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Abstract: With the rapid increase of the size of applications and the complexity of the supercomputer architecture,
topology-aware process mapping becomes increasingly important. High communication cost has become a dominant
constraint of the performance of applications running on the supercomputer. To avoid a bad mapping strategy
which can lead to terrible communication performance, we propose an optimized heuristic topology-aware mapping
algorithm (OHTMA). The algorithm attempts to minimize the hop-byte metric that we use to measure the mapping
results. OHTMA incorporates a new greedy heuristic method and pair-exchange-based optimization. It reduces the
number of long-distance communications and effectively enhances the locality of the communication. Experimental
results on the Tianhe-3 exascale supercomputer prototype indicate that OHTMA can significantly reduce the
communication costs.
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1 Introduction

With the advent of the multicore architecture,
the scale of high-performance computing (HPC) is
growing up rapidly. In addition to the number of
nodes in a system, the number of processing cores
available within each node has increased dramati-
cally (Tuncer et al., 2015). The number of process-
ing cores in HPC systems has increased from 65 536
for Blue Gene in 2005 to 2 397 824 for Summit in
2018 (https://www.top500.org/). This increase has
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not only led to a leap in the development of comput-
ing power of HPC systems, but also created a more
complex memory hierarchy and network infrastruc-
ture. The constraints of communication performance
become evident when large-scale applications run on
HPC systems because of the increased traffic, but the
restricted development of network bandwidth cannot
catch up with the current requirement of large-scale
systems. Consequently, mapping of processes and
physical topologies plays a significant role in boost-
ing performance (Hoefler et al., 2014). Congestion is
a dominant factor that can significantly affect com-
munication performance, and a refined mapping of
application tasks can effectively reduce this conges-
tion. Beacuse the underlying topology is not typ-
ically taken into consideration in default mapping
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strategies and many links are needed in each traver-
sal as a result of the large network diameter, the
interconnection network could be congested heavily
(Bhatele and Laxmikant, 2009).

In this regard, topology-aware mapping has
been proved to be a practical method that can help
reduce communication costs within the interconnec-
tion network of large-scale systems and improve the
communication performance. An optimized map-
ping of processors on the idle computing nodes can
reduce network congestion significantly. For a large-
scale application, a lot of execution time can be
saved if most of the communication tasks are physi-
cally placed closer to each other, especially when the
major communication takes place within a compute
node or a compute frame (Chen et al., 2018).

The topology-aware mapping problem which is
aimed to find an optimized mapping between tasks
and topologies can be formalized as a quadratic as-
signment problem (QAP) (Sudheer and Srinivasan,
2012). It has been proved that solving this problem is
non-deterministic polynomial-time hard (NP-hard)
(Sahni and Gonzalez, 1976), but many researchers
continue to propose various heuristics to find sub-
optimal solutions, that is, to minimize the evalua-
tion metric. Therefore, higher heuristic efficiency
and precision are required to optimize the topology-
aware mapping. The practical results suggest that
reducing the evaluation metric can effectively lead
to a decrease in communication time (Jeannot et al.,
2014).

In this work, we study the topology-aware map-
ping problem on the Tianhe-3 exascale supercom-
puter prototype. The main contributions can be
summarized as follows:

1. We propose an optimized heuristic topology-
aware mapping algorithm (OHTMA). The main idea
of this algorithm is to generate a greedy primary
mapping strategy, use numerous pair-exchange op-
erations to minimize the evaluation metric within
finite iterations, and backtrack to the best result.

2. We optimize this new algorithm to minimize
its runtime, which can improve its practicability.

3. We evaluate its performance on the Tianhe-
3 exascale supercomputer prototype. Four NAS
parallel benchmark (NPB, https://www.nas.nasa.
gov/publications/npb.html) suites and two scientific
applications are used to evaluate the effectiveness of
our algorithm.

2 Basic definitions

In the literature, the application information
and network topology are generally represented as
the following two graphs:

1. Task (process) graph
Parallel processes are represented as a weighted

directed graph Gp = (Vp, Ep), where vertices Vp rep-
resent the processes and edges Ep represent the di-
rect communication between processes. The weight
wab of edge eab = (va, vb) ∈ Ep denotes the amount
of communications in bytes between vertices a and
b, where va, vb ∈ Vp. The out-degree of vertex va
denotes the number of processes to which process a

sends information.
2. Topology (processor) graph
The network topology is represented as a di-

rected graph Gn = (Vn, En). Each vertex in Vn rep-
resents a processor and an edge in En represents a
direct link in the topology (Agarwal et al., 2006).

In our work, we use the adjacent matrices of
these two graphs: process matrix AAA and physical
topology matrix BBB.

2.1 Quadratic assignment problem model

The existing research has formalized topology-
aware mapping as a QAP model (Brandfass et al.,
2013), that is, find a one-to-one mapping f between
processes and available processors to minimize the
communication cost. For an application with n pro-
cesses that need to be mapped to n processors, we
can define a process matrixAAA ∈ R

n×n and a physical
topology matrix BBB ∈ R

n×n. The mapping problem
can be transformed into minimizing the total com-
munication cost. Each mapping f , always presented
as an array such as {0, 1, 2, 3n− 1}, is a solution
to QAP. So, the definitions of matrices AAA and BBB

and the strategy of finding the best mapping attract
many researchers. Although the mapping problem is
formalized into this simple model, this problem has
been proven to be an NP-hard problem (Sahni and
Gonzalez, 1976).

2.2 Hop-byte metric

The hop-byte metric is one of the widely used
metrics for judging the communication performance
produced by a mapping algorithm (Sudheer and
Srinivasan, 2012). The hop-byte metric is the to-
tal size of inter-processor communication in bytes
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weighted by the distance between the respective end
processors. For processes i and j, the number of hops
between them is represented as bf(i)f(j) ∈ BBB, and the
size of the communication message is represented as
aij ∈ AAA. We define Hopbyte(f) to represent the
cost metric when the p processes are mapped on the
topology under mapping f . The sum of these prod-
ucts over all messages indicates the hop-byte value
of a given mapping used to assess it, expressed as

Hopbyte(f) =

p−1∑

i=0

p−1∑

j=0

aijbf(i)f(j), (1)

where aij ∈ AAA and bf(i)f(j) ∈ BBB.
Our work is to find an optimized mapping

method to minimize Hopbyte(f) in a reasonable
time.

3 Related works

Topology-aware mapping is a process to find an
optimized allocation of processes to compute nodes.
Many researchers have conducted much research
to find an optimal approach for efficiently reduc-
ing the communication overhead. Hoefler and Snir
(2011) presented three mapping algorithms: greedy
heuristic, recursive bisection mapping, and graph-
similarity-based mapping. The greedy heuristic al-
gorithm chooses one of the processes with the heavi-
est out-degree and greedily maps its heaviest neigh-
boring processes to the neighboring processors with
the heaviest connections. This algorithm is the most
generic approach. In the recursive bisection map-
ping algorithm, the minimal edge cut method maps
the “heavy” clusters in the weighted process graph
to the “strong” clusters in the weighted processor
graph. The METIS library (Karypis and Kumar,
1998) is used to compute recursive bi-partitioning of
the process topology graph and the physical topol-
ogy graph into two equally sized halves with min-
imum edge-cut weights. However, this algorithm
cannot obtain good performance on the supercom-
puter architecture. The third algorithm is based on
graph similarity. The basic idea of this algorithm is
that the graph adjacency matrix can be modeled as
a sparse matrix that can apply the techniques from
sparse linear algebra on topology mapping. Hoefler
and Snir (2011) selected the reverse Cuthill McKee
(RCM) algorithm, which is used to solve the band-
width reduction problem by reordering the matrices.

The RCM algorithm handles the proximity condition
well and produces mappings with low dilation and
congestion.

Generally, serval leading basic algorithms are
used. The main approaches of topology mapping in-
clude the graph partitioning method and the heuris-
tic algorithm, which is based on experiments and
available information about the problem.

The heuristic algorithm is one of the most ef-
fective methods for generating an approximate exact
solution in a short time when solving an NP-hard
problem. Jeannot and Mercier (2010) proposed an
algorithm called “TreeMatch,” which maps processes
to resources to reduce the communication cost of
the whole application. The TreeMatch algorithm
uses a heuristic method to find the subset of pro-
cesses with minimum weights. Bhatele (2010) pro-
posed several heuristics methods to handle irregular
communication graphs and presented two techniques
to find the closest processor to a given source in a
two-dimensional (2D) mesh. The main idea of these
heuristic methods is to reduce the average number
of hops traveled per byte on mesh topologies. De-
veci et al. (2015) proposed a greedy heuristic algo-
rithm that combines two refinement algorithms. The
heuristic part aims to minimize the value of hop-
bytes by mapping the processes to the processors
with high connectivity, and a breadth first search
(BFS) based task-selection algorithm is designed to
find the corresponding node. Mirsadeghi and Afsahi
(2016) proposed a hybrid metric that is used to eval-
uate the candidate mapping from two aspects: hop-
bytes and congestions. The refinement algorithm
they used attempts to minimize congestion. This
mapping framework can be applied only to a system
that can provide specific congestion information.

The topology mapping research based on open-
source graph partitioning software is another re-
search method. Many open-source graph parti-
tioning libraries like METIS, Scotch (Pellegrini and
Roman, 1996), and Jostle (Walshaw and Cross,
2007) are used to implement mapping optimization.
Mercier and Clet-Ortega (2009) used the Scotch li-
brary to map the communication pattern graph onto
the physical topology graph. The Scotch library im-
plements dual recursive bipartitioning algorithms to
compute static mappings for graphs. Rodrigues et al.
(2009) used a similar approach where they use the
Scotch library to map the process topology graph
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onto the physical topology graph. Tuncer et al.
(2015) used the recursive graph bisection (RGrB) al-
gorithm to recursively split both communication and
physical topology graphs into equal halves using min-
imum weighted edge-cuts and to map the remaining
task(s) to the remaining node at the end of the re-
cursion. The implementation of the RGrB algorithm
is based on LibTopoMap, and the METIS library
is used for bisectioning. Although this technique
demonstrates efficient mappings, it is also shown that
it may result in poor p-way partitions. Wang et al.
(2015) first applied clustering analysis to topology
mapping, and proposed a process mapping optimiza-
tion method based on clustering analysis guided by
an aggregated QAP model. In this method, they
used a spectral clustering algorithm to analyze pro-
cess communication pattering and then mapped the
process clusters to the physical topology.

4 New topology-aware mapping
method

We propose an optimized heuristic topology-
aware mapping algorithm based on the greedy
method, pair-exchange, and backtrace. The whole
framework of this algorithm includes making a pri-
mary mapping and optimization.

4.1 Input matrices

To assess the communication information of the
submitted works, we define the communication pat-
tern matrix AAA. Message size is a major factor af-
fecting the communication overhead. The communi-
cation performance bottleneck can be different with
different message sizes; for instance, small messages
are more sensitive to communication latency than
large messages. Thus, the communication volume
between processes is the measure for modeling this
matrix. Aij indicates the communication volume
from processes i to j.

Define the hop matrix BBB. The hop matrix in-
dicates the number of hops required when each unit
message communicates among the inter-processors.
We need to obtain only the processor ID and the re-
quired number of hops from the underlying system.
Bij is set as the number of route hops traversed from
processes i to j. Therefore, the product of the com-
munication message size and the number of hops is
the total communication cost. Essentially, this ma-

trix should show the disparity of the communication
bandwidth between the inter-processors. Based on
the typical supercomputer topology, we categorize
the route hops into three types, which will be dis-
cussed in detail in Section 4.2.

4.2 Topology of the Tianhe-3 exascale super-
computer prototype

Different from the three-level fat-tree topology
of the Tianhe Express-2 network (Liao et al., 2015),
the interconnect network of Tianhe-3 exascale super-
computer prototype adopts a 2D-mesh-like topology.
Different from the typical 2D-mesh topology which
is a regular 2D network structure, the new topology
of Tianhe-3 is shown in Fig. 1a.

The switches are distributed as an n×m mesh.
Each chip connects 96 compute nodes, which are
divided into two equal parts (left and right parts).
Chips in the same row or column are connected to
each other. Thus, there are three hop situations
among compute nodes: two compute nodes exist-
ing on one chip, two compute nodes located on two
separate chips in the same row or column, and two
compute nodes located on two separate chips in dif-
ferent rows and columns. These three situations are
shown in Figs. 1b–1d.

Table 1 indicates the specific values of these
three situations. As Table 1 indicates, we suppose
that two nodes are on the same side (left or right)
in their chips. When the two nodes are within one
chip, the hop value is one. When the two nodes
are located on two chips that are in the same row
or column, the hop value is three (Fig. 1c). When
the two chips are in different rows and columns, the
hop value is five. If the two nodes are on different
sides (one on the right side and the other on the left
side), the communication requires an additional hop
in each situation.

Table 1 Values of hops in different situaitons

Location relationship
Side of processors Hop value

between compute nodes

Within a chip
On the same side 1
On different sides 2

Within a same On the same side 3
row or column On different sides 4

In different rows and On the same side 5
different columns On different sides 6



Li et al. / Front Inform Technol Electron Eng 2020 21(6):939-949 943

(a) (b)

(d)

... ...
...

...

...

(c)

n 
ro

w
s

m columns

2

4

48
4848

48

48

48

2

2

48
48

48
48

48
48 48

48
48
48

...

...

...

......

...

...

...

...
......

... ...
... ...

...

...
...

...

...
......

...

......

......

...

...

Fig. 1 Topology of the Tianhe-3 exascale supercomputer prototype (a) and three hop situations: (b) two
compute nodes within a chip; (c) two compute nodes within a same row or column; (d) two compute nodes in
different rows and columns

4.3 Optimized mapping strategy

The proposed OHTMA algorithm is based on
the hop-byte metric and designed to optimize the
communication performance. Algorithm 1 shows the
pseudocode of the main procedures.

We tend to make a preliminary mapping that
assigns the processes with large communication vol-
umes to idle processors with small communica-
tion distances. Algorithm 1 first defines four sets,
Pselected, Punselected, Nselected, and Nunselected, indi-
cating the sets of allocated processes, unallocated
processes, selected processors, and unselected pro-
cessors, respectively. First, we use a loop to give

each process a mapping schedule. Within each initial
iteration, we define an indicator commp of the total
communication volume of process p and an indicator
hopsn of the required communication hop summa-
tion of idle processors n in the first place. In the
calculation of these two indicators, a weight factor
is introduced to strengthen the effect of the selected
process-processor pairs on the next selection, and
this weight will become higher as the iterations con-
tinue. Then, we map the process with the maximum
comm to the processor with the minimum number
of hops, and move this process from Punselected to
Pselected and processor from Nunselected to Nselected.
The iterations will be repeated until all the processes
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Algorithm 1 Optimized heuristic topology-aware mapping algorithm (OHTMA) on Tianhe-3
Require: process P , idle processor N , communication pattern matrix AAA, and hop matrix BBB

Ensure: final mapping result f

// Begin the initial part
// At the beginning, all the processes and processors are unselected

1: Pselected ← ∅, Nselected ← ∅

2: Punselected ← P , Nunselected ← N

3: k← 0

4: while k < |P | do
5: #pragma omp parallel for
6: for each process p in Punselected do

7: commp ←∑
i∈Pselected

Api +

∑
j∈Punselected

Apj

1 + |Pselected|
8: end for
9: #pragma omp parallel for

10: for each processor n in Nunselected do

11: hopsn ←
∑

i∈Nselected
Bni +

∑
j∈Nunselected

Bnj

1 + |Nselected|
12: end for

// Select the processes with the maximum commp and the processors with the minimum number of hops
13: pmax ← max {commp} , p ∈ Punselected

14: nmin ← min {hopsn} , n ∈ Nunselected

// Update mapping f and the subsets
15: f(pmax)← nmin

16: Pselected ← Pselected + {pmax} , Nselected ← Nselected + {nmin}
17: Punselected ← Punselected − {pmax} , Nunselected ← Nunselected − {nmin}
18: k← k + 1

19: end while
// Begin mapping optimization

20: Status[|P |]← 0, k ← 0

21: // Loop is a user-defined number of iterations
22: while k < loop do
23: #pragma omp parallel for
24: for each i, j ∈ P , where status[i] �= 1 && status[j] �= 1 do
25: // Calculate the hop-byte changes after exchanging these two processes
26: Costij =

∑
l∈P AilBf(i)f(l) + AjlBf(j)f(l) −

∑
r∈P AirBf(j)f(r) + AjrBf(i)f(r)

27: end for
// Find the maximum element in the CostCostCost matrix

28: Costmn ← max {CostCostCost}
// Pair[ ] is used to store the exchanged pair and Result[ ] is used to store the change of hop-byte

29: Pair← Pair + {(m,n)}, Result← Result + {Costmn}
30: Status[|P |]← 1, k ← 1

31: Exchange f(m) and f(n)

32: end while
// Calculate the sum of the first n terms (n from 0 to |Result|) in Result[ ]

33: Sum[ ]← sum(Result[ ])

// Find index t of the maximum value in Sum[ ]

34: t← max(Sum[ ])

35: Backtrack to the first t exchanges and obtain the final mapping f

36: Return f
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are allocated to the processors primarily; that is,
Punselected and Nunselected are empty sets. A rela-
tively reasonable subset of all the compute nodes will
be extracted by steps 4–19 in Algorithm 1. Then we
need to optimize this preliminary mapping.

After that, a pair-exchange method is applied to
the optimization of the preliminary mapping. The
main idea is to find any two entities within the subset
of processes that should be exchanged and to update
the mapping strategy. First, according to Eq. (1), we
calculate an exchange difference value matrix CostCostCost.
Then, we select the pair of processes with the maxi-
mum CostCostCost entry that represents the greatest saving
if the allocation of these two processes is exchanged.
Meanwhile, mark and store the processes that have
been exchanged to avoid repetitive computation, and
save the new mapping after updating. The iteration
number of loops is set by users. At the end of all the
iterations, we backtrack all the results after each ex-
change and obtain the maximum CostCostCost summation of
the first n exchanges. This backtracking mechanism
overcomes the redundant update in the local pair-
exchange-based method, and can return the status
with the smallest communication cost generated by
an intermediate operation.

5 Experimental results

In this section, we compare our OHTMA with
other typical methods on Tianhe-3 and analyze the
experimental results.

5.1 Experiment benchmarks and applications

We chose the following benchmarks and applica-
tions to evaluate the performance of our algorithm:

1. NPB suite
NPB suite is a set of programs designed to evalu-

ate the performance of parallel supercomputers (Bai-
ley et al., 1991). The implementations of NPB are
available in commonly used programming models
like MPI and OpenMP. In our experiments, we chose
NPB version 3.3.1 and selected four programs shown
in Table 2 with different communication patterns.

Problem sizes in NPB are predefined and in-
dicated as different classes. We chose the class D
problem (the large test problem, 16x size increase
from each of the previous classes).

2. Two scientific applications
The two scientific applications selected were

Table 2 Four NPB programs used in this study

Name Problem

CG Conjugate gradient, irregular memory access,
and communication

BT Block tri-diagonal solver
SP Scalar penta-diagonal solver
LU Lower-upper Gauss-Seidel solver

Sweep3D and Snap. Sweep3D is a benchmark code,
solves a 1-group time-independent discrete ordinates
neutron transport problem, and calculates the flux
of neutrons through each cell of a 3D grid along sev-
eral directions of travel (Wylie et al., 2010). It uses a
pipelined wave-front method and a 2D process mesh.
Snap is a memory consumption scientific application
that mimics the 3D deterministic Sn transport equa-
tions (Zerr and Baker, 2013). It is designed to gauge
system performance with problems typically encoun-
tered in the discrete ordinates transport community,
such as multi-thread communication.

5.2 Experiment platform and setting

We performed the experiments on the Tianhe-3
exascale supercomputer prototype. The topology of
Tianhe-3 has been introduced in Section 4.2. In the
experiments, we ran the benchmarks and applica-
tions in 256, 512, 1024, 2048, and 4096 processes, in
which BT and SP in Table 2 require the square num-
ber of processes; therefore, we carried out BT and
SP with only 256, 1024, and 4096 processes. While
the number of processes was increasing, we doubled
the Snap cells in the z direction and the grid points
of Sweep3D in the y direction. The variable loop is
defined as half of the number of uploaded processes.

We evaluated our mapping method compared
with two default mapping algorithms on Tianhe-3
(in-order and round-robin) and two typical topol-
ogy mapping algorithms (greedy heuristic algorithm
and RCM mapping algorithm) proposed by Hoefler
and Snir (2011). To obtain accurate experimental
results, we ensured that there were no other applica-
tions running on those nodes, tested each algorithm
10 times, and calculated the average value.

5.3 Results and analysis

Fig. 2 shows the resulting normalized metric
values for different mapping methods with different
numbers of processes. Fig. 3 shows the corresponding
communication time of each benchmark program.
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Fig. 2 Normalized cost metric for various mapping algorithms on Tianhe-3: (a) BT; (b) CG; (c) LU; (d) SP;
(e) Sweep3D; (f) Snap
BT: block tri-diagonal solver; CG: conjugate gradient, irregular memory access, and communication; LU: lower-upper Gauss-
Seidel solver; SP: scalar penta-diagonal solver

All results were normalized values over the default
in-order mapping algorithm. As shown in Figs. 2
and 3, it is obvious that our algorithm had better
performance than other strategies. As for hop-bytes,
OHTMA obtained a reduction up to 43.9%, and led
to as much as 37.3% saving in communication time.

As for applications composed mostly of point-
to-point communications, such as BT and SP, their
communication granularity is large and the number
of messages is small. Figs. 2a and 2d show that
OHTMA provided a large reduction in hop-bytes
compared with other methods. It is obvious that
RCM and round-robin were the most costly algo-
rithms. As for BT, our strategy achieved a 29.7%

reduction and a 45.3% reduction on average in hop-
bytes compared with the in-order and round-robin
strategies, respectively. At the same time, it ob-
tained good performance on the communication time
(Fig. 3a), and saved 13.5% of the communication
time compared with the in-order strategy. We can
see that the heuristic greedy algorithm obtained a
little improvement compared with the RCM and de-
fault strategies. In contrast, our method saved an ad-
ditional 11.6% communication time. Our method de-
livered a noticeable performance improvement on SP.
This benchmark obtained improvements of 34.3%,
48%, 34.2%, and 44.7% compared with the four
algorithms, in-order, round-robin, greedy, and RCM,
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Fig. 3 Normalized communication time for various mapping algorithms on Tianhe-3: (a) BT; (b) CG; (c) LU;
(d) SP; (e) Sweep3D; (f) Snap
BT: block tri-diagonal solver; CG: conjugate gradient, irregular memory access, and communication; LU: lower-upper Gauss-
Seidel solver; SP: scalar penta-diagonal solver

respectively. Our method decreased the communica-
tion time by up to 20%.

Different from the former two benchmarks, CG
includes a lot of irregular long-distance communica-
tions. The results indicated that OHTMA obtained
slightly larger improvement in the hop-byte metric.
The cost metric fell by only 4% based on the in-order
strategy; however, as shown in Fig. 3b, the improve-
ment in communication time was significant. The
practical operation results show that, compared with
other methods, our method can reduce the commu-
nication cost.

LU is a benchmark composed mainly of commu-
nications with small-sized messages (no more than
40 bytes). Figs. 2c and 3c show that RCM was
the least effective method of topology mapping and
that the increments of round-robin and RCM hop-

bytes were proportional to the number of processes.
By contrast, OHTMA obtained steady performance
on optimization, especially concerning the cost met-
ric. The cost metric of LU after remapping by our
method decreased by 20.36% and 12.3% compared
with the in-order method and greedy heuristic algo-
rithm, respectively.

With regard to two scientific applications, our
method obtained a better performance on Snap than
on Sweep3D. Fig. 2f indicates that the cost met-
rics of the four strategies were similar and that our
method obviously minimized this value compared
with other methods. It achieved average improve-
ments of 29.6%, 26.7%, 29.5%, and 32.4%, compared
with the in-order, round-robin, greedy, and RCM
strategies, respectively. However, Fig. 2e shows that
Sweep3D obtained a large improvement compared
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with two default strategies and the RCM strategy,
but performed the worst compared with the greedy
heuristic algorithm. Figs. 3e and 3f show the same
results about communication time: OHTMA saved
16.7% (up to 19.5% and down to 13.2%) communi-
cation time on Snap but obtained only a 5.9% reduc-
tion on Sweep3D compared with the greedy heuristic
algorithm.

Globally, the optimized method shows that it
outperforms the two default and the two typical map-
ping algorithms with these six benchmark programs.
It is obvious that for applications with infrequent
and short-distance communications, like BT, SP, and
Sweep3D, the heuristic algorithms (optimized algo-
rithm and greedy algorithm) produce better perfor-
mance than other algorithms. Moreover, when the
message size is small (like Sweep3D), our algorithm
provides performance that is approximately compa-
rable to that of the greedy algorithm, but when the
message size is large (like BT and SP), our opti-
mized algorithm can exceed the greedy algorithm.
It is precisely because our method tends to map
the tasks with large-size messages on the compute
nodes within a chip or within a same row and col-
umn, which saves significant communication time.
As for the applications with variable distance com-
munications (like LU and Snap), the round-robin and
RCM algorithms may miss the features of the com-
munication pattern. So, these algorithms obtain the
worse performance. OHTMA improves communica-
tion performance significantly according to the com-
munication time of these applications. Meanwhile,
for the applications with long-distance communica-
tions like CG, the advantage of remapping through
the optimized algorithm can be more evident when
the scale of the problem is large.

The mapping time is another important indica-
tor. We optimized the algorithm implementation.
Because variables (like comm, hops, and cost) in
an iteration can be calculated in parallel, we used
OpenMP to reduce the runtime of the mapping algo-
rithm. After applying the optimized algorithm im-
plementation, the mapping time decreased from 10
to 4.7 s when the number of application processes was
256, and decreased from 195 to 98 s when the number
of processes was 512. The mapping time is a one-time
cost, so it has practical meaning. In the future work,
we will reduce the mapping time by simplifying the
computation of symmetric communications.

6 Conclusions

In this study, we proposed a new opti-
mized heuristic topology-aware mapping algorithm
(OHTMA). This algorithm provides a greedy map-
ping strategy and imports the pair-exchange method
in the mapping optimization operation. We took
both the communication pattern and actual topology
of the compute platform into consideration. We first
proposed a new topology-aware mapping algorithm
and then attempted to apply it on the Tianhe-3 exas-
cale supercomputer prototype. Two default mapping
algorithms and two typical mapping algorithms were
compared, and OHTMA obtained satisfactory ex-
perimental improvements. OHTMA can effectively
reduce both the hop-byte value and communication
time. In the future, we will intend to detail the com-
munication pattern and reduce the runtime of the
remapping process.
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