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Abstract: Deep learning models have achieved state-of-the-art performance in named entity recognition (NER);
the good performance, however, relies heavily on substantial amounts of labeled data. In some specific areas such
as medical, financial, and military domains, labeled data is very scarce, while unlabeled data is readily available.
Previous studies have used unlabeled data to enrich word representations, but a large amount of entity information
in unlabeled data is neglected, which may be beneficial to the NER task. In this study, we propose a semi-supervised
method for NER tasks, which learns to create high-quality labeled data by applying a pre-trained module to filter
out erroneous pseudo labels. Pseudo labels are automatically generated for unlabeled data and used as if they were
true labels. Our semi-supervised framework includes three steps: constructing an optimal single neural model for
a specific NER task, learning a module that evaluates pseudo labels, and creating new labeled data and improving
the NER model iteratively. Experimental results on two English NER tasks and one Chinese clinical NER task
demonstrate that our method further improves the performance of the best single neural model. Even when we use
only pre-trained static word embeddings and do not rely on any external knowledge, our method achieves comparable
performance to those state-of-the-art models on the CoNLL-2003 and OntoNotes 5.0 English NER tasks.
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1 Introduction

Named entity recognition (NER) is an impor-
tant foundation in many natural language process-
ing (NLP) applications, including relation extrac-
tion and question answering. An NER task con-
sists of detecting the entity boundaries and clas-
sifying the entities into predefined categories such
as persons, organizations, and locations. Recently,
NER tasks have been typically formulated as a se-
quence labeling problem, and deep learning methods
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have achieved state-of-the-art performance (Chiu
and Nichols, 2016; Lample et al., 2016; Ma and Hovy,
2016). However, the performance of deep learning
methods relies heavily on high-quality labeled data.
In some specific language (such as in the Chinese clin-
ical NER (CNER)) or domains (such as in the finance
and military domains), labeled data is rather lim-
ited, while unlabeled data that contains substantial
entity information is easily obtained. For example,
electronic medical records contain abundant clinical
entities, and financial news contains a large number
of specific entities like companies or products.

To deal with the common situations where la-
beled data is limited but considerable unlabeled
data is available, researchers try to apply semi-
supervised methods for NER tasks. Liao and Veera-
machaneni (2009) proposed a simple semi-supervised
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algorithm to improve NER tasks by automatically
annotating unlabeled data as a new source of training
data. They used a conditional random field (CRF)
classifier to tag unlabeled data, and then corrected
the low-confidence labels based on carefully designed
rules. Then they improved the NER classifier by iter-
ating between generating labeled data and retraining
the classifier with the new training set. As a result,
this semi-supervised method achieved significant im-
provements compared to supervised methods with-
out using unlabeled data. However, this rule-based
semi-supervised method can hardly be generalized
to other entity types, and fails to be applied to deep
learning models.

To further improve the performance of deep
learning models for NER, researchers used unla-
beled data to pre-train context-sensitive represen-
tations. Contextualized word embeddings derived
from a bidirectional deep language model capture
word semantics in the context to address the poly-
semous and context-dependent nature of words (Pe-
ters et al., 2017, 2018). Akbik et al. (2018) lever-
aged the internal states of a character language
model to produce contextual string embeddings. De-
vlin et al. (2018) also learned contextual representa-
tions based on the deep transformer model architec-
ture. These contextual word embeddings such as
ELMo (Peters et al., 2018), flair embeddings (Akbik
et al., 2018), and bidirectional encoder representa-
tions from transformers (BERT) (Devlin et al., 2018)
significantly improve the state-of-the-art results of
almost all NLP tasks. They ensure the neural mod-
els take full advantage of the limited labeled data
through the use of accurate and rich word represen-
tations. However, they fail to explore the abundant
implicit entity information in the unlabeled data.

Recently, pseudo-labeling has been proposed to
make use of unlabeled data to improve deep learn-
ing models and achieved new records in several im-
age datasets (Lee, 2013; Wu and Prasad, 2018). It
learns to assign labels to unlabeled data and uses
these pseudo labels as if they were true labels. Lee
(2013) created pseudo labels by picking up the class
which has the maximum predicted probability, and
Wu and Prasad (2018) proposed a clustering algo-
rithm to assign cluster labels as the label for the un-
labeled data. However, these pseudo labels contain
quite a few obviously wrong labels, which can impair
the performance of subsequent training procedures.

To address this challenge, in this study we pro-
pose a new semi-supervised framework to improve
the performance of the single neural model by us-
ing additional unlabeled data for the NER task. We
learn an extra module, called the Judge model, to se-
lect the most reliable pseudo labels for creating new
labeled data from unlabeled data. With this pre-
trained Judge model, we improve the performance
of the NER model by iterating between generating
new labeled data and retraining the NER model with
the all labeled data. Since our framework aims to
improve the single neural NER model, we first sum-
marize the general structure of neural NER models
and propose some practices of building neural mod-
els with regard to different NER tasks. Second, we
apply machine learning methods to train an effec-
tive Judge model for filtering out erroneous pseudo
labels. At last, we propose a detailed strategy to cre-
ate new labeled data with the learned Judge model
and retrain the NER model with this enlarged train-
ing set.

Experimental results on two English NER tasks
and a CNER task demonstrate that our semi-
supervised framework can effectively improve the
performance of neural NER models with unlabeled
data.

2 Related work

Our work is inspired by two lines of research:
deep learning for NER and semi-supervised methods
to use unlabeled data.

Collobert et al. (2011) proposed a neural net-
work architecture for the NER task without re-
lying on any task-specific engineering or a lot of
prior knowledge. Since then, researchers have paid
more attention to using deep neural networks to
deal with NER. Huang et al. (2015) used a bidirec-
tional long short-term memory (BiLSTM) network
to model both past and future input features, and
a CRF layer to jointly decode the label sequence
for the whole sentence. Chiu and Nichols (2016)
used convolutional neural network (CNN) and Lam-
ple et al. (2016) used BiLSTM neural networks to
extract character-level features, which further im-
proved the performance of the BiLSTM-CRF model.
Based on a similar architecture, Ma and Hovy (2016)
proposed an end-to-end model without any feature
engineering or data processing. This model has the
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BiLSTM-CNN-CRF architecture, which employs
CNNs to encode character-level information, BiL-
STM to encode input sentences represented by the
combination of character- and word-level represen-
tations, and CRF to decode the best label sequence.
In other related work, recurrent neural networks
(RNNs) have also been explored for decoding labels
(Mesnil et al., 2013; Zhai et al., 2017). Shen et al.
(2017) demonstrated that LSTM decoders perform
better and faster than CRF decoders. In fact, we
can apply our semi-supervised method to any best-
performing neural NER model. In this study, we
construct deep neural models based on the BiLSTM-
CRF architecture, which is a popular choice for NER
tasks.

Liao and Veeramachaneni (2009) proposed a
simple semi-supervised method which exploits rule-
based independent features to help assign high-
precision labels to unlabeled data. These features
are based on entity context and types, so it is difficult
to extend the rules to other domains. Qi et al. (2009)
proposed a word-class distribution learning method
to incorporate additional features from self-labeled
examples. Sun et al. (2017) proposed a modified
RNN for NER, and used co-training to improve the
RNN model and probability statistic models with
unlabeled data when the training data is limited.
The major difference between our approach and pre-
vious semi-supervised studies is that we learned a
machine-learning based model to select self-labeled
data. Instead of relying on heuristic rules or statistic
features as complements, we aim to learn a general
model based on the neural NER model for selecting
reliable labels for unlabeled data.

The language modeling objective has proven to
be effective in obtaining context-sensitive representa-
tion (Peters et al., 2017; Rei, 2017). Training bidirec-
tional language models over large unlabeled corpora
can help produce contextual embeddings for polyse-
mous words depending on their context (Akbik et al.,
2018; Peters et al., 2018), which is helpful for the
NER task. Devlin et al. (2018) also proposed a deep
transformer model architecture to learn contextual
representations, which can capture word semantics
in different contexts. In contrast to classic word em-
bedding algorithms that give a word a fixed repre-
sentation, such as Word2Vec (Mikolov et al., 2013)
and Glove (Pennington et al., 2014), these algorithms
produce contextual representations, which set new

records for almost all NLP tasks (Akbik et al., 2018;
Devlin et al., 2018; Peters et al., 2018). These meth-
ods can make full use of limited labeled data by in-
cluding accurate and rich word representations, but
fail to explore abundant implicit entity information
in the unlabeled data.

Recently, pseudo labeling has been used to im-
prove the performance of deep learning models. Lee
(2013) proposed a semi-supervised method to train
labeled data and unlabeled data with pseudo labels
simultaneously for deep neural networks. Wu and
Prasad (2018) proposed a semi-supervised cluster-
ing algorithm, which includes pairwise must- and
cannot-link constraints to cluster labeled data and
unlabeled data, and the algorithm produced high-
quality pseudo labels. The authors used all the train-
ing data together with the pseudo labels to pre-train
deep neural networks and then fine-tuned the model
with the limited labeled data. These methods put
forward a new way to use unlabeled data in deep
neural models and obtain promising performance for
image classification tasks.

3 Approaches

3.1 Problem definition

In this subsection, we introduce our approach to
create more labeled data to improve the performance
of deep learning models for NER tasks.

Given a sentence, which is naturally regarded as
a sequence of tokens, we adopt the BIOES tag scheme
which stands for begin, inside, outside, end, and sin-
gle, to annotate the entity type and relative position
of each entity token (Chiu and Nichols, 2016). For
example, the sentence “Bill Gates lives in Washing-
ton” is formatted (Table 1), and thus we can identify
a person entity “Bill Gates” and a location entity
“Washington.” With this kind of tag scheme, NER
can be addressed as a sequence labeling problem by
assigning a predefined tag to each token of the sen-
tence. The neural network based sequence label-
ing model achieves state-of-the-art performance on

Table 1 An example of a formatted sentence

Sentence “Bill” “Gates” “lives” “in” “Washington”

Tag B-PER E-PER O O S-LOC

B-PER: begin of person entity; E-PER: end of person entity;
O: outside; S-LOC: a single location entity
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public NER datasets (Lample et al., 2016; Ma and
Hovy, 2016; Rei, 2017; Akbik et al., 2018), although
its performance is severely limited due to the insuf-
ficient clean labeled data in practical applications.

In this study, we investigate a way to use unla-
beled data in the same domain and try to automati-
cally create high-quality labeled data to improve the
performance of deep learning models for NER. Liao
and Veeramachaneni (2009) designed textual rules to
generate specific types of new training data, which
may be accurate and non-redundant, but these rules
are difficult to be extended to other domains. Re-
cently, Lee (2013) and Wu and Prasad (2018) ap-
plied the pseudo-labeling technique to deep learning
models. Lee (2013) proved that training with pseudo
labels is in effect equivalent to entropy regularization
(Grandvalet and Bengio, 2006), and can achieve bet-
ter generalization performance. The pseudo labels
they obtained are used as if they were true labels
without any screening process. However, in lieu of
that approach, we propose an extra Judge model to
filter out noisy labels, and use the selected pseudo
labels to train the neural NER model.

3.2 Overview

The main components in our semi-supervised
learning method are illustrated in Fig. 1. The pre-
trained component (in grey) is implemented in a su-
pervised mode. With the limited labeled data, we
train a baseline NER model and a Judge model to se-
lect high-quality pseudo labels. The semi-supervised
component (in orange) shows how to use unlabeled
data to improve the performance of the NER model
with a pre-trained Judge model.

3.3 Basic named entity recognition models

Our baseline NER model is based on deep neu-
ral networks (DNNs), closely following a number of
recent studies (Chiu and Nichols, 2016; Jagannatha
and Yu, 2016; Ma and Hovy, 2016). To achieve
the best performance with DNNs for different NER
tasks, we break the NER model into four parts so
as to flexibly modify some parts according to spe-
cific languages and domains. We identify this struc-
ture from many DNN architectures as input repre-
sentation, contextual encoding layer, fully connected
layer, and decoding layer.

1. Input representation

Step 1: Construct a deep 
neural network model 
for NER

Step 2: Design and train 
the Judge model for 
selecting high-quality 
pseudo labels 

Step 3: Using the semi-
supervised method to 
improve the perfor-
mance of the NER model 
with unlabeled data

NER model

Judge 
model

NER
model

Unlabeled
data

Training
data

Labeled 
data

Features and predicted labels

Fig. 1 Framework of our semi-supervised learning
method (NER: named entity recognition)
References to color refer to the online version of this figure

Input representation varies according to the lan-
guage involved. For example, in English, each word
is usually regarded as a token and it is popular to
concatenate character-level features and word em-
beddings as token representations. However, in Chi-
nese, the phrase or word after word segmentation is
usually regarded as a token.

For each token, we want to build a vectorx ∈ R
k

that will capture the meaning and relevant features
for the NER task. It has been proven effective to
build this vector by concatenating a pre-trained word
embedding xword ∈ R

d1 and a vector containing fea-
tures extracted from the character level. One option
is to use hand-crafted features such as stemming and
spelling features, which can be implemented with
predefined rules, e.g., using a component with “0”
or “1” to represent whether the word starts with a
capital letter. Another option is to use some kind of
neural network to automatically extract character-
level features from character embeddings, which can
learn morphological information (like the prefix or
suffix of a word).

Take the BiLSTM network as an example.
We apply this character-level encoder to each to-
ken and obtain a fixed-size vector xchars ∈ R

d2 .
Then the input representation of each token is the
concatenation of two parts x = [xword, xchars] ∈ R

k

with k = d1 + d2.
Alternatively, CNNs are used to extract

character-level features (Chiu and Nichols, 2016;
Zhai et al., 2017), whose computational cost is much
lower than that of the LSTM module, but the
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performance is slightly degraded (Shen et al., 2017).
2. Contextual encoding layer
The input tokens are mapped to a sequence

of vectors after the input representation part,
(x1,x2, . . . ,xn). Then we use the BiLSTM layer
to learn context-dependent representation for every
token. The LSTM network (Hochreiter and Schmid-
huber, 1997) is a popular variant of RNNs, capable
of capturing long-distance dependencies and allevi-
ating gradient vanishing problems. BiLSTM uses
two independent LSTMs to process the sequence on
opposite directions, which is helpful for learning past
(left) and future (right) contexts. For each time step,
the hidden state from the previous time step and the
current input token vector are fed to the LSTM unit
to learn a new hidden state. Then the two hidden
states of each time step are concatenated to form the
final output:

−→
h t = LSTM(xt,

−→
h t−1), (1)

←−
h t = LSTM(xt,

←−
h t−1), (2)

ht = [
−→
h t;
←−
h t]. (3)

After the BiLSTM layer, we have a sequence
of vectors h = (h1,h2, . . . ,hn), and hi ∈ R

2m (i =

1, 2, . . . , n) with m being the number of LSTM units.
Note that xt captures only information at the word
level (syntax and semantics), while ht takes context
into account as well.

3. Fully connected layer
The output of the BiLSTM layer is passed

through a fully connected neural network, projecting
the vector representation of each token to the final
output label space, where each entry corresponds to
a score for each tag. Given that the final labels have
s classes, the output of this layer z ∈ R

n×s is com-
puted as: zi = hi · U + b, where U ∈ R

2m×s and
b ∈ R

s are trainable parameters. We can reasonably
interpret the jth value of zi ∈ R

s as the score of class
j for token i.

This layer is described as an independent part
because we save its output matrix z as the input
features for the Judge model.

4. Decoding layer
Based on the learned vector representations z,

we predict the final class label for each token. To
learn the dependencies between successive labels,
linear-chain CRF (Lafferty et al., 2001) is used to
jointly decode the best chain of labels for a given

sentence. The chain CRF computes the probability
distribution over all of the sequences of labels and
finds the sequence of labels with the highest proba-
bility. Take the label sequence (y1, y2, . . . , yn) as an
example:

P [y1, y2, . . . , yn|z] ∝ exp

(
n−1∑
i=1

A[yi, yi+1] +

n∑
i=1

zi

)
,

(4)
where A ∈ R

s×s is a trainable parameter matrix
and learns the dependencies between two successive
labels. Dynamic programming is employed to com-
pute Eq. (4), that is, using the forward-backward
algorithm at training time and the Viterbi algorithm
at test time (Collobert et al., 2011).

Chain CRF has been adopted to decode out-
put label sequences by most DNN models for NER
(Huang et al., 2015; Chiu and Nichols, 2016; Lample
et al., 2016; Peters et al., 2017). Another option is
RNNs (Zhai et al., 2017) and Shen et al. (2017) have
demonstrated that RNNs can achieve a comparable
performance to the chain CRF layer.

3.4 Judge model

In this subsection, we describe how to learn and
use the Judge model. We use the Judge model to
filter out the wrongly predicted labels for unlabeled
data. Thus, we try to use supervised machine learn-
ing methods to train a binary classifier as the Judge
model. Fig. 2 illustrates the process to train a Judge
model. We first construct a transformed dataset for
the Judge model with the pre-trained NER model
and limited labeled data. Then we train and select
the best Judge model with the transformed dataset.

1. Transformed data for the Judge model
To identify the wrongly predicted labels for a

sequence of tokens, input features for each token
should include as much relevant information as pos-
sible. Thus, we use the output of the fully con-
nected layer z = (z1, z2, . . . , zn) together with the
predicted labels y′ = (y′1, y

′
2, . . . , y

′
n) to form input

features. The Judge model needs to judge the pre-
dicted label for each token of the sentence, so we
regard {(zi, y′i), i = 1, 2, . . . , n} as an input sample
and assign the corresponding label ti as

ti =

{
0, y′i = yi,

1, otherwise,
(5)

where yi is the gold label, and if the predicted label
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Labeled data
Training

NER model

Features and
predicted labels

Transformed 
training dataset

Judge model

Fully connected layer outputx = (x1, x2, …, xn)
y = (y1, y2, …, yn) z = (z1, z2, …, zn)

y' = (y1', y2', …, yn')

Training f:
ti = f(zi, yi')

ti = {0, yi'=yi,
1, otherwise

Fig. 2 Process for learning the Judge model
After the named entity recognition (NER) model is pre-
trained with labeled data, we obtain the output vectors of
its fully connected layer and predicted labels. Then we build
a transformed dataset for the Judge model by assigning each
token a label, so as to learn the supervised Judge model

is not equal to the gold label, its value is 1. In this
way, we deal with all the labeled sentences and build
a dataset, where each token from a sentence forms
an independent sample. We split this dataset into
two parts, the training set and test set, for training
the supervised Judge model.

Since the precision of the NER model is pretty
high (i.e., the majority of predicted labels are cor-
rect), we take the minority, the incorrectly predicted
labels, as positive samples. In fact, the transformed
data is fairly class-imbalanced, so hybrid sampling
strategies are used to balance the training set when
training a supervised Judge model.

2. Methods for training the Judge model
The aim of the Judge model is to identify as

many incorrectly predicted labels as possible; that
is, learn a binary classifier with function f : ti =

f(zi, y
′
i) and a high recall rate is preferred.

The simplest and most efficient method is to
calculate the confidence score of the predicted la-
bel by the softmax formula. Since vector zi im-
plies the score distribution among all label classes,
the softmax-based method can effectively filter erro-
neously predicted labels by selecting an appropriate
threshold. For any token zi ∈ R

s (s is the number
of label classes), provided that the predicted label is
y′i = j (1 ≤ j ≤ s), its confidence value is computed
as

vi = ezi,j
/ s∑

k=1

ezi,k . (6)

In addition, we choose two representative
machine learning algorithms to learn the class-
imbalanced binary classifier: support vector ma-

chines (SVMs) (Cortes and Vapnik, 1995) and feed-
forward neural network (FNN) (Schmidhuber, 2015).
SVMs can find the boundary that separates classes
by as wide a margin as possible, which is important
in the situation where two classes cannot be clearly
separated. As for the FNN, it can handle token rep-
resentations learned from the BiLSTM encoder bet-
ter, because they are both neural networks and the
features are represented in a similar way.

Furthermore, the ensemble models that combine
several classification results by voting are tested as
candidate Judge models.

3. Pre-trained Judge model selection
By applying different training methods, we can

obtain Judge models with different advantages. We
can evaluate the performance of Judge models in two
ways. One is to evaluate the Judge models directly
using cross validation on the transformed data, and
the other is to evaluate their performance in selecting
pseudo labels by testing how much improvement the
NER model achieved when applying our framework.

The preference for selecting a Judge model is
also related to the size of the unlabeled data. For
most cases, we assume that unlabeled data is easy
to obtain and unlimited, so we prefer a Judge model
that has a high recall in the transformed test set. In
this way, we can filter out most of the incorrectly pre-
dicted pseudo labels. When only a certain amount of
unlabeled data is provided, however, we may prefer
a Judge model with a higher F1-score; thus, there is
a trade-off between recall and precision.

3.5 Semi-supervised learning component

In this subsection, we present the technical de-
tails of using unlabeled data and the pre-trained
Judge model to improve the performance of the neu-
ral NER model.

1. Creating silver-standard data
After we have learned an NER model and a

Judge model, we can use them to process unlabeled
data to automatically create new trusted labeled
data, which we call silver-standard data. The NER
model is applied to tag unlabeled sentences with pre-
dicted labels, and the Judge model is used to provide
estimated labels for the predicted labels for each to-
ken in the sentences. We assume that the positively
estimated labels cover most of the wrongly predicted
labels, and the remaining new labeled named entities
are trusted.
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To filter out named entities (NEs) with wrongly
predicted labels and to preserve the valid context of
the trusted NEs as completely as possible, we com-
bine the contiguous clauses with trusted NEs as a
complete sentence. We propose a strategy (Algo-
rithm 1) for automatically creating silver-standard
data. For each sentence, we first check if there exist
noisy labels (lines 4–9). If there are noisy labels, we
combine continuous trusted clauses (lines 10–15) and
filter out meaningless new sentences at last (line 17).

2. Iteratively improving the performance of the
NER model

If the unlabeled data is too large, we split it
into several parts and deal with each part itera-
tively. Supposing that we have learned the NER
model M_NER and Judge model M_Judge based
on a small set of labeled training data L, the semi-
supervised component (in orange) in Fig. 1 is fur-
ther detailed in the following four steps. At first, the
training data T contains only L.

Step 1: Tag Ui with model M_NER.
Step 2: Select pseudo labels with the model

M_Judge and automatically create new labeled data
Di with the proposed strategy; update T by adding

Algorithm 1 Strategy for automatically creating
silver-standard sentences
Require: an unlabeled sentence u = (w1,w2, . . . ,wn),

predicted labels y′ = (y′
1, y

′
2, . . . , y

′
n), and evaluated

labels t′ = (t′1, t
′
2, . . . , t

′
n)

Ensure: trusted sentences and their corresponding pre-
dicted labels S

1: for each clause Ci in sentence u do
2: dirt = 0 // Flag if a noisy label exists in the clause
3: List tmpClauses is set empty
4: for each token wi, y′

i, t′i in clause Ci do
5: if t′i = 1 and y′

i ∈ NamedEntityLabels then
6: dirt = 1

7: break
8: end if
9: end for

10: if dirt = 0 then
11: Add Ci and its predicted labels to tmpClauses

12: else if tmpClauses �= null then
13: Add tmpClauses to S and set tmpClauses

empty
14: dirt=0
15: end if
16: end for
17: S ← RemoveSent(S) // Remove sentences without

// named entities

Di to it.
Step 3: Retrain the NER model with T to obtain

a temporary model Tmp_NER.
Step 4: EvaluateTmp_NER on the test dataset.

If there is no improvement or no more unlabeled
data, the algorithm comes to an end and returns
M_NER; if there is an improvement, M_NER is
updated with Tmp_NER and returns to step 1.

In this way, we create new trustable labeled
data Di from unlabeled data and improve the per-
formance of the NER model iteratively.

4 Experiments

4.1 Experimental setup

4.1.1 Dataset

We evaluated our semi-supervised method of
using unlabeled data for the NER task on three
datasets: two from the most common English NER
tasks and one from a CNER task given unlabeled
data. The sizes of the two English NER datasets in
terms of sentences, tokens, and entities are shown in
Table 2. We used the English corpus from Old News-
papers (https://www.kaggle.com/alvations/old-
newspapers/data) as additional unlabeled data,
because it contains a large number of entities of the
same entity types as these two tasks.

1. CoNLL-2003 English NER
This task consists of newswire from the Reuters

RCV1 corpus tagged with four different entity types:
location, organization, person, and miscellaneous
(Tjong Kim Sang and de Meulder, 2003). We used
the standard training, development, and test sets for
evaluation.

2. OntoNotes 5.0 English NER
Pradhan et al. (2013) compiled a core portion

Table 2 Statistics for the English NER datasets

Dataset Training
Size of datasets

Train Dev Test

Tok 204 567 51 578 46 666
CoNLL-2003 Sent 14 041 3250 3453

Ent 23 499 5942 5648

Tok 1 088 503 147 724 152 728
OntoNotes 5.0 Sent 59 924 8528 8262

Ent 81 828 11 066 11 257

NER: named entity recognition; Tok: tokens; Sent: sentences;
Ent: entities; Train: standard training set; Dev: development
set; Test: test set
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of the OntoNotes 5.0 dataset for the CoNLL-2012
shared task and described a standard train/dev/test
split, which we used for our evaluation. This dataset
is annotated with 18 entity types, and is much larger
than CoNLL-2003. It consists of texts from a wide
variety of sources such as broadcast conversations,
broadcast news, newswires, magazines, telephone
conversations, and web texts.

3. CNER-2017
In the 2017 CCKS CNER task, organizers pro-

vided 1198 electronic medical records (EMRs) as la-
beled training data, 398 EMRs as test data, and
10 420 unlabeled EMRs (Xiao and Wang, 2017). The
goal of this task is to identify medical clinically re-
lated entity mentions, and classify them into five
predefined categories. These categories are symp-
toms and signs, examination and inspection, disease
and diagnosis, treatment, and body parts, which are
abbreviated as SYM, EXA, DIS, TRE, and BOD,
respectively. Table 3 shows the statistics for the en-
tity in different categories. We randomly sampled
10% of the sentences in the training dataset as the
validation set.

Table 3 Statistics for the entities in different cate-
gories for CNER-2017

Set
Size of entities in different categories

Total
SYM EXA DIS TRE BOD

Training 7831 9546 722 1048 10 719 29 866
Test 2311 3143 553 465 3021 9493

SYM: symptoms and signs; EXA: examination and inspec-
tion; DIS: disease and diagnosis; TRE: treatment; BOD:
body parts

4.1.2 Neural NER model training

Our semi-supervised framework can be applied
to any neural NER model to improve its performance
further by selecting high-quality pseudo labels and
creating new labeled data. Here we introduced our
baseline neural model settings based on the state-of-
the-art single neural NER model structure.

In this study, we used BiLSTM-BiLSTM-CRF
architecture for CoNLL-2003 NER, which means us-
ing BiLSTM neural networks to encode character-
level features as well as contextual features, and
using the CRF layer for decoding labels. For the
OntoNotes 5.0 dataset, our baseline model was based
on the BiLSTM-CNN-CRF structure (Yang and

Zhang, 2018), and the only difference was to use
CNNs to encode character-level features.

Recently, new word embedding techniques have
been proposed to learn the representation of a
word based on language models, taking into con-
sideration the context of a word. For example,
ELMo (Peters et al., 2018), Flair (Akbik et al.,
2018), and BERT (Devlin et al., 2018) all learn
the word embeddings dynamically according to the
context of a word, improving the performance of
multiple NLP tasks to a new level. However,
computing the word embeddings as a sentence or
a sequence of tokens being processed requires a
great amount of computing resources. Our semi-
supervised method will produce more labeled data
iteratively, which makes the neural model training
process much slower when using the dynamic word
embeddings. To evaluate our semi-supervised frame-
work efficiently, we adopted the commonly used pre-
trained Glove (Pennington et al., 2014) word embed-
dings (https://nlp.stanford.edu/projects/glove/) for
the English NER tasks.

As for the Chinese CNER-2017 task, we tested
two ways of forming an input representation: words
as tokens and characters as tokens. We pre-trained
the word embeddings and character embeddings us-
ing the Glove and Word2Vec algorithms (Mikolov
et al., 2013). Similarly, the NER model for the
CNER-2017 task was based on the BiLSTM-CRF
architecture.

The optimizer and hyperparameters we used for
training the NER neural models are similar to those
of Lample et al. (2016) and Ma and Hovy (2016).
We selected the optimal hyperparameters to achieve
the best single NER model, so as to obtain the best
pseudo labels for further improvements.

4.1.3 Judge model selection

As Section 3.4 described, we constructed the
Judge models based on three different algorithms.
With the transformed data for the Judge model, we
selected a proper threshold for the softmax-based
method and trained it with two supervised meth-
ods. The other two supervised algorithms were im-
plemented with existing tools such as Keras for FNN
and LIBSVM (Chang and Lin, 2011) for SVMs.

We used the development and test datasets for
each task to create the transformed data for the
Judge model. To compare and select the Judge
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model, we divided the transformed data into a train-
ing set and test set with a 7:3 ratio.

The softmax-based model did not need training,
so we computed the confidence values of the training
set and determined the threshold by choosing “one
point” on the receiver operating characteristic curve
(ROC) space. In our study, we selected the threshold
that brings the true positive rate (TPR) (equaling
the recall value) closest to 90%. This is a trade-
off because a high recall value means that we can
identify and filter out most of the wrongly predicted
labels, while a too high recall value will also filter out
some valuable new entities.

When training the supervised Judge model, we
need to balance the training set of the transformed
data at first. Since the NER model can achieve a
high accuracy and most labels are “O” (meaning not
an entity token), the transformed data is heavily out
of balance; i.e., the positive samples usually account
for less than 5% and the “O”-tag negative samples
account for more than 60%. Too unbalanced train-
ing data becomes detrimental to learning classifiers.
We kept the test set unchanged for testing our Judge
model, and applied hybrid sampling methods to bal-
ance the training set.

Our hybrid sampling strategies include under-
sampling on “O”-tag negative samples and oversam-
pling on positive samples. We obtained two pro-
cessed training sets, the resampled-training set and
SMOTE-training set, which use the same undersam-
pling rate and different oversampling methods. The
former duplicates positive samples for oversampling,
while the latter uses the SMOTE (Chawla et al.,
2002) method to create synthetic positive samples.
The downsampling rate for “O”-tag negative samples
is 1/2 or 1/3 for different NER datasets. After the
hybrid sampling strategies, the positive samples in
the resampled-training set account for nearly 20%,
and reach the same amount as the negative samples
in the SMOTE-training set.

We also implemented the ensemble Judge mod-
els by voting. To understand which metric can be
used to evaluate Judge model performance on trad-
ing off between filtering out erroneous pseudo labels
and retaining valuable new labeled data, we built
three ensemble Judge models with high F1-score (En-
semble_hF1), high precision (Ensemble_hpr), and
high recall value (Ensemble_hrc). The voting strat-
egy that produces the ensemble results was based

on the number of times that single models classify a
sample as positive. Ensemble_hrc considers a sam-
ple positive once it is classified as positive, Ensem-
ble_hF1 regards it as positive only when it is clas-
sified as positive at least twice, and Ensemble_hpr
obtains a positive sample when it has at least three
positive predictions.

In our study, considering the size of the un-
labeled data and computing efficiency, we selected
the softmax-based Judge model for the CoNLL-2003
NER task, FNN_SMOTE for the OntoNotes 5.0
NER task, and the ensemble Judge model with the
highest F1-score for the CNER-2017 task.

4.1.4 Evaluation metrics

In this study, we used official evaluation met-
rics (micro-averaged F1) to evaluate our framework
on the two English NER tasks. All the evaluations
on the 2017 CCKS CNER task were performed on
the official test set using the official evaluation tool.
Here we chose the micro-averaged F1-score under
“strict” criteria to evaluate the model performance.
The “strict” criteria mean that an entity is correctly
identified only when the boundary and category of
the entity exactly match a gold one.

4.2 Overall system results

Recent studies that use unlabeled data to pre-
train language models for contextual word embed-
dings have achieved significant improvements on
NER tasks, such as ELMo (Peters et al., 2018), flair
embeddings (Akbik et al., 2018), and BERT (Devlin
et al., 2018). Since our method will produce a large
amount of new labeled data, it is unrealistic to learn
the dynamic word embeddings with our new training
set. Hence, we evaluated our framework based on the
neural NER models that are trained with static word
embeddings. Consequently, the models trained with
dynamic word embeddings are not directly compa-
rable, so we do not report their results. In our work,
we focus on exploiting the potential abundant entity
information in unlabeled data for NER tasks by au-
tomatically creating new trusted labeled data, which
is a different perspective for using unlabeled data.

4.2.1 CoNLL-2003 English NER

Table 4 compares the results of our semi-
supervised model with other neural network
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models on the test dataset from CoNLL-2003 NER.
Our semi-supervised model achieved 91.73% F1

without any additional labeled data or task spe-
cific gazetteers, which is a significant increase over
the previous best result of 91.21% from Ma and
Hovy (2016). When trained on both the training
and development sets, our semi-supervised model
scored 92.04% F1, surpassing the state-of-the-art re-
sult from Peters et al. (2017) with the same setting.

Table 4 Test set F1 comparison with previous neural
network models on the CoNLL-2003 NER task

Model F1-score (%)

Collobert et al. (2011)♣ 89.59
Huang et al. (2015) 90.10
Lample et al. (2016) 90.94
Ma and Hovy (2016) 91.21
Chiu and Nichols (2016)♣‡ 91.62
Peters et al. (2017)‡ 91.93
Rei (2017) 86.26
Ghaddar and Langlais (2018)♣ 91.73
Our semi-supervised model 91.73
Our semi-supervised model‡ 92.04

NER: named entity recognition. ♣ indicates models that use
additional supervised information (gazetteers or Wikipedia);
‡ indicates models trained on both the training and devel-
opment sets

Table 5 compares the improvements of exist-
ing semi-supervised methods on the CoNLL-2003
English dataset. Our semi-supervised method sig-
nificantly improved the performance of the baseline
NER model by 0.94% F1, and was much better than
the multitask learning method that optimizes the
NER model as a language model at the same time
(Rei, 2017). The performance of our method was
close to that of Peters et al. (2017), and our method
can be easily combined with other methods for fur-
ther improvements by introducing more labeled data.

Table 5 Improvements in test set F1 in CoNLL-2003
NER with semi-supervised methods

Model
F1-score (%)

� (%)Baseline Semi-supervised
NER model method

Rei (2017) 86.00 86.26 +0.26
Peters et al. (2017)‡ 90.87 91.93 +1.06
Ours 90.79 91.73 +0.94
Ours‡ 91.12 92.04 +0.92

NER: named entity recognition. ‡ indicates models trained
on both the training and development sets; � indicates the
improvement

4.2.2 OntoNotes 5.0 English NER

Table 6 presents the results of previous neural
network models on the test set of the OntoNotes 5.0
English NER task. To quickly evaluate the perfor-
mance of our semi-supervised framework, we used
the public classic Glove.6B.100d word embeddings
to train our neural NER model.

Table 6 Test set F1 comparison with previous neural
models on the OntoNotes 5.0 NER task

Model F1-score (%)

Chiu and Nichols (2016)♣ 86.28
Strubell et al. (2017) 86.99
Li et al. (2017) 87.21
Ghaddar and Langlais (2018)♣ 87.95
Our baseline NER model 87.18
Our semi-supervised model 87.80

NER: named entity recognition. ♣ indicates models that use
additional supervised information (gazetteers or Wikipedia)

Ghaddar and Langlais (2018) learned lexical fea-
tures from annotated data, which was produced us-
ing supervised information from Wikipedia. They
also incorporated the external knowledge resources,
gazetteers, as Chiu and Nichols (2016). In this study,
our semi-supervised framework learned from only
unlabeled data, and obtained a 0.62% F1-score in-
crease, reaching a comparable performance of 87.80%
F1.

4.2.3 CNER-2017

In the 2017 CCKS CNER task, the way of pro-
cessing Chinese electronic medical records may have
a significant impact on the results. As Table 7 shows,
our experimental results proved three effective ways
to deal with the CNER task:

Table 7 Performance of our NER models with differ-
ent settings on the CNER-2017 test set

Model F1-score (%)

words-as-tokens 86.17
characters-as-tokens 87.18
characters-as-tokens + data_aug 87.91
+PL w/o Judge model 87.90
Our semi-supervised model 88.56

NER: named entity recognition; data_aug means data aug-
mentation; +PL w/o Judge model means using pseudo labels
without selection by the Judge model

1. The model with a characters-as-tokens setting
performs better than that with a words-as-tokens
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setting by nearly 1% F1. This is because the former
setting can reduce entity boundary recognition errors
caused by inappropriate word segmentation.

2. Data augmentation by oversampling sen-
tences that contain entity mentions with the least
two categories (TRE and DIS) achieves an obvious
gain in F1-score by 0.73%.

3. Our semi-supervised method with the Judge
model to select pseudo labels effectively increases
the baseline model by 0.65% F1, while the model
shows a slight decrease in performance when using
pseudo labels in the same way without Judge model
selection.

Table 8 compares the performance improvement
of different models with different settings when us-
ing unlabeled data in the 2017 CCKS CNER task.
These models all used unlabeled data to create new
labeled data with different approaches. Our method
achieved an increase of 0.65% F1, which is more than
three times that of the self-taught learning method
(Hu et al., 2017). Our method also outperformed
the method that combines self-taught learning and
active learning, which introduces manually relabeled
data (Hu et al., 2017). In contrast, our method
has no human intervention. Xia and Wang (2017)
trained three machine learning based NER models
to tag unlabeled data and decided the final pre-
dicted labels by voting. Their vote-based approach
for tagging unlabeled data has the same principles
as ensemble learning, so their BiLSTM model can
achieve a 0.97% F1 increase to their best F1-score of
91.14%, while their overall voted model (ensemble)
increased by only 0.06% F1. Thus, their vote-based
self-training approach (ensemble) for using unlabeled
data is not comparable to ours, which is based on a
single model.

Table 8 Improvements in test set F1 in CNER-2017
when using unlabeled data

Model
F1-score (%) � (%)
w/o w/

Xia and Wang (2017)1 90.17 91.14 +0.97
Xia and Wang (2017)2 91.02 91.08 +0.06
Hu et al. (2017)1 88.47 88.67 +0.20
Hu et al. (2017)2 88.47 88.83 +0.36
Ours 87.91 88.56 +0.65

Xia and Wang (2017)1,2 represent single model and voted
model, respectively; Hu et al. (2017)1 represents adding self-
taught learning only; Hu et al. (2017)2 represents adding
both self-taught learning and active learning. � indicates
the improvement

4.3 Analysis

In this part, we analyze the performance of dif-
ferent Judge models and the silver-standard data cre-
ated with our method based on the limited CoNLL-
2003 NER dataset.

1. Judge model selection
To analyze the ability of different Judge models

to select wrong pseudo labels, we conducted exper-
iments with one part of the unlabeled data on the
CoNLL-2003 NER task; that is, we compared the
results on the test set of CoNLL 2003 by applying
our semi-supervised method in one iteration. We
also evaluated the classification performance of dif-
ferent Judge models with metrics of precision (P ),
recall (R), and F1-score (F1) on the test set of the
transformed data.

As introduced in Section 4.1.3, we compared five
single Judge models and three ensemble Judge mod-
els. Besides the softmax-based model, the other four
single Judge models were obtained by training two
algorithms on two training sets of transformed data,
which were processed with different hybrid sampling
strategies (resampled and SMOTE).

Table 9 shows that ensemble Judge models gen-
erally have a better performance than the single
models. When selecting a proper threshold, the
softmax-based Judge model can achieve the best final
F1-score of 91.10% on the test set of the CoNLL-2003
NER task, which was improved by 0.31% compared
with that of the baseline NER model with a 90.79%
F1-score. Following the softmax-based Judge model,
the Ensemble_hF1 model obtained a comparable fi-
nal F1-score in this case.

We can learn from Table 9 that the final F1-
score is not directly proportional to the performance
of the Judge model on the test set of transformed
data. However, Judge models that have high re-
call values are more likely to achieve better pseudo-
label-selecting performance. Among the single mod-
els, the softmax-based model and FNN_Smo model
have relatively high recall values. We find that com-
bining the prediction results of these two models can
achieve an F1-score comparable to that of the En-
semble_hF1 model on the test set of transformed
data. This means they can recognize different erro-
neous pseudo labels.

2. Using pseudo labels
Table 10 demonstrates that using unlabeled



914 Li et al. / Front Inform Technol Electron Eng 2020 21(6):903-916

Table 9 Results of different Judge models on the
test set of transformed data for the Judge model and
results on the test set (final F1-score) of the CoNLL-
2003 NER task when applying one iteration of our
method

Model P (%) R (%) F1-score (%) Final F1 (%)

Softmax 25.00 87.01 38.84 91.10
FNN_Res 64.79 7.20 12.96 90.72
FNN_Smo 25.80 81.06 39.14 90.83
SVM_Res 60.99 13.46 22.05 90.12
SVM_Smo 49.00 15.34 23.37 90.38
Ensemble_hF1 31.21 79.12 44.76 91.07
Ensemble_hpr 52.19 20.57 29.50 91.00
Ensemble_hrc 21.88 91.21 35.30 90.92

Ensemble_hF1: ensemble Judge models with high F1-score;
Ensemble_hpr: ensemble Judge models with high preci-
sion; Ensemble_hrc: ensemble Judge models with high recall
value. P : metric of precision; R: metric of recall. A result in
bold represents the maximum value for a single Judge model
or an ensemble Judge model

Table 10 Test set F1 comparison on the CoNLL-2003
NER task when using one part of the unlabeled data

Model F1-score (%)

Our baseline model 90.79
+PL w/o Judge model 90.23
+Softmax Judge model 91.10
+Ensemble_hF1 Judge model 91.07

+PL w/o Judge model means using pseudo labels without se-
lection by the Judge model; Ensemble_hF1: ensemble Judge
models with high F1-score

data with pseudo labels may not always improve the
performance of the neural NER model, but using
our learned Judge models can consistently improve
NER tasks. Compared with the baseline model that
does not use unlabeled data, the model using pseudo
labels without any selection performs worse on the
test set of the CoNLL-2003 NER dataset. When
using our learned Judge models to filter out wrong
pseudo labels and create new labeled data from part
of the unlabeled data to increase the training set, the
neural NER model improves its performance. This
means that wrong labels in the pseudo labels will im-
pair the training process, while our semi-supervised
method can effectively filter them out.

To compare the performance of single Judge
models without threshold selection interference, we
draw a precision-recall curve based on the test set
of transformed data. Fig. 3 shows that the softmax-
based model has relatively stable performance and
performs better than the other four models most of
the time when the recall rate is higher than 0.4.
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Fig. 3 Results of different single Judge models on
the test set of transformed data for the Judge model
on the CoNLL-2003 NER task (NER: named en-
tity recognition; FNN: feed-forward neural network;
SVM: support vector machine)
References to color refer to the online version of this figure

The untrained softmax-based Judge model can
achieve stable and good selection performance for
two reasons: First, the size of the transformed
dataset for training the Judge model is too small and
the positive samples are even fewer, so other train-
able models may tend to overfit features from the
original data. Second, the softmax-based model can
flexibly balance precision and recall by choosing a
proper threshold, that is, finding a trade-off between
filtering out erroneous pseudo labels and retaining
valuable new labeled data.

Since unlabeled data is usually abundant, our
Judge model with a high recall value, which filters
out most wrong pseudo labels at the cost of omitting
some correct ones, can still pick out enough valuable
pseudo labels to improve the performance of neural
models. In practice, we choose mainly the simple
and efficient softmax-based Judge model to continue
our semi-supervised method.

5 Conclusions

In this study, we have presented a semi-
supervised deep learning method to use unlabeled
data for the named entity recognition task. Our
method consists of three steps: (1) constructing a
single NER model; (2) learning a Judge model; (3)
creating new labeled data to improve the perfor-
mance of the NER model. In the first step, the
optimal NER model can be efficiently constructed
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by selecting and combining four components of the
deep neural NER model structure according to the
specific language and task. In the second step, we
proposed a method to train and assess the Judge
model so as to select a suitable Judge model for dif-
ferent tasks. The softmax-based Judge model and
FNN_SMOTE Judge model can recognize most er-
roneous pseudo labels, which can be used to deal
with a great amount of unlabeled data efficiently. In
the last step, we proposed a strategy to automati-
cally create new high-quality labeled data and im-
prove the performance of the NER model iteratively.
Our semi-supervised method consistently improves
the performance of the single neural model on three
different NER tasks.

In conclusion, our semi-supervised method
can be easily applied to any NER task and further
improve the performance with extra unlabeled data.
In the future, we would like to explore more methods
to use the new labeled data.
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