
)

Angle_X
Angle_Y
Angle_Z
Target

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 791

a large number of rounds of trial-and-error training.
We have conducted a test on the final model that has
been learned. In the experiment, we show a two-
dimensional plane flight path diagram (Fig. 12). The
slope represents the flight speed of each axis. The
slopes of the three axes are 1, −1, and 1, respectively,
coinciding with the preset expected speed [1, −1, 1]
m/s, which verifies that the model we have trained is
effective. Because the quadrotor uses the PPO-IC
algorithm to track the target velocity, we set the target
velocity to [1, −1, 1] m/s. The model learns a steady
flight speed which is very close to the set target speed.
With this model, the quadrotor flies from the original
position [0, 0, 0] for 10 s, and the trajectory is rec-
orded. Fig. 13 shows the flight path of the aircraft
from three dimensions. Taking the flight distance
along the X axis as an example, since the expected
speed along the X axis is 1 m/s, the distance is 10 m
after 10 s of flight. The Y- and Z-axis flight analysis is
similar.

4.3 Generalization ability test and comparison
with PID

The quadrotor offline learning phase is to learn a
stable, robust control strategy that allows the real
four-rotor model to cope with differences in the actual
flight. Through experimental demonstration, we be-
lieve that a powerful model is learned. In this sub-
section we test the generalized ability of the trained
model. To do a comprehensive generalization test, we
set up three different types of robustness testing for
comparison with PID control.

4.3.1 Model generalization test of different sizes

We change the load and distance from the four
rotors to the centroid to test the robustness and gen-
eralization ability of the control strategy learned in the
offline phase of different sizes. The robust compari-
son is done by letting the model track the preset de-
sired velocity. The specific implementation process of
the control task is as follows: The initial flight veloc-
ity vector is set to [0, 0, 0]. Then the simulated aircraft
flies for 10 s with the flight strategy learned during
the offline phase and the speed curve is recorded. It is
found that the quadrotor of different sizes converges
to the desired speed [1, −1, 1] m/s set in offline
learning according to the control strategy that has
been learned in the offline phase. We use a traditional
PID controller for comparison. The PID parameters
have been set using the Qball-2 model (Quanser,
2015). Under these parameters, the aircraft can fly
quickly and stably in the actual flight. We use the PID
controller instead of advanced control methods for
comparison, due mainly to the following reasons:
First, the PID controller repeatedly adjusts the output
by the error between the desired input and the actual
output of the quadrotor state to achieve a given de-
sired input value. This is similar to the PPO-IC algo-
rithm; both use the trial-and-error strategy to achieve
the control target. Second, the PPO-IC method is a
model-free learning algorithm, but the design of other
control methods is based on the analysis of the dy-
namics of the model, so it is not comparable to other
control methods. In the robustness test, we select the
sum of the absolute errors generated in each step
during the flight to evaluate the performance. Obvi-
ously, the smaller the sum of errors, the more precise
and faster the control strategy.

We perform two sets of experiments to test the
control performance of the proposed PPO-IC algo-
rithm under different quadrotor specification models,
and compare the results with those of PID control to
verify the generalization ability of the model. One
type of experiments is conducted under different
payloads. The results are shown in Fig. 14. Consid-
ering that the load should have the same effect on the
four rotors, the payload is added to the centroid of the
four rotors. As shown in Fig. 14c, the weight of the
payload added at the centroid of the quadrotor is
gradually increased. The quadrotor is not loaded from
the beginning; that is, it is flying at the standard

Fig. 12 Ten-second two-dimensional flight trajectory

10
8
6
4
2
0P

os
iti

on
 X

 (m
)

0 2 4 6 8 10

Pos-X

Pos-Y

Pos-Z

10
8
6
4
2
0P

os
iti

on
 Z

 (
m

)

0
−2
−4
−6
−8
−10P

os
iti

on
 Y

 (
m

)

0 2 4 6 8 10

0 2 4 6 8 10
Time (s)

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 792

weight of the offline learning phase. Then 10% of the
standard weight is used for each load increase, and the
payload increase eventually reaches 50% of the
standard weight. The weight of the whole quadrotor is
increased due to the load on the center, which has
some influence on the moment of inertia of the model.
New inertia moment parameters for different payload
models can be estimated by the online evaluation
package (Shi et al., 2017). Under the premise of
keeping the air resistance coefficient of the model and
the maximum trust of the four rotors unchanged, we
conduct six sets of experiments. In each set of ex-
periment only the quadrotor payload weight is
changed. The aircraft starts flying at a zero initial
velocity for 10 s in each experiment, and the speed
tracking response curve is recorded (Figs. 13a and
13b). Because the expected speed we set is [1, −1, 1]
m/s, the speed will eventually converge to the given
target value in different experiments. Both the

PPO-IC algorithm and the PID control method
achieve the control requirements under the condition
of increased load. The quadrotor controlled by the
two algorithms achieves stable flight attitude and
flight speed under different loads. However, Fig. 14a
shows that although the quadrotor finally achieves a
steady state by PID control under different loads, as
the load increases, this final steady state deviates
much from the desired one, and the quadrotor re-
sponds more slowly to the desired speed tracking. The
increase of the payload has little effect on the speed
tracking control of the X and Y axes, but the influence
on the Z axis is obvious. The larger the payload on the
quadrotor increases, the farther the final linear veloc-
ity of the Z axis deviates from the desired one. The
main reason is that, as the weight of the payload in-
creases, most of the upward thrust balances the in-
creased gravity due to the increased payload, and only
a small portion of the thrust is used to adjust the

10

8

6

4

2

0

Po
s_

z
42 6 8 10

0−4−2
−6−8−10
Pos_y

Pos_x

Ground
origin

Final
position

0

10

8

6

4

2

0

Po
s_

z

Pos_y
Pos_x

0

108642
−4 −2−6−8−10

0

Ground
origin

Final
position

 x ground Drone position

Pos
_y

Pos_x

0

10
8

6
4

2 −4
−2

−6
−8

−10

0 Po
s_

z

10

Ground
origin

Final
position

0
4
8

Fig. 13 Ten-second three-dimensional flight trajectory with a well-learned drone model

(a) (b) (c)

1.25
1.00
0.75
0.50
0.25
0.00

0 2 4 6 8 10

V
el

oc
ity

_X
 (

m
/s

)

+0% (stable)
+10% (stable)
+20% (stable)
+30% (stable)
+40% (stable)
Target

PID

100

80

60

40

20

0

S
um

 o
f e

rr
or

s

+0% +10% +20% +30% +40% +50%
 Quadrotor payload

PPO-IC
PID

V
el

oc
ity

_Y
 (

m
/s

) 0.00
−0.25
−0.50
−0.75
−1.00
−1.25

0 2 4 6 8 10

+0% (stable)
+10% (stable)
+20% (stable)
+30% (stable)
+40% (stable)
Target

1.0
0.8
0.6
0.4
0.2
0.0

−0.2V
el

oc
ity

_Z
 (

m
/s

)

0 2 4 6 8 10
Time (s)

+0% (stable)
+10% (stable)
+20% (stable)
+30% (stable)
+40% (stable)
Target

0 2 4 6 8 10

0 2 4 6 8 10
Time (s)

1.0
0.8
0.6
0.4
0.2
0.0V

el
oc

ity
_X

 (
m

/s
)

0
−0.2
−0.4
−0.6
−0.8
−1.0V

el
oc

ity
_Y

 (
m

/s
)

1.0
0.8
0.6
0.4
0.2
0.0V

el
oc

ity
_Z

 (
m

/s
)

+0% (stable)
+10% (stable)
+20% (stable)
+30% (stable)
+40% (stable)
Target

+0% (stable)
+10% (stable)
+20% (stable)
+30% (stable)
+40% (stable)
Target

+0% (stable)
+10% (stable)
+20% (stable)
+30% (stable)
+40% (stable)
Target

0 2 4 6 8 10

PPO-IC

Fig. 14 Comparison of the control performance of the quadrotor model with the PPO-IC algorithm and the PID con-
troller with different payloads: (a) three-dimensional velocity tracking response curve with the PID controller;
(b) three-dimensional velocity tracking response curve with the PPO-IC algorithm; (c) sum of the errors under different
payloads

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 793

attitude and speed of the aircraft, which directly leads
to slower speed tracking response. This is verified by
Fig. 14c. As the load increases, the speed error of the
PID control method is larger and larger. In fact, the
error increase is derived mainly from the speed devi-
ation increment along the Z axis. In sharp contrast, the
flight performance of the model under the control of
the PPO-IC algorithm is very stable, and the speed
tracking response curve is not subject to large fluctu-
ations with the increase of the load. The quadrotor is
still able to reach the desired speed quickly and ac-
curately. The sum of the final speed errors of the
models under different payloads is almost constant,
even if the payload is increased by 50%. The speed
tracking task has no large error, in sharp contrast with
the large deviation in case of PID control. This proves
the robustness of the model learned with PPO-IC.

In the offline learning phase, the radius of the
quadrotor is 0.2 m. We take this as the standard radius.
We select the other sets of models with different radii,
from 0.1 m to 1.1 m (Fig. 15). That is, the radius is
increased from 50% to 550% of the standard, which is
a wide range, and a total of 12 experiments are con-
ducted. In these experiments, only the radius is
changed. The mass of the quadrotor model and the
maximum thrust of the four rotors remain unchanged.
The change in the radius directly results in a change in
the inertia moment and the air resistance coefficient.
These new parameters can be estimated by the online
evaluation package (Shi et al., 2017). When the radius
is relatively small, from 0.2 to 0.4 m, the control
performances of the PPO-IC algorithm and the PID
control method are similar. The quadrotor can

complete the speed tracking control task quickly and
stably. However, as the radius continues to increase,
the PID-controlled quadrotor model becomes slower
and slower in response to speed tracking, and the final
state deviates more and more from the desired setting
state. When the radius is increased to 0.8 m, although
the steady state can be finally achieved, there are
obviously some fluctuations compared with the
steady state at small radii. When the radius is in-
creased to 1 m and above, the final oscillating state of
the model controlled by PID is unstable. This is veri-
fied by Fig. 15c. In contrast, the response of the model
controlled by the PPO-IC algorithm to speed tracking
is not much affected. During the change of the radius
from 0.2 to 1.0 m, the model controlled by the
PPO-IC algorithm is still fast, accurate, and stable.
Note that with the increase of the radius, the control
performances of the quadrotor models controlled by
the two algorithms degrade; the performance degra-
dation of PID control is more obvious.

To conclude, the quadrotor model learned by the
PPO-IC algorithm in the offline phase shows ro-
bustness in the tests with different payloads and radii
separately. Although the model based on PID control
has good and even better generalization ability, over-
all PPO-IC control is superior to PID control.

4.3.2 Model generalization test in different initial
states

We also test the control performance of the
four-rotor model with the PPO-IC algorithm in dif-
ferent initial states. The control task is to make the

(a) (b) (c)

PID

0 2 4 6 8 10

0 2 4 6 8 10
Time (s)

1 . 0
0 . 8
0 . 6
0 . 4
0 . 2
0 . 0V

el
oc

ity
_X

 (m
/s

)

0
−0.2
−0.4
−0.6
−0.8
−1.0V

el
oc

ity
_Y

 (m
/s

)

1.0
0.8
0.6
0.4
0.2
0.0V

el
oc

ity
_Z

 (m
/s

) 0 2 4 6 8 10

L=0.2 (stable)
L=0.4 (stable)
L=0.8 (stable)
L=1.0 (stable)
Target

L=0.2 (stable)
L=0.4 (stable)
L=0.8 (stable)
L=1.0 (stable)
Target

L=0.2 (stable)
L=0.4 (stable)
L=0.8 (stable)
L=1.0 (stable)
Target

2.0
1.5
1.0
0.5
0.0

0 2 4 6 8 10

V
el

oc
ity

_X
 (m

/s
)

V
el

oc
ity

_Y
 (m

/s
)

0 2 4 6 8 10

0.0
−0.5
−1.0
−1.5

1.0
0.8
0.6
0.4
0.2
0.0V

el
oc

ity
_Z

 (m
/s

)

0 2 4 6 8 10
Time (s)

L=0.2 (stable)
L=0.4 (stable)
L=0.8 (stable)
L=1.0 (stable)
Target

L=0.2 (stable)
L=0.4 (stable)
L=0.8 (stable)
L=1.0 (stable)
Target

L=0.2 (stable)
L=0.4 (stable)
L=0.8 (stable)
L=1.0 (stable)
Target

200

150

100

50

0

S
um

 o
f e

rro
rs

0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Radius (m)

PPO-IC
PID

PPO-IC

Fig. 15 Comparison of the control performance of the quadrotor model with the PPO-IC algorithm and the PID con-
troller of different sizes: (a) three-dimensional velocity tracking response curve with the PID controller; (b)
three-dimensional velocity tracking response curve with the PPO-IC algorithm; (c) sum of the errors of different sizes
If a model of a certain size fails to reach a steady state, the sum of errors is not shown in (c)

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 794

four rotors run in different initial states and finally
reach the desired steady state. The attitude angles of
the four rotors and the linear velocities along the three
axes are randomly initialized from the respective
safety ranges. We perform each experiment 20 times.
Each experiment runs for 10 s. The three linear ve-
locities start from different values and finally con-
verge to the desired one (Fig. 16a). The three attitude
angles start from different initial values and finally
converge (Fig. 16b). The control strategy learned by
the PPO-IC algorithm can drive the four-rotor model
with different initial states to reach a stable state
within 10 s, and the error is very small, which shows
that the strategies learned in the offline phase have
good generalization ability.

5 Conclusions and future work

We have proposed a PPO-IC algorithm with state
integration for the development of the UAV intelli-
gent controller, which effectively reduces the steady-
state error in speed tracking and significantly im-
proves the tracking accuracy. This method, together
with the proposed reward signal, provides good
sample efficiency and reduces the convergence time.
A two-stage learning program has been proposed to
develop a high-performance flight controller.

In future work, we would explore new reward
signals to reduce the observed steady-state errors.
Various initialization strategies can be considered to
improve the flight controller performance.

Contributors

Qing-ling WANG guided the research. Huan HU per-
formed the experiments, drafted, revised, and finalized the
paper.

Compliance with ethics guidelines

Huan HU and Qing-ling WANG declare that they have no
conflict of interest.

References
Abadi M, Barham P, Chen JM, et al., 2016. TensorFlow: a

system for large-scale machine learning. Proc 12th USE-
NIX Conf on Operating Systems Design and Implemen-
tation, p.265-283.

Alexis K, Nikolakopoulos G, Tzes A, 2012. Model predictive
quadrotor control: attitude, altitude and position experi-
mental studies. IET Contr Theory Appl, 6(12):1812-1827.
https://doi.org/10.1049/iet-cta.2011.0348

Amari SI, 1998. Natural gradient works efficiently in learning.

Neur Comput, 10(2):251-276.
https://doi.org/10.1162/089976698300017746

Antonelli G, Cataldi E, Arrichiello F, et al., 2018. Adaptive
trajectory tracking for quadrotor MAVs in presence of
parameter uncertainties and external disturbances. IEEE
Trans Contr Syst Technol, 26(1):248-254.
https://doi.org/10.1109/TCST.2017.2650679

Bobtsov A, Guirik A, Budko M, et al., 2016. Hybrid parallel
neuro-controller for multirotor unmanned aerial vehicle.
Proc 8th Int Congress on Ultra Modern Telecommunica-
tions and Control Systems and Workshops, p.1-4.
https://doi.org/10.1109/ICUMT.2016.7765223

Bouabdallah S, Noth A, Siegwart R, 2004. PID vs LQ control
techniques applied to an indoor micro quadrotor. Proc
IEEE/RSJ Int Conf on Intelligent Robots and Systems,
p.2451-2456.
https://doi.org/10.1109/IROS.2004.1389776

Dierks T, Jagannathan S, 2010. Output feedback control of a
quadrotor UAV using neural networks. IEEE Trans Neur
Netw, 21(1):50-66.
https://doi.org/10.1109/TNN.2009.2034145

Fig. 16 PPO-IC control performance test in 20 different
initial states: (a) linear velocity; (b) attitude angle

(a)

1.4
1.2
1.0
0.8
0.6

0 2 4 6 8 10

V
el

oc
ity

_X

(m
/s

)
V

el
oc

ity
_Y

(m

/s
) −0.6

−0.8
−1.0
−1.2
−1.4

V
el

oc
ity

_Z

(m
/s

)

Target

1.4
1.2
1.0
0.8
0.6

Target

Target

0 2 4 6 8 10

0 2 4 6 8 10
Time (s)

 (b)

0.75
0.50
0.25
0.00

−0.25
−0.50
−0.75

0 2 4 6 8 10

A
ng

le
_X

 (r
ad

)
A

ng
le

_Y
 (r

ad
)

A
ng

le
_Z

 (r
ad

)

0 2 4 6 8 10
Time (s)

0.75
0.50
0.25
0.00

−0.25
−0.50
−0.75

0.75
0.50
0.25
0.00

−0.25
−0.50
−0.75

0 2 4 6 8 10

Target

Target

Target

Hu and Wang / Front Inform Technol Electron Eng 2020 21(5):777-795 795

Duan Y, Chen X, Houthooft R, et al., 2016. Benchmarking
deep reinforcement learning for continuous control. Proc
33rd Int Conf on Machine Learning, p.1329-1338.

Fumagalli M, Naldi R, Macchelli A, et al., 2012. Modeling and
control of a flying robot for contact inspection. Proc
IEEE/RSJ Int Conf on Intelligent Robots and Systems,
p.3532-3537.
https://doi.org/10.1109/IROS.2012.6385917

Hwangbo J, Sa I, Siegwart R, et al., 2017. Control of a quad-
rotor with reinforcement learning. IEEE Robot Autom
Lett, 2(4):2096-2103.
https://doi.org/10.1109/LRA.2017.2720851

Kakade S, Langford J, 2002. Approximately optimal ap-
proximate reinforcement learning. Proc 19th Int Conf on
Machine Learning, p.267-274.

Kingma DP, Ba J, 2014. ADAM: a method for stochastic
optimization. https://arxiv.org/abs/1412.6980

Lee T, 2013. Robust adaptive attitude tracking on SO(3) with
an application to a quadrotor UAV. IEEE Trans Contr Syst
Technol, 21(5):1924-1930.
https://doi.org/10.1109/TCST.2012.2209887

Lillicrap TP, Hunt JJ, Pritzel A, et al., 2016. Continuous con-
trol with deep reinforcement learning.
https://arxiv.org/abs/1509.02971

Miglino O, Lund HH, Nolfi S, 1995. Evolving mobile robots in
simulated and real environments. Artif Life, 2(4):417-434.
https://doi.org/10.1162/artl.1995.2.4.417

Mnih V, Kavukcuoglu K, Silver D, et al., 2015. Human-level
control through deep reinforcement learning. Nature,
518(7540):529-533. https://doi.org/10.1038/nature14236

Quanser, 2015. User Manual Qball 2 for QUARC: Set Up and
Configuration. Quanser, Inc., Markham, ON, Canada.

Rozi HA, Susanto E, Dwibawa IP, 2017. Quadrotor model
with proportional derivative controller. Proc Int Conf on
Control, Electronics, Renewable Energy and Communi-
cations, p.241-246.
https://doi.org/10.1109/ICCEREC.2017.8226676

Salih AL, Moghavvemi M, Mohamed HAF, et al., 2010. Flight
PID controller design for a UAV quadrotor. Sci Res Es-
says, 5(23):3660-3667.

Santoso F, Garratt MA, Anavatti SG, 2018. State-of-the-art
intelligent flight control systems in unmanned aerial ve-
hicles. IEEE Trans Autom Sci Eng, 15(2):613-627.
https://doi.org/10.1109/TASE.2017.2651109

Schulman J, 2016. Optimizing Expectations: from Deep Re-
inforcement Learning to Stochastic Computation Graphs.
PhD Thesis, University of California, Berkeley, USA.

Schulman J, Levine S, Moritz P, et al., 2015. Trust region
policy optimization. Proc 31st Int Conf on Machine
Learning, p.1889-1897.

Schulman J, Wolski F, Dhariwal P, et al., 2017. Proximal
policy optimization algorithms.
https://arxiv.org/abs/1707.06347

Shi DJ, Dai XH, Zhang XW, et al., 2017. A practical perfor-
mance evaluation method for electric multicopters.
IEEE/ASME Trans Mechatr, 22(3):1337-1348.
https://doi.org/10.1109/TMECH.2017.2675913

Silver D, Lever G, Heess N, et al., 2014. Deterministic policy

gradient algorithms. Proc 31st Int Conf on Machine
Learning, p.1-9.

Silver D, Huang A, Maddison CJ, et al., 2016. Mastering the
game of Go with deep neural networks and tree search.
Nature, 529(7587):484-489.
https://doi.org/10.1038/nature16961

Sutton RS, 1995. Generalization in reinforcement learning:
successful examples using sparse coarse coding. Proc 8th

Int Conf on Neural Information Processing Systems,
p.1038-1044.

Sutton RS, Barto AG, 1998. Reinforcement Learning: an
Introduction. MIT Press, Cambridge, USA.

Tomic T, Schmid K, Lutz P, et al., 2012. Toward a fully au-
tonomous UAV: research platform for indoor and outdoor
urban search and rescue. IEEE Robot Autom Mag, 19(3):
46-56. https://doi.org/10.1109/MRA.2012.2206473

Valente J, del Cerro J, Barrientos A, et al., 2013. Aerial cov-
erage optimization in precision agriculture management:
a musical harmony inspired approach. Comput Electron
Agric, 99:153-159.
https://doi.org/10.1016/j.compag.2013.09.008

Valenti RG, Jian YD, Ni K, et al., 2016. An autonomous flyer
photographer. Proc IEEE Int Conf on Cyber Technology
in Automation, Control, and Intelligent Systems, p.273-
278. https://doi.org/10.1109/CYBER.2016.7574835

van Hasselt H, 2010. Double Q-learning. Proc 23rd Int Conf on
Neural Information Processing Systems, p.2613-2621.

van Hasselt H, Guez A, Silver D, 2016. Deep reinforcement
learning with double Q-learning. Proc 30th AAAI Conf on
Artificial Intelligence, p.2094-2100.

Wang YD, Sun J, He HB, et al., 2019. Deterministic policy
gradient with integral compensator for robust quadrotor
control. IEEE Trans Syst Man Cybern Syst, p.1-13.

 https://doi.org/10.1109/TSMC.2018.2884725
Waslander SL, Hoffmann GM, Jang JS, et al., 2005. Multi-

agent quadrotor testbed control design: integral sliding
mode vs. reinforcement learning. Proc IEEE/RSJ Int Conf
on Intelligent Robots and Systems, p.3712-3717.

 https://doi.org/10.1109/IROS.2005.1545025
Watkins CJCH, Dayan P, 1992. Q-learning. Mach Learn,

8(3-4):279-292. https://doi.org/10.1007/BF00992698
Williams-Hayes PS, 2005. Flight test implementation of a

second generation intelligent flight control system. Proc
Infotech@Aerospace, p.26-29.
https://doi.org/10.2514/6.2005-6995

Xu B, 2018. Composite learning finite-time control with ap-
plication to quadrotors. IEEE Trans Syst Man Cybern Syst,
48(10):1806-1815.
https://doi.org/10.1109/TSMC.2017.2698473

Xu R, Ozguner U, 2006. Sliding mode control of a quadrotor
helicopter. Proc 45th IEEE Conf on Decision and Control,
p.4957-4962. https://doi.org/10.1109/CDC.2006.377588

Yang HJ, Cheng L, Xia YQ, et al., 2018. Active disturbance
rejection attitude control for a dual closed-loop quadrotor
under gust wind. IEEE Trans Contr Syst Technol, 26(4):
1400-1405. https://doi.org/10.1109/TCST.2017.2710951

Yechiel O, Guterman H, 2017. A survey of adaptive control. Int
Rob Autom J, 3(2):290-292.
https://doi.org/10.15406/iratj.2017.03.00053

https://arxiv.org/abs/1707.06347

	Huan HU, Qing-ling WANG†‡
	Key words: Reinforcement learning; Proximal policy optimization; Quadrotor control; Neural network

