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Abstract: An autonomous five-dimensional (5D) system with offset boosting is constructed by modifying the well-known 
three-dimensional autonomous Liu and Chen system. Equilibrium points of the proposed autonomous 5D system are found and its 
stability is analyzed. The proposed system includes Hopf bifurcation, periodic attractors, quasi-periodic attractors, a one-scroll 
chaotic attractor, a double-scroll chaotic attractor, coexisting attractors, the bistability phenomenon, offset boosting with partial 
amplitude control, reverse period-doubling, and an intermittency route to chaos. Using a field programmable gate array (FPGA), 
the proposed autonomous 5D system is implemented and the phase portraits are presented to check the numerical simulation 
results. The chaotic attractors and coexistence of the attractors generated by the FPGA implementation of the proposed system 
have good qualitative agreement with those found during the numerical simulation. Finally, a sound data encryption and com-
munication system based on the proposed autonomous 5D chaotic system is designed and illustrated through a numerical example. 
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1  Introduction 
 

Chaotic systems have been used in many fields 
of science because they have features such as aperi-
odic behavior, randomness, prediction difficulty, and 
extreme sensitivity to initial conditions and parameter 
values (Hou et al., 2012; Li CQ et al., 2018a). To take 
advantages of the features of chaotic systems, it is 
important to apply these systems in engineering ap-

plications. Chaos theory has advanced development 
in many fields since the chaotic attractor was first 
found in 1963 by Lorentz. Hyperchaotic systems have 
more complex dynamical behaviors than ordinary 
chaotic systems. This complexity implies that hy-
perchaos has more than enough value in engineering 
applications. From hyperchaotic systems, such as the 
Rössler system (Rössler, 1979), the Chen system (Li 
X, 2009), and many other systems (Jia, 2007; Wang 
JH et al., 2008; Vaidyanathan, 2013), it can be un-
derstood that higher-dimensional systems have more 
complex dynamics. In the n-dimensional (n≥4) sys-
tem (Thamilmaran et al, 2004; Li YX et al., 2005; Qi 
et al., 2008; Wang XY and Wang, 2008; Yang and Liu, 
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2009; Yang et al., 2009; Shen et al., 2014; Chen YM 
and Yang, 2015; Li QD et al., 2015), hyperchaos can 
happen and is characterized by more than one positive 
Lyapunov exponent. Therefore, it is worthy to study 
high-dimensional hyperchaotic systems with a cor-
responding number of positive Lyapunov exponents. 
In nonlinear science, the hyperchaos theory has be-
come a dominant topic. Due to its characteristics of 
high capacity, high security, and high efficiency, it has 
been applied in nonlinear circuits, secure communi-
cation, lasers, neural networks, and so on. In practice, 
for each new system, either the chaos or the hyper-
chaos imposes anomalous technical requirements. 

Studies on autonomous five-dimensional (5D) 
systems have focused mainly on the generation of 
hyperchaos (Hu, 2009; Yang and Chen, 2013; Rech, 
2014; Ojoniyi and Njah, 2016; Wei et al., 2017; Singh 
et al., 2018). Some researchers have focused on the 
synchronization and control of 5D systems (Wei et al., 
2018). This topic has motivated us to perform analy-
sis and field programmable gate array (FPGA) im-
plementation of an autonomous 5D chaotic system 
with offset boosting and apply it to sound encryption 
design. After analyzing the dynamics of the proposed 
system, the system is implemented in an FPGA to 
demonstrate that realization of the system is possible 
with hardware since FPGA implementation is suitable 
for complex systems (Rajagopal et al., 2017c). The 
development of technology has made digital hard-
ware implementation less expensive, faster, and easier 
to design. FPGA is an efficient platform for imple-
menting substantial high-quality, high-throughput 
approximations for higher-order systems that are less 
costly and require less time. 

 
 

2  Analysis of the proposed autonomous 5D 
system with offset boosting 

 
Consider the autonomous three-dimensional (3D) 

system proposed by Liu and Chen (2004): 
 

,
,
,

x ax yz
y by xz
z cz xy

= −
 = − +
 = − +







                        (1) 

 
where x, y, and z are state variables, and a, b, and c are 
positive parameters. Liu and Chen (2004) have shown 

that system (1) has five equilibrium points which are 
all unstable if a<b+c. System (1) has a double-scroll 
chaotic attractor for (a, b, c)=(3, 10, 6) and a 
four-scroll chaotic attractor for (a, b, c)=(1, 20, 12). 
Two additional state variables w and u are added to 
system (1) to obtain an autonomous 5D system: 
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where d, e, and s are positive parameters. System (2) 
is constructed not by the extension of the existing 4D 
nonlinear systems as the majority of 5D systems, but 
by modifying the interesting 3D Liu and Chen system. 
System (2) is dissipative if a−b−c−d<0. System (2) 
has only one equilibrium point O(0, 0, 0, 0, 0) for s=0. 
When c≠0, e≠0, and s≠0, it has two equilibrium points: 
E1(−s/e, 0, 0, 0, −as/e) and E2(−s/e, (bce2−s2)/(es), 
(s2−bce2)/(es2), (bce2−s2)/(es), [(bce2−s2)2−ace2s2]/ 
(cse3). The characteristic equation of system (2) 
evaluated at the equilibrium point O is expressed as 
 

5 4 3 2
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where 
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Using the Routh-Hurwitz conditions, Eq. (3) has 

all roots with negative real parts if and only if 
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               (5)  

 
The characteristic equation of system (2) evalu-

ated at the equilibrium point E1 is expressed as 
 

5 4 3 2
11 12 13 14 15 0,λ δ λ δ λ δ λ δ λ δ+ + + + + =    (6) 

where 
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(7) 
Applying the Routh-Hurwitz conditions, Eq. (6) 

has all roots with negative real parts if and only if  
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The characteristic equation of system (2) evalu-

ated at the equilibrium point E2 is expressed as 
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Based on the Routh-Hurwitz conditions, Eq. (9) 
has all roots with negative real parts if and only if  
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For simplification, we consider only the effects 
of parameters d and s, and set a=3, b=2.5, c=1.0, 
e=3.5. For s=0 and d varying from 0.01 to 20, it is 
noticed that the stability conditions of Eq. (4) are not 
met, and therefore equilibrium point O is unstable. 
For d varying from 0.01 to 20 and s varying from 0 to 
20, it is found that the stability conditions of Eq. (8) 
are not met, and therefore equilibrium point E1 is 
unstable. When d=4, e=3.5, and s=0.1, the equilib-
rium points and their eigenvalues are given by 
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Thus, equilibrium points O and E1,2 

are saddle 
focused. By varying d from 0.01 to 20 and s from 0 to 
20, the stability boundary of equilibrium point E2 is 
plotted in Fig. 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Fig. 1, the red area indicates the region where 

equilibrium point E2 is asymptotically stable, while 
the white region represents the area where the condi-
tions in Eq. (11) are not verified and equilibrium E2 is 
unstable. Since equilibrium point E2 changes the sta-
bility properties with different values of d and s, 
system (2) has either a Hopf or a transcritical bifur-
cation with different values of d and s. 

Fig. 1  Stability boundary of equilibrium point E2 

References to color refer to the online version of this figure 
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Setting b=2.5, d=4, and e=3.5, the effects of 
varying s, c, and a on the dynamical behaviors of 
system (2) are investigated. Fixing a=3 and c=1, the 
bifurcation diagrams are plotted in Fig. 2, depicting 
the local extrema of x(t) and three largest Lyapunov 
exponents (LLEs). 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 
 
By increasing the control parameter s, the dy-

namics of system (2) presents reverse period- 
doubling to a chaotic region interspersed with peri-
odic windows (Fig. 2a). By further increasing s, sys-
tem (2) undergoes a period-1 oscillation observed at 
s≈9.32, where a Hopf bifurcation occurs followed by 
the convergence of the trajectories of system (2) to 
equilibrium point E2. The dynamical behaviors in 
Fig. 2a are confirmed by the three LLEs in Fig. 2b. 
The phase portraits of chaotic oscillations for specific 
values of parameter s are depicted in Fig. 3. 

In Fig. 3, system (2) exhibits two types of cha-
otic attractors: double-scroll chaotic attractor (Fig. 3a) 
and one-scroll chaotic attractor (Fig. 3b). 

For a=3 and s=0.1, the bifurcation diagrams of 
x(t) and three LLEs are plotted in Fig. 4. 

When c increases from 0.8 to 1.7 (Fig. 4a), the 
bifurcation diagram of output x(t) shows period-1 
oscillations followed by an intermittency route to a 
chaotic region interspersed with periodic and quasi- 
periodic windows. The dynamical behaviors in 
Fig. 4a are confirmed by the three LLEs in Fig. 4b. 

For c=1 and s=0.1, the bifurcation diagrams of 
x(t) and three LLEs are plotted in Fig. 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

When a varies from 0 to 2.23 (Fig. 5a), the bi-
furcation diagram of output x(t) exhibits a chaotic 
region interspersed with periodic windows. By fur-
ther increasing a, period-2 oscillations are observed 
for 2.23<a≤2.63 followed by the period-1 oscillations 
when a≈2.747. Then, another chaotic region inter-
spersed with periodic windows appears for 
2.747<a≤3.54, and period-1 oscillations are observed 
for 3.54<a≤3.71. By ramping a in Figs. 5b and 5c, 
system (2) displays the same dynamical behaviors as 
those in Fig. 5a (black dots) in the ranges of 
0<a≤2.258 and 2.63<a≤3.71. In the range of 

Fig. 4  Bifurcation diagrams depicting the local maxima of 
x(t) (a) and three largest Lyapunov exponents (LLEs) (b) 
with a=3, b=2.5, d=4.0, e=3.5, s=0.1 
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Fig. 2  Bifurcation diagrams depicting the local maxima 
(black dots) and local minima (gray dots) of x(t) (a) and 
the three largest Lyapunov exponents (LLEs) (b) 
References to color refer to the online version of this figure 
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2.258<a≤2.630, system (2) exhibits chaotic behaviors 
for 2.258≤a≤2.330, period-4 oscillations for 
2.320<a<2.400, and period-2 oscillations with large 
amplitudes compared with the ones in Fig. 5a for 
2.400≤a<2.630. From Fig. 5a (black and red dots), 
one can notice that system (2) displays coexistence of 
period-2 oscillations and chaotic behaviors in the 
range of 2.258≤a≤2.320. In the range of 
2.320<a<2.400, there is coexistence of period-2 os-
cillations and period-4 oscillations. In the range of 
2.400≤a<2.630, system (2) shows bistable period-2 
oscillations. The dynamical behaviors in Fig. 5a in 
black and red dots are confirmed by the two LLEs in 
Figs. 5b and 5c, respectively. The coexistence of the 
attractors and the bistability phenomenon is illus-
trated in Fig. 6, which depicts the phase portraits of 
the resulting attractors of system (2) in the x-z plane 
for different values of a and different initial  
conditions. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
The coexistence of the chaotic attractor and the 

period-2 oscillations at a=2.27 is shown in Fig. 6a 
using the initial conditions of (x(0), y(0), z(0), w(0), 
u(0))=(1.0, 0, 0.1, 0.1, 0.1) and (x(0), y(0), z(0), w(0), 
u(0))=(1.0, 1.0, 1.0, 1.0, 1.0). Fig. 6b presents the 
coexistence of period-2 oscillations and period-4 
oscillations for a=2.35 using the initial conditions of 
(x(0), y(0), z(0), w(0), u(0))=(1.0, 0, 0.1, 0.1, 0.1) and 

(x(0), y(0), z(0), w(0), u(0))=(1.0, 1.0, 1.0, 1.0, 1.0). In 
Fig. 6c (gray lines), system (2) displays period-2 
oscillations for the initial condition of (x(0), y(0), z(0), 
w(0), u(0))=(5.0, 1.0, 1.0, 1.0, 1.0). For the initial 
condition of (x(0), y(0), z(0), w(0), u(0))=(1.0, 1.0, 1.0, 
1.0, 1.0), system (2) exhibits period-2 oscillations in 
Fig. 6c (black lines). Note that extreme multi-stability 
is not found in system (2), but it exhibits multi- 
stability as shown in Fig. 6. 

 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
The state variable u appears only in the first 

equation of autonomous system (2), and its amplitude 
can be changed by inserting a boosting controller γ 
into system (2), expressed as 
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              (13) 

 
To check the partial amplitude control of chaotic 

system (13), the phase portraits and time series of 
state variable u of system (13) are depicted in Fig. 7 
with different values of boosting controller γ.  

As shown in Fig. 7, for the initial condition of 
(x(0), y(0), z(0), w(0), u(0))=(1.0, 1.0, 1.0, 1.0, 1.0),  

Fig. 6  Coexistence of attractors and bistable attractors in 
the x-z plane for different values of a and different initial 
conditions: (a) a=2.27; (b) a=2.35; (c) a=2.45 
b=2.5, c=1, d=4.0, e=3.5, s=0.1 
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the chaotic signal u is boosted from a bipolar signal to 
a unipolar signal when decreasing the boosting  
controller γ. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

3  FPGA implementation of the proposed 5D 
autonomous system with offset boosting 

 
Some literature has discussed FPGA imple-

mentation including FPGA-based multi-scroll chaotic 
oscillators (Tlelo-Cuautle et al., 2015), four-wing 
chaotic attractors (Dong et al., 2016), memristor- 
based chaotic attractors (Xu et al., 2016), image 
cryptography with chaotic ciphers (Barakat et al., 
2011), and an autonomous Jerk oscillator (Rajagopal 
et al., 2018). Hyperchaotic oscillators with complex 
mathematical models have been implemented using 
FPGAs, showing that FPGA is a systematic platform 
for implementing high-standard, high-throughput 
approximations to high-order systems that are less 
costly and require a short time span to design (Ra-
jagopal et al., 2017a, 2017d). Compared with other 
processors, FPGAs have well fixed hardware for 
processing logic, and hence their achievement is not 
influenced by the complexities of the system. Modern 
versions of FPGAs highlight low dynamic power 
performance, and therefore they can be used in a 
progressive manner for many electronic applications 
(Bahi et al., 2013; Ismail et al., 2017; Woods et al., 
2017). The processor-based system has layers of ab-
straction to schedule tasks and share resources among 

multiple resources. These compilations are not man-
datory for FPGA applications. The proposed auton-
omous 5D chaotic system is designed using the 
Hardware Description Language (HDL) coder in the 
Xilinx system generator. Either VHDL or VERILOG 
code is generated using the Vivado synthesis tool, 
which is based on HDL code selection, while con-
figuring the design of the system. FPGA realizations 
generate intense hardware–software co-simulations 
when using different parameters under the same 
conditions (Jiang et al., 2007). The major task in such 
realization is to determine the type of the numerical 
method to solve the proposed hyperchaotic system. 
We choose the forward Euler method to solve the 
proposed autonomous 5D chaotic system. The set of 
discretized system equations (Charef, 2006) is given 
by 
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where a, b, c, d, e, and s are the system parameters and 
h the step size of the discrete numerical solution. The 
discrete state equation of the proposed autonomous 
5D chaotic system is implemented on the FPGA in 
discrete time (Chen YQ et al., 2004; Rajagopal et al., 
2017b), and the required basic arithmetic operators 
are implemented using the XSG tool box in Simulink 
(Wang QX et al, 2016). We configure the available 
built-in blocks of the system generator tool box such 
as the Add/Sub and multiplier blocks with zero la-
tency and use 32/16-bit fixed point settings (accord-
ing to the IEEE 754 Standard). The output of the 
block is configured to rounded quantization to reduce 
the bit latency. In particular, the integrator block is 
designed using the mathematical relationship, i.e., 

[ ]
0

d d lim ( 1) ( ) .i i ih
x t x n x n h

→
= + −  To attain accuracy, 

we select h=0.001 and the initial conditions required 
for the proposed autonomous 5D chaotic system are 
fed into the forward register of the integrator block 
designed using Euler’s formula. Fig. 8 shows the 
Xilinx register-transfer level (RTL) schematic of the 
proposed chaotic system using the Kintex-7 chip.  

Figs. 9–12 show the phase portraits of the pro-
posed autonomous 5D chaotic system using the Xil-
inx system generator. 

Fig. 7  Phase portraits in the u-x plane (a), u-z plane (b), 
and u-w plane (c) and time series (d) of signal u of system 
(13) for a=3, b=2.5, c=1, d=4.0, e=3.5, and s=0.1 
γ=−4 (black), 1 (blue), and 6 (red). References to color refer to 
the online version of this figure 
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Fig. 8  Register-transfer level schematic of the proposed autonomous 5D system (13) implemented by the Kintex-7 chip 

Fig. 9  Phase portraits in the x-y, x-z, and u-w planes of the proposed FPGA-implemented autonomous 5D system with 
hardware–software co-simulation for s=0.1 (a) and s=2 (b) 
a=3, b=2.5, d=4.0, e=3.5, γ=0. The initial condition is [1.0, 1.0, 1.0, 1.0, 1.0] 
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4  Sound encryption using the proposed 
autonomous 5D system with offset boosting 

 
Multimedia security has attracted a lot of atten-

tion because of its importance in various applications, 
such as e-education and the military use, and leads to 
the importance of real-time and sufficiently secure 
and robust image encryption methods (Azarang et al., 
2017; Li CQ et al., 2018b, 2019; Li XW et al., 2019). 
In this section, a sound encryption and communica-
tion system using the proposed autonomous 5D cha-
otic system (2) is designed and analyzed by the 
MATLAB Simulink software. The system consists of 
a transmitter and a receiver unit. The MATLAB 
Simulink block diagram of the transmitter unit is 
shown in Fig. 13.  

In the transmitter unit, sound signal m(t) is 
converted to binary number data. To encrypt the 
sound signal, the y state variable output Cy(t) of the 
proposed autonomous 5D chaotic system (2) is used. 
In the floating-to-binary unit in Fig. 13, the y state 
variable value is converted to 64-bit floating point 
number format and the 2nd bit value of the floating 
point number value is sent to the output. The EXOR 
operation is applied to the value of the floating- 
to-binary unit output and the binary data value of the 
sound signal. Data coming from the EXOR unit is 
compared in the threshold detector unit. The output of 
the threshold detector unit is “1” if the incoming data 
is “1” and “−1” if the incoming data is “0.” With this 
algorithm, the sound signal is encrypted using the y 
state variable value of chaotic system (2). The en-
crypted sound signal e(t) obtained is summed with the 
x state variable output Cx(t) of the proposed autono-
mous 5D chaotic system (2). Thus, the encrypted  
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 13  MATLAB Simulink block diagram of the transmitter unit 
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sound signal is masked by the chaotic signal. In this 
way, the previously encrypted sound signal is again 
encrypted by the masked chaotic signal Cx(t), and the 
obtained modulated signal s(t) is sent to the trans-
mission medium. As a result, the sound signals are 
sent more securely to the communication medium. 
The additive white Gaussian noise (AWGN) channel 
model is used as a noise source in the system analysis. 
Thus, a modulated signal with noise r(t) can be ob-
tained in the system. The MATLAB Simulink block 
diagram of the receiver unit is shown in Fig. 14.  

At the receiver unit, the x state variable output 
Cx(t) of the proposed autonomous 5D chaotic system 
(2) is subtracted from the incoming noisy modulated 
signal r(t). The signal obtained through this process is 
quantized to be 0 or 1 in the threshold detector. Thus, 
the encrypted sound signal is obtained from the noisy 
chaotic modulated signal r(t) coming from the 
transmitting unit in the communication medium. In 
the floating-to-binary unit in Fig. 14, as in the trans-
mitter unit, the y chaotic signal Cy(t) is converted to 
the 64-bit floating point number format and the 2nd bit 
value of the floating point number value is sent to the 
output. The EXOR operation is applied to the value of 
the floating-to-binary unit output and the threshold 
detector unit output. In this way, the encryption of the 
encrypted sound signal is resolved and the original 
sound signal ~m(t) sent from the transmitting unit is 
obtained. The sound encryption and communication 
system is analyzed under the AWGN channel noise 
model varying from 0- to 10-dB Eb/N0 (energy per bit 
to noise density) in MATLAB Simulink. For the 
sound signal to be used for testing purposes, a 
two-second sound recording from the microphone at a 
sample rate of 8 kHz is used. The bit-error-rate (BER) 
performance of the system is shown in Fig. 15. 

 
 

 
 
 
 
 
 
 
 
 
 

Fig. 16 shows the transmitted sound signal data, 
encrypted sound signal data, and sound signal data 
obtained from the test results of the designed system 
at a 100 kHz communication speed under 10-dB 
Eb/N0. The transmitted encrypted sound signal is 
successfully obtained in the receiver unit.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16  Signal data obtained from system (2): (a) trans-
mitted sound signal m(t); (b) encrypted sound signal e(t); 
(c) obtained sound signal ~m(t) 
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Fig. 17 shows the transmitted original sound 
signal, encrypted sound signal, chaos-based modu-
lated signal with noise sent by the transmitter unit to 
the transmission medium, and sound signal obtained 
by the receiver unit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
5  Conclusions 

 
In this study, we analyzed the FPGA imple-

mentation of an autonomous five-dimensional (5D) 
system with offset boosting and its application to a 
sound encryption scheme using a chaos masking 
technique. The proposed autonomous 5D system was 
investigated analytically and numerically. It was 
found that the proposed system displays several in-
teresting features and behaviors, including Hopf bi-
furcation, reverse period-doubling route to chaos, 
intermittency route to chaos, bistability phenomenon, 
periodic, quasi-periodic, and one- and double-scroll 

chaotic attractors, and partial amplitude control of its 
signals. The proposed autonomous 5D system was 
implemented using FPGA to show that it can be re-
alized in hardware. Finally, the chaotic behavior of 
the proposed autonomous 5D system was used to 
design and implement a sound encryption scheme 
using the MATLAB Simulink software. 
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