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Abstract: The collaborative filtering technology used in traditional recommendation systems has a problem of data sparsity. The 
traditional matrix decomposition algorithm simply decomposes users and items into a linear model of potential factors. These 
limitations have led to the low accuracy in traditional recommendation algorithms, thus leading to the emergence of recommen-
dation systems based on deep learning. At present, deep learning recommendations mostly use deep neural networks to model 
some of the auxiliary information, and in the process of modeling, multiple mapping paths are adopted to map the original input 
data to the potential vector space. However, these deep neural network recommendation algorithms ignore the combined effects of 
different categories of data, which can have a potential impact on the effectiveness of the recommendation. Aimed at this problem, 
in this paper we propose a feedforward deep neural network recommendation method, called the deep association neural network 
(DAN), which is based on the joint action of multiple categories of information, for implicit feedback recommendation. Specifi-
cally, the underlying input of the model includes not only users and items, but also more auxiliary information. In addition, the 
impact of the joint action of different types of information on the recommendation is considered. Experiments on an open data set 
show the significant improvements made by our proposed method over the other methods. Empirical evidence shows that deep, 
joint recommendations can provide better recommendation performance. 
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1  Introduction 
 

With the development of information technology, 
information overload has become an increasingly 
serious issue. The key to a personalized recommen-
dation system is to explore users’ preferences based 
on their interactive behavior (such as ratings, clicks, 
and comments) and provide users with personalized 
services in line with their wishes and needs (Lu et al., 
2015). 

For simplicity, we can regard the recommenda-
tion problem as a prediction of user preferences. 

According to the explicit or implicit feedbacks of 
users, a scientific method is adopted to predict users’ 
preference for projects (Yeung, 2016). The widely 
used idea to achieve a personalized recommendation 
is to explore users’ preferences based on their histor-
ical rating behavior or information (Jung, 2012; 
Buettner, 2016). There are two types of historical 
rating information, one of which has a rating of more 
than two scales, and the other just two scales (Aiolli, 
2014; Fu et al., 2019). For example, in the former case, 
in the public data set “MovieLens,” users’ rating of a 
movie is an integer between 1 and 5, which indicates 
the users’ preference for the movie using the rating 
data number. In the latter case, users express their 
preferences for the project through a “like” or “dis-
like,” or suggest the users’ preferences through im-
plicit feedback that is expressed by the interaction 
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between users and projects (He et al., 2017). In recent 
years, the high cost of collecting users’ historical 
rating data and the fact that users’ ratings on multiple 
scales tend to be concentrated around the central score 
have led to a challenge in reflecting user preferences. 
Thus, the interest in the former (that is, the multi-scale 
rating) has gradually decreased (Li Y et al., 2019). 
However, compared with the former case, it is rela-
tively easy to obtain implicit feedback for various 
kinds of use, such as users’ purchase history, watch 
history, and installed applications. Through the ex-
tension of implicit feedback information, users’ 
preferences can be further excavated from one field to 
multiple fields, thereby improving the accuracy and 
diversity of the recommendation. In the latter case 
(that is, a binary rating), there is a growing tendency 
toward studying implicit feedback recommendations. 

At present, traditional recommendation algo-
rithms adopted by recommendation systems include 
collaborative filtering (CF) and matrix decomposition. 
Many researchers have launched some updated ver-
sions based on these classical algorithms (Barkan and 
Koenigstein, 2016; Hernando et al., 2016; Ha and Lee, 
2017). The CF algorithm holds that similar users have 
the same or similar preferences for a certain project, 
which determines the nearest neighbor of the target 
user by analyzing the historical rating information, 
and generates recommendations for target users based 
on the neighbor ratings (Verstrepen et al., 2017). 
However, the major drawback of a CF algorithm lies 
in its data sparsity. In other words, due to the large 
number of users and projects, most users rate only a 
few projects (Zheng et al., 2016). In a historical rating 
matrix composed of users and projects, we find that 
the rating information for most positions in the matrix 
is absent, which leads to low recommendation accu-
racy in traditional CF (Liu Y et al., 2018). The matrix 
decomposition algorithm maps users and projects to 
the shared potential space, and reconstructs the scor-
ing matrix using the inner product of the potential 
feature matrix of the users and projects. With the help 
of a gradient descent algorithm, the error loss between 
the reconstructed scoring matrix and the original 
scoring matrix is minimized (del Corso et al., 2019). 
At present, a large amount of work has been done to 
enhance the performance of matrix decomposition, 
such as comprehensive integration of the matrix de-
composition algorithm and a neighborhood-based 

recommendation algorithm (Wu et al., 2012; Cao et 
al., 2018), integration of the matrix decomposition 
algorithm and time information (Luo et al., 2018; 
Xiao et al., 2018), and expanding it to factorization 
machines (Zhou et al., 2018; Knoll et al., 2019). 
However, the matrix decomposition algorithm as-
sumes that the user and the project are independent 
for each dimension of the potential space, and linearly 
combines them with the same weight (Li ZC and Tang, 
2017). The matrix decomposition algorithm can be 
regarded as a linear model of potential factors, but this 
simple way of linearly combining the product of po-
tential features is not enough to capture the complex 
structure of the interaction between users and projects 
(He et al., 2017). 

In recent years, owing to its strong learning 
ability, deep learning has made real progress in image 
processing, natural language processing, speech 
recognition, and other fields, and this progress has 
also introduced new opportunities for recommenda-
tion systems (Noda et al., 2015; Cheng et al., 2018; 
Hossain and Muhammad, 2018). Deep learning uses a 
deeper neural network to build the model and obtains 
the nonlinear structural features of multi-sourced 
heterogeneous information (Liu JT and Wu, 2017). 
Recommendation systems based on deep learning 
usually take data about users and projects as inputs, 
learn more abstract and dense representations of fea-
tures, and generate recommendations for users based 
on these implicit representations (Pan J et al., 2017). 
Although some studies have applied deep neural 
networks (DNNs) to recommendations and have been 
shown to be effective, they mostly use DNNs to 
model some of the auxiliary information, such as text 
descriptions of recommended products, content de-
scriptions of videos, and visual descriptions of images. 
For the key factors that affect the model’s effective-
ness, they still adopt traditional approaches, such as 
top-level connections or the inner product, to combine 
the potential characteristics of users and projects. In 
addition, the basic idea of most deep learning rec-
ommendations is to set up two types of mapping 
pathways, and to map the information of users and 
projects into the same hidden space. There is a lack of 
in-depth research on integrated recommendations 
from users, projects, and auxiliary information, and 
on recommendations derived from interactions of 
multiple sources of information. 
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Based on the above analysis, in this study we 
propose a recommendation method based on deep 
neural networks—a deep association neural network 
(DAN), and our work is concentrated on binary im-
plicit feedback. Compared with explicit feedback, 
implicit feedback can be tracked automatically, 
making it easier to collect on the part of content pro-
viders (Pan WK et al., 2019). Wang et al. (2020) fo-
cused on exploring the effects of different types of 
joint forms on the final results of the model from the 
perspective of different joint forms. In contrast, this 
paper focuses on the alliance effect of different cat-
egory features, and explores the influence of category 
feature alliance of the deep neural network on the 
model recommendation effect from a macro perspec-
tive. In this paper we not only discuss the basic per-
formance of DAN, but also explore the performance 
from two aspects of “depth” and “width” of the model. 
To improve the recommendation accuracy, a neural 
network that is three layers deep is adopted in DAN to 
carry out the output vector. In addition, compared 
with the traditional deep neural network, the DAN 
model has the following contributions: First, DAN 
incorporates multiple types of input vectors at the 
bottom of the network, rather than just information 
about users and projects. Second, DAN considers the 
impact of joint characteristics derived from different 
projects on the recommendation. Finally, when con-
sidering the influence of joint characteristics on the 
model, DAN reconstructs the original feature projects 
from the perspective of feature vectors. 

 
 

2  Problem statement 

 
In this paper we consider a typical recommen-

dation problem, the basic form of which is as follows. 
For a recommendation system, the basic information 
that can be collected includes users, items, users’ 
occupations, genders, ages, and user’s ratings of items. 
Although the information about occupations, genders, 
and ages may not be complete, it is still used in the 
recommendation system. Here, we use U, I, O, G, and 
A to represent the sets of users, items, occupations, 
genders, and ages, respectively. Since we concentrate 
our study on implicit feedback that is binary, we use 
“1” and “0” to indicate whether there is an interaction 
between the user and the item (He et al., 2017): 

1,   if interaction(user , item ) is observed,

0,   otherwise.

u i
y


 


 (1) 

 

We obtain the user–item interaction y from the 
users’ implicit feedback. Here y=1 indicates that there 
is an interaction between the user and the item, and 
the interaction can be the action of clicking, com-
menting, browsing, etc.; y=0 indicates that there is no 
interaction between the user and the item. The value 
of 0 may indicate that the user does not like the item, 
or that the user is not aware of the item. The recom-
mendation problem with implicit feedback can be 
expressed as the problem of estimating users’ ratings 
on unobserved items (this score can be used to eval-
uate the ranking of items) (Hsu et al., 2018). The 
classical recommendation approaches suggest that the 
missing ratings can be generated by the underlying 
model, and that the interactions between users and 
items can be used to predict users’ ratings on the 
unobserved items. In fact, if a user rates an item, then 
there is an interaction between the user and the item. 
In contrast to traditional recommendation ideas, by 
the reconstruction of category projects through the 
combination of the user and the item, we can predict 
the users’ rating on the unobserved items (that is, 
predict users’ rating on the non-interactive items). If 
the information that the recommendation system can 
use is not limited to the interactive records of users 
and items, but contains a mix of auxiliary information, 
such as occupation, gender, age, and other infor-
mation about users, we need to consider whether the 
joint effect between different categories of infor-
mation has a positive effect on the recommendation 
results. Therefore, the DAN constructed in this study 
focuses on the impact of the joint effect of input 
projects on the recommendation results. DAN con-
siders the number of features at the element level to be 
huge in actual situations, which leads to the number of 
joint features increasing at the multiplier level, and 
makes it difficult to learn the model parameters. Thus, 
based on the project features at the vector level, we 
combine different categories of projects to construct 
new underlying input projects. Finally, to explore the 
influence of the combined effect of individual fea-
tures and joint features on recommendation effec-
tiveness, we combine the two models of multi-layer 
perceptron (MLP) and DAN, and compare the rec-
ommendation results of the different models. 
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3  Related works 
 

The related works cover two systems: traditional 
recommendation systems and deep learning recom-
mendation systems. The classical technique in tradi-
tional recommendation systems is CF, and CF based 
on matrix decomposition has been widely used. 
However, the classical recommendation model for 
deep learning is the MLP model. 

3.1  Traditional recommendation 

Reports in the early literature on recommenda-
tion systems focused mainly on explicit feedback, but 
due to the difficulty in data collection in explicit 
feedback, the focus in recommendation systems 
shifted to implicit feedback. CF can be used for im-
plicit feedback, which transforms the recommenda-
tion task into a list of items matching the user’s pref-
erences. Unlike the widely used rating prediction for 
explicit feedback, solving the item recommendation 
problem is more in line with the actual needs of users. 

The core idea of CF is to make a recommenda-
tion based on the preferences of users with the same 
interest. This kind of recommendation can be divided 
into two forms: user-based recommendation and 
item-based recommendation. User-based CF rec-
ommendation measures the similarity among users 
through their behaviors toward different items, finds 
“neighbor users,” and makes recommendations based 
on such a similarity. The essence is to recommend to 
the target user what his/her neighbor likes. The prin-
ciple of item-based CF recommendation is similar to 
that of user-based CF recommendation, except that 
similar neighbors are calculated from the perspective 
of the project, not from the perspective of the user. In 
other words, the system finds similar projects and 
recommends similar projects to target users. Overall, 
user- and item-based recommendations are applicable 
to different scenarios. For large e-commerce sites, the 
number of users is much larger than that of items, and 
the items are relatively stable, so it is appropriate to 
adopt item-based CF recommendation. Of course, 
user-based CF recommendation mechanisms are 
more effective in systems with social attributes. 

When recommendation based on matrix de-
composition is adopted, a rating matrix can be de-
composed into two matrices about users and items, 
and each user and item can be represented by a po-

tential eigenvector. The evaluation score ,î jr  of user i 

on item j can be expressed by the following formula 
(Xiong et al., 2018): 

 

T
,

1

ˆ ,
K

i j i j ik kj
k

r p q


 p q                    (2) 

 

where K represents the dimensionality of potential 
eigenvectors, and pi and qj represent the potential 
eigenvectors of users and items, respectively. To learn 
the potential pi and qj, we usually use the square of the 
error between the original score and the prediction 
score as the loss function, and solve it using the gra-
dient descent method to minimize the error loss. Here, 
we can use the product of pi and qj to predict users’ 
ratings, and recommend several items with high rat-
ings to the user. 

3.2  Deep learning recommendation 

As for deep learning recommendations, the early 
work used a two-layer restricted Boltzmann machine 
(RBM) to simulate users’ ratings (Jia et al., 2016). 
Subsequently, autoencoders became the general 
choice for recommendation systems. Autoencoders 
take the users’ historical ratings as input, and recon-
struct the users’ ratings by learning the hidden struc-
ture (Ma et al., 2018). To avoid the autoencoders 
learning constant functions, some researchers applied 
denoising autoencoders to accept corrupted data as 
input (Marchi et al., 2015). Zheng et al. (2016) pro-
posed a neural autoregressive method for CF. He et al. 
(2017, 2018) designed the common framework of 
neural CF (NCF) based on the classical deep learning 
model, MLP. The above studies demonstrate the ef-
fectiveness of deep neural networks for recommen-
dation systems. Specifically, the main architecture 
and idea behind the classical MLP deep neural net-
work model is described as follows. 

The generalized MLP is extended from the sim-
ple perceptron, and its main feature is that it has 
multiple layers of neurons. The network structure of a 
simple perceptron is depicted in Fig. 1. 

For the perceptron model, the input signal and 
output signal simulate the biological input neuron and 
output neuron, respectively. The weight simulates the 
axon, which is the transmission mechanism between 
the input neuron and receiving neuron. Activation 
functions mimic the work of neural transmission.  
The biases simulate the structure of the synapse,  
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indicating the extent to which neurons are easily ac-
tivated (Liu WB et al., 2017). 

 
 
 
 
 
 
 
 
 
 
 

 
 

Assume that the input signal of the perceptron is 
x (xún), which is an n-dimensional vector. The input 
vector is received by the receiving neuron through the 
input neurons, and each input neuron has a weight that 
represents the weight of the input vector at the cor-
responding position. The weight is represented by wi, 
and the bias is represented by b. The input of a simple 
perceptron can be expressed as 
 

1 1 2 2

T

1

...

= ,

n n

n

i i
i

z w x w x w x b

w x b b


    

   w x
              (3) 

 

where w, xún are n-dimensional vectors. The output 
of the perceptron can be expressed as y=f(z), where f 
is the activation function of the neuron. However, a 
single-layer perceptron is limited to learning linear 
functions and cannot effectively learn nonlinear data. 
In theory, a multi-layer network can simulate any 
complex function. Therefore, the MLP model is gen-
erated by increasing the number of network layers 
based on the single-layer perceptron. The number of 
hidden layers is not specified in MLP, and there is no 
limit on the number of neurons of hidden layers and 
the output layer, which can be selected according to 
their own needs. The activation function of MLP is 
usually a nonlinear one, and adding the activation 
function can enable the neural network to deal with 
more complex nonlinear problems.  

The input data set of MLP is X=[x1, x2, …, xm], 
where m represents the sample size, and xi (i=1, 2, …, 
m) represents a single training sample. In the previous 

expression, xiún, and its components are i
jx  (j=1, 

2, …, n), where n is the dimensionality of the input 
vector. For a sample xi in the input sample data set, the 
process of obtaining the output result using MLP is as 
follows. Here, the inputs of the model are represented 
by zi (i=1, 2, …, L), and the outputs of the middle 
layer by λi. 

The input of the first layer is  
 

1 1 2( , ,..., ).i i i i
nx x x z x                    (4) 

 

The output of the first layer is  
 

1 1 1 2( , ,..., ).i i i
nx x xλ                      (5) 

 

The input of the second layer is shown as 
 

2 21 22 2

T T T
21 1 21 22 1 22 2 1 2

( , ,..., )

( , ,..., ),

k

k k

z z z

b b b



   

z

W λW Wλ λ
  (6) 

 
where k represents the number of neurons in the 

second layer, and T
2iW  (i=1, 2, …, k) denotes the 

weight vector of layer 1 pointing to the ith neuron of 
layer 2. 

The output of the second layer is 
 

T
2 2 2 2 2 1 2( ) ( ).   λ λz W b                   (7) 

 

The output of the third layer is  
 

T
3 3 3 2 3( ). λ bλW                         (8) 

 

The output of the Lth layer is 
 

T
1( ),L L L L L  λ λW b                      (9) 

 

where i (i=1, 2, …, L) represents the activation 

function of layer i, T
iW  (i=2, 3, …, L) denotes the 

weight matrix transposition that layer i−1 points to 
layer i, and bi (i=1, 2, …, L) represents the bias. 

The final output result of the output layer is  
 

T T T
1ˆ ( ) ( ( )),L L L L Ly      h h W bλ λ      (10) 

 
where σ represents the activation function of the 
output layer, and hT represents the weight matrix 
transposition of the output layer. The schematic of 
MLP can be depicted in Fig. 2. 

Fig. 1  Simple perceptron model 
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4  The proposed model 

 
In this section, we first introduce the extended 

MLP, which is the basis of our proposed model. Then, 
we explore the influence that the different types of 
joint actions may have on the recommendation results, 
and based on the above analysis, we put forward DAN 
for recommendation. Lastly, to learn the parameters 
of the proposed model, we provide our loss function 
designed for optimization. 

4.1  Extended multi-layer perceptron 

In this study, the input of the MLP model is not 
limited to the data of one category, but contains the 
raw data of multiple categories such as users, movies, 
occupation, gender, and age. Therefore, the input of 
the extended MLP adopted in this study is [U, I, O, G, 
A], U=(u1, u2, …), I=(i1, i2, …), O=(o1, o2, …), G=(g1, 
g2, …), A=(a1, a2, …), where U, I, O, G, and A rep-
resent the data sets of users, items, occupations, 
genders, and ages, respectively. uiúm (i=1, 2, …) 
represents a single training sample, and its compo-

nents are i
ju  (j=1, 2, …, m), i.e., 1 2( , ,..., ),i i i i

mu u uu  

where m denotes the dimensionality of the user vector. 

In the same way, we can find that 1 2( , ,..., ),i i i i
ni i ii  

1 2=( , ,..., ),i i i i
so o oo 1 2=( , ,..., ),i i i i

vg g gg 1 2=( , ,..., ),i i i i
ra a aa  

where n, s, v, and r represent the dimensionalities of 
the item, occupation, gender, and age, respectively. 
For a sample [ui, ii, oi, gi, ai] (i=1, 2, …) in the input 
sample data set, the process of obtaining the output 
result using the extended MLP is as follows. Similarly, 
the inputs of the model are represented by zi (i=1, 
2, …, L), and the outputs of the middle layer by λi. 

The input of the first layer is  
 

1 [ , , , , ].i i i i iz u i o g a                      (11) 
 

The output of the first layer is shown as  
 

1 11 12 13 14 15

1 1 2 1 1 2

[ , , , , ]

[ ( , ,..., ),..., ( , ,..., )].m ru u u a a a 




λ λ λ λ λ λ
    (12) 

 

The output of the second layer is shown as  
 

2 21 22 23 24 25

T
2 2 1 2

T T
2 21 11 21 2 25 15 25

[ , , , , ]

( )

[ ( ),..., ( )].b b



 



 

  

W b

W W

λ λ λ λ λ λ

λ

λ λ

  (13) 

 

The output of layer L is 
 

T
1 2 3 4 5 1

T T
1 ( 1)1 1 5 ( 1)5 5

[ , , , , ] ( )

[ ( ),..., ( )].

L L L L L L L L L L

L L L L L L L Lb b



 


 

  

  

λ λ λ λ λ λ W λ b

W λ W λ
 (14) 

 
The result of the output layer is 
 

T T T
1 ( 1)1 1

T
5 ( 1)5 5

ˆ ( ) ( (( )

                      ... ( ))).

L L L L L

L L L

y b

b

   



  

  

h λ h W λ

W λ
      (15) 

 
What needs to be explained is that recommen-

dation systems usually use one-hot encoding to con-
vert the input variables into a form that can be easily 
used by a computer. However, the vector transformed 
by one-hot encoding is high-dimensional and sparse. 
The embedding layer can convert a high-dimensional 
sparse vector into a dense one, which is convenient 
for computer processing. Based on the above analysis, 
the schematic of the extended MLP in this study can 
be expressed as Fig. 3. 

4.2  Deep association neural network 

In practice, the features of each field are not in-
dependent, and some features always interact with 
each other. Indeed, in recommendation systems, the 
interactions between different features also suggest a 
joint effect between them. At the same time, by ob-
serving a large amount of sample data, after some 
features are combined, the correlation with the target 
results will be improved. The polynomial model is the 
most intuitive one that contains joint features. For 
comparison, we focus only on the second-order 

Fig. 2  Classical multi-layer perceptron model 

Input layer

Hidden layer

Output layer

x1 x2 xn b1...

z2,1 z2,2 z2,k b2

bLzL,1 zL,2 zL,m

ŷ1 ŷ2
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...
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polynomial model. The expression for the polynomial 

model can be shown as 
1

0 1 1
.



  
  n n

ij i ji j i
y w w x x  

Here, the bias is represented by w0, with the combi-
nation of features xi and xj represented by xixj. When 
both xi and xj are non-zero, the feature combination 
xixj is meaningful. In addition, the interaction weight 
between xi and xj is denoted by wij. 

Note that, for the problem of second-order pol-
ynomial regression, if the number of input data fea-
tures is n, then the feature interactions wij that need to 
be learned have a total number of n(n−1)/2. When the 
number of features in the actual situation is large, it 
will cause difficulty in learning interactive parameters. 
In addition, after being encoded by one-hot encoding, 
most features of sample data are sparse. When the 
feature in any sample data is 0, it is impossible to 
learn the interaction weight wij between other features 
and this feature.  

We can consider matrix decomposition to solve 
this problem. Since joint features xixj and xjxi are 
equivalent, it can be concluded that interaction 
weights wij and wji are equivalent (that is, wij=wji). In 
this case, all of the interaction weights form a sym-
metric matrix. Since weight wii is meaningless, the 
diagonal elements of the symmetric matrix equal 0. 
The above matrix is decomposed into the product  
of two lower-order matrices, which can avoid the 
difficulty in learning wij. Thus, the second- 
order polynomial model can be expressed as 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1

0 , ,1 1 1
,



   
   n n k

i f j f i ji j i f
y w v v x x  where vi,f and 

vj,f represent the hidden factors of features xi and xj, 
respectively. The product of vi and vj can be used to 
predict the interaction weight wij between xi and xj.  

However, there are some limitations in using 
matrix decomposition to predict the weight of inter-
active features. Matrix decomposition uses the prod-
uct of two hidden vectors to estimate the interaction 
between two features. It assumes that each hidden 
factor in the two hidden vectors is independent, and 
they are combined linearly with the same weight. This 
simple approach is insufficient for capturing the 
complex interactions between different features. 

On the other hand, in the study of combined 
features using deep neural networks, the common 
mode with underlying data is to convert all features 
with one-hot encoding. In other words, all features are 
encoded uniformly, and different combined features 
are not distinguished at the bottom (Guo et al., 2017). 
In this way, the mixed data is put into the neural 
network after all the features are mixed. If the total 
number of features is n, this method nominally ana-
lyzes the influence of the nth-order combined features 
on the output. However, it is not wise to classify all 
the features into one combination, and it is even more 
difficult to mine the effects of combination. 

The limitations of the above methods are shown 
as follows: the above research predicts the interaction 
between all features by matrix decomposition. Yet, in 

Fig. 3  The extended multi-layer perceptron 
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actual situations, there is no interaction between some 
features, so it is meaningless to calculate the interac-
tion weight wij between these features, and it will also 
interfere with the output. We explain this with a sim-
ple example. Table 1 shows part of the user rating 
information on movies, and each row represents the 
rating information for a user. 

 
 
 
 
 
 
 
 
The “Rating” type in Table 1 is a numeric system, 

and it is labeled in the rating system of Movies. 
“Movie,” “Genre,” “Occupation,” and “Gender” all 
belong to categorical variables which need to be 
converted into numerical features through encoding. 
The encoded data is shown in Table 2. 

Excluding the labels, the categorical variables of 
these two records can be encoded into 10 features. In 
the second-order polynomial model, there are 
n(n−1)/2=45 kinds of combinations for these features. 
However, there are many combined features without 
practical significance. For example, in the case of 
“Gender,” the combination of “male” and “female” 
does not make sense, because a single user’s gender 
could only be “male” or “female.” Furthermore, when 
it comes to “occupation,” it does not make much 
sense for a user to be both a lawyer and a student. In 
the feature combination of “Genre,” if the features 
“comedy” and “drama” are combined, on the surface, 
the learned weight w is the interaction parameter of 
these two features. Yet, fundamentally speaking, the 
objects described by these two features are the same 
movie, and the interaction weight of these two fea-
tures is also the weight for the same movie “3 Idiots.” 
However, there still exist some problems if combina-
tions of “Genre” are (comedy, adventure), (comedy, 
children’s), (drama, adventure), and (drama, 
 

 
 
 
 
 

children’s). For example, like the case in the above 
analysis, if these feature combinations potentially 
represent the same movie, then it does not make sense 
to obtain the interaction weight of these features. On 
the contrary, if these feature combinations represent 
different movie combinations, their interaction 
weights express the interactive effect of different 
genres on the user rating. However, a problem coming 
with this is that a single user rarely watches two or 
more movies at the same time and rates them. The 
reality is that users watch different movies at different 
times. In other words, two movies correspond to two 
labels, which show two records in the one-hot en-
coded data table. The interaction weight obtained by 
such a feature combination is not consistent with our 
intention, and what we need is the result when the 
user conforms to features xi and xj under the same 
condition. Similar to the classical example of “beer” 
and “diapers,” it is emphasized that a user purchases 
“diapers” as well as “beer,” and the combination of 
“beer” and “diapers” occurs during the same shop-
ping trip. 

Combined with the above analysis, we find that a 
feature combination within the same categorical var-
iable tends to produce some meaningless interaction 
weights. These meaningless weights may even inter-
fere with the output of the model. Compared with the 
above feature combinations, feature combinations 
between different categories are more likely to exist 
and more acceptable, so they are more valuable for 
research. An example is the feature combinations of 
(attorney, male) and (student, female), which suggest 
that there is a male attorney or a female student. Of 
course, although the above encoded data is not shown, 
the feature combination of (attorney, female) and 
(student, male) also makes sense. 

In addition, it is found that in the feature sets 
composed by a variety of categorical variables, the 
local features covered by some categories are the 
ductility features of other categorical variables. For 
example, as shown in Table 1, the features covered by 
the categorical variable “Genre” are the expansion 
 

 
 
 
 
 

Table 1  Part of the user rating information 

Rating Movie Genre Occupation Gender
3 3 Idiots Comedy, 

drama 
Attorney Male 

4 Jumanji 
(1995) 

Adventure, 
children’s 

Student Female

Table 2  Encoded user rating information 

Rating 
Movie= 
3 Idiots 

Movie= 
Jumanji 
(1995) 

Genre= 
Comedy 

Genre= 
Drama 

Genre= 
Adventure

Genre= 
Children’s

Occupation=
Attorney 

Occupation= 
Student 

Gender= 
Male 

Gender=
Female

1 1 0 1 1 0 0 1 0 1 0 
1 0 1 0 0 1 1 0 1 0 1 
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features of another category “Movie.” Specifically, 
the features “comedy” and “drama” for categorical 
variable “Genre” essentially describe “3 Idiots,” 
which is included in the categorical variable “Movie.” 
Therefore, it is not appropriate to combine features of 
different categories when they have a dependent re-
lationship as described above. 

Based on the above analysis, consider that the 
total number of categories in the original input data is 
limited compared with that of the features, and that a 
single categorical variable is a vector composed of 
multiple features. For a new data set, the features of 
different categories are combined according to the 
categories contained in the data set, and the combi-
nation of category features that have a membership 
relationship is eliminated to form a potential new 
category feature. Unlike traditional studies that fea-
ture interactions occurring at the element level, the 
new feature combinations adopt the method of cate-
gory vector combinations. Each new feature is nu-
merically encoded, and the encoded input data is 
mapped into a potential representation of the new 
feature through the embedding layer, and then sent to 
the neural network for learning. 

In this study we select features of five categories 
in the public data set “MovieLens,” including user, 
film, occupation, gender, and age. U, I, O, G, and A 
represent the feature data sets of the five categories. In 
this study, based on the above analysis about feature 
association, the features of the five categories are 
used to form four newly combined features, which are 
the combinations of user and film, occupation and 
gender, age and gender, and occupation and age. The 
new features are represented by <U·I>, <O·G>, 
<A·G>, <O·A>. The representation of the input for 

the DAN model is ( )l
iz , which denotes the input of the 

ith neuron in layer l. The output is represented by ( )l
ia , 

which represents the output of the ith neuron in layer l. 
The neuron connection weights between layers are 

represented by ( )l
ijW , which represents the weight 

from the jth neuron in the lth layer to the ith neuron in 
the (l+1)th layer. l represents the activation function 
of the output layer, and i (i=1, 2, …, l−1) represents 
the activation function in the ith layer. The process for 
a sample using DAN to obtain a prediction result is 
described as follows. 

The first layer of DAN is the preparation layer, 
and its output can be obtained by combining the fea-
tures of categorical variables. The training sample set 
is represented by (X, Y), and the format of a single 
training sample is (X(s), Y(s)), which indicates the sth 
training sample. 

 
( ) ( ) ( ) ( ) ( ) ( )[ , , , , ],s s s s s sX U I O G A             (16) 

( ) 1,     if ratings are observed,

0,     otherwise.
sY


 


      (17) 

 
The input for the DAN preparation layer is 
 

(1) ( ) ( ) ( ) ( ) ( ) ( )[ , , , , ].s s s s s s z X U I O G A        (18) 

 
The output of the ith neuron in the preparation layer is 
 

(1) ( )
1( ) ( ,1),   0,1,..., ,s

i C i l   X E          (19) 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( , ,

      , ),

s s s s

s s s s

      

     

E U I O G

A G O A
           (20) 

 
where φ denotes the combination function that rep-
resents the combination mechanism of categorical 
vectors, E represents different combinations of cate-
gorical vectors, and l1 represents the number of neu-
rons in the preparation layer. 

The input data for DAN is essentially a matrix 
recombined by the categorical vectors contained in 
the original data, which is a three-dimensional tensor 
representing a new category project in the potential 
sense. The schematic of the input data can be ex-
pressed as follows. 

As shown in Fig. 4, both x=[x1, x2, …, xi] and 
y=[y1, y2, …, yj] represent the input category matrices, 
where the components xa (a=1, 2, …, i) and yb (b=1, 
2, …, j) have dimensionalities of m and n, respectively. 
The category matrices x and y are combined to form a 
three-dimensional tensor, which is represented by 
symbol xy, where the single matrix formed by the 
three-dimensional tensor has the form of m rows and 
n columns. 

Therefore, the input for the DAN input layer is 
 

1

(2) (1) (1) (1) (1)
0 1( , ,..., ).l   z λ           (21) 
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The output of the input layer is 
 

1

(2) (2) (1) (1) (1)
2 2 0 1( ) ( , ,..., ),l     z        (22) 

 

where the ith neuron in λ(2) can be represented as (2)
i . 

The input layer in DAN is followed by the embedding 
layer, which is used to map the new features to po-
tential feature vectors. In the following formulae, i 
represents the ith neuron, and the input of the ith neu-
ron in the embedding layer is expressed as 

 
( 2)

(3) (2) (2)
2

1

,
n

i ij j
j

z W b


                  (23) 

 
where n(2) stands for the number of neurons in the 
front layer. Usually, to improve the calculation effi-
ciency, additional neuron nodes a0=1 are introduced, 
and the original bias is represented by symbol w0. In 

the current situation, it is expressed as (2)
0 =1,  b2=w0. 

After the form is changed, the input of the em-
bedding layer can be expressed as follows: 

 
( 2) ( 2)

( 2)

(3) (2) (2) (2) (2) (2) (2)
2 0 0

1 1

(2) (2)

0

.

n n

i ij j ij j i
j j

n

ij j
j

z W b W W

W

  



 



   



 


 (24) 

The output of the embedding layer can be expressed 
as 

( 2)

(3) (3) (2) (2)
3 3

0

( ) .
n

i i ij j
j

z W   


 
   

 
             (25) 

 

The fourth layer of DAN is the first hidden layer, and 
its input is 
 

(3) (3)

(4) (3) (3) (3) (3)
3

1 0

.
n n

i ij j ij j
j j

z W b W 
 

            (26) 

 

The output of the first hidden layer is 
 

(3)

(4) (4) (3) (3)
4 4

0

( ) .
n

i i ij j
j

z W   


 
   

 
           (27) 

 

Similarly, the output of the fifth layer, namely the 
second hidden layer, can be expressed as 
 

( 4)

(5) (5) (4) (4)
5 5

0

( ) .
n

i i ij j
j

z W   


 
   

 
           (28) 

 

The input of the last layer is 
 

( 1)

( ) ( 1) ( 1)

0

.
ln

l l l
i ij j

j

z W 


 



                     (29) 

 
The output of the last layer, namely the output layer, 
can be expressed as 
 

( 1)

( ) ( ) ( 1) ( 1)

0

( ) .
ln

l l l l
i l i l ij j

j

z W   


 



 
   

 
       (30) 

 

Based on the above analysis, the overall structure of 
DAN is as shown in Fig. 5. 

4.3  Parameter learning 

A key issue for recommendation is to define a 
loss function based on the observed data and contin-
uously optimize the model parameters with the goal 
of minimizing error losses. In terms of model pa-
rameter learning, the existing point-by-point method 
uses mainly the mean square error for regression: 

 
2

sqr
,

ˆ( ) ,
 

  ij ij ij
i j y y

L w Y Y               (31)  
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Fig. 4  Category composition of the input data for the 
DAN model 
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where y represents the information that users have 
participated in the rating, and y− represents the nega-
tive sample information, that is, the information that 
users did not watch and did not participate in the 
rating. wij represents a super parameter, which shows 
the weight of the training instance (i, j). Considering 
that a recommendation with implicit feedback in-
volves a problem of binary classification, the target 
value Yij is represented by binary value “0” or “1”; “1” 
means there is interaction between i and j, and “0” 
means there is no interaction. Since there are only two 
fixed target values for the binary classification prob-
lem, training the model with the mean square error 
method will cause the parameter adjustment gradient 
to be too large or too small, which will further lead to 
deviations in the prediction results. Thus, for the bi-
nary classification problem, it is not suitable to take 
the mean square error as the loss function. 

Essentially, for the binary classification problem, 
the output of neurons in the output layer reflects the 
interaction probability between training instances. 
Since there are only two categories to choose, the 
probability distribution of the output layer obeys a 

Bernoulli distribution. Y{0, 1} is used to represent 
the category of the target value. Then the probability 
that the actual output value belongs to “1” or “0” is 
expressed as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1 1 ( )
1( 1| , ) ,L L Lp Y   λ W              (32) 

1 1 ( )
1( 0 | , ) 1 ,L L Lp Y    λ W           (33) 

 

where λL−1 is the output vector of the last hidden layer, 
and WL−1 is the connection weight matrix from the last 
hidden layer to the output layer. After the above two 
formulas are combined, they can be expressed by the 
following formula: 

 
1 1 ( ) ( ) 1

1 1( | , ) ( ) (1 ) .L L L Y L Yp Y     λ W      (34) 
 

Therefore, we can define the negative logarith-
mic likelihood function as the loss function based on 
the above equation, and the final form of the loss 
function can be obtained as follows: 
 

1 1

1 1

log( ( | , ))

(1 )log(1 ) log .

L L

L L

L p Y

Y Y 

  

    

 λ W
        (35) 

 

In this way, the parameter optimization problem 
of the model is transformed into the problem of 
minimizing the loss function value by adjusting the 
parameters of each layer. We can use the stochastic 
gradient descent algorithm to solve the problem. By 
applying such a probabilistic approach to the model, 
we transform the implicit feedback recommendation 
problem into a binary classification problem. 

Fig. 5  Deep association neural network model 
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5  Experiments 
 
We conducted a series of experiments based on 

an actual data set to answer the following questions: 
RQ1: Is the DAN method proposed in this study 

better than traditional methods? 
RQ2: Is there necessarily a linear relationship 

between the number of negative samples in training 
samples and the performance of the model? 

RQ3: Of the additional feature nodes and deep 
network structure, which is useful? 

5.1  Experimental settings 

Data set: We used the public data set “Mov-
ieLens,” which has been widely used in projects re-
lated to information filtering, CF, and recommenda-
tion systems. The version we used includes 100 000 
ratings from 943 users, who rated 1682 movies on a 
scale of 1 to 5, and each user had at least 20 data 
ratings. The data set contains user id, item id, rating, 
timestamp, age, gender, occupation, zip code, and 
other information. Although it is an explicit feedback 
data set, we can still use it to learn some implicit 
feedback. We converted the data set into implicit data, 
where “1” means that there is an interaction between 
the user and the item, and “0” means that there is no 
interaction. 

Evaluation schemes: To evaluate the perfor-
mance of the recommendation, we used the leave- 
one-out method, which is used to train and test the 
learner, and has been widely used (Bayer et al., 2017; 
Guo et al., 2017). The advantage of the leave-one-out 
method is that it is not affected by the random sample 
division approach, and the largest number of available 
samples is used for training in each iteration. Specif-
ically, the settings in our experiments are as follows. 
For each user, based on the time when the user rated 
the items, we took its last interaction as the test set 
and the rest of the data as the training set. In the 
evaluation process, we followed the main idea behind 
the common strategies (Elkahky et al., 2015; He et al., 
2016); i.e., for each user, we randomly selected 20 
items that did not interact with the user and ranked the 
test item among the 20 items. The model evaluation 
results were measured by the hitting ratio (HR) and 
normalized damage cumulative gain (NDCG) (He et 
al., 2017); if there was no special mention, we trun-
cated the ranking list at 10 for both metrics. The 

higher the values of HR@10 and NDCG@10, the 
better the recommendation effect. HR intuitively 
measures whether the test item is present on the 
top-10 list, and NDCG accounts for the position of the 
hit by assigning higher scores to hits at top ranks. In 
this experiment, the two metrics HR and NDCG were 
calculated for each test user and the mean values 
obtained. 

Baselines: The DAN approach proposed in this 
study was compared with the following methods: 

1. userKNN: This is the standard user-based CF 
algorithm. Compared with deep neural network 
recommendation, it is the most traditional recom-
mendation algorithm. 

2. GMF (generalized matrix factorization algo-
rithm): The algorithm is the interaction of the under-
lying factors of the user and the item. It decomposes 
the high-dimensional user-item scoring matrix into 
two low-dimensional factor matrices for the user and 
the item, and uses the inner product of these two ma-
trices to predict the user’s rating on unknown items. 

3. MLP: This algorithm is a feedforward neural 
network model with hidden layers, mapping multiple 
input data sets to the output. 

4. NCF: In terms of modeling the potential 
structure of the user/item, this algorithm unifies the 
linear modeling advantages of matrix decomposition 
and the nonlinear modeling advantages of MLP. 

Parameter settings: To determine the parameters 
of the method proposed in this paper, we extracted 
interactive data for each user as test data. We set the 
loss function of the model and used the corresponding 
optimizer to optimize the loss function to learn and 
adjust the parameters. We sampled two negative 
samples for each positive sample. For the model 
trained from the beginning, the Gaussian distribution 
with mean of 0 and standard deviation of 0.01 was 
used to randomly initialize the model parameters, and 
the Adam optimizer was used to optimize the model. 
Without special mention, DAN and MLP in this paper 
adopted three hidden layers, and the common tower 
structure was accepted (that is, the number of neurons 
in each layer was gradually reduced from bottom to 
top). To facilitate a comparison of the model’s basic 
performance, we unified the hidden layer structure of 
DAN and MLP in the experiment (that is, the number 
of neurons in the higher hidden layer was reduced by 
half compared with that in the previous hidden layer). 
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Because the last hidden layer of the model determines 
the model performance, we used it as the predictive 
factor. In this study, if the size of the predictive factor 
is 2, the structure of the hidden layer is 8-4-2, and the 
factor size of the embedding layer is 4. We used pre-
dictive factors of [2, 4, 8, 16, 32] and batch sizes of 
[60, 120, 240, 480, 960] for the model evaluation. To 
further explore the influence of the number of pre-
dictive factors on the model performance, we fixed 
the batch size to 480 and tested the model perfor-
mance when the predictive factors were [2, 4, 8, 16, 
32]. We tested the model performance in five different 
cases where the recommendation list was ranked [2, 4, 
6, 8, 10], and evaluated the performance of the model 
when the numbers of negative samples of the training 
samples were [2, 4, 6, 8, 10]. 

5.2  Performance comparison (RQ1) 

Fig. 6 shows the changes in HR@10 and 
NDCG@10 with the number of predictive factors 
under different training batches. For the userKNN 
model, we tested the performance under different 
numbers of neighbors. The GMF model needs to first 
encode the original data through one-hot encoding, 
and then sends the encoded data to the embedding 
layer. For the GMF model, the model performance 
was tested with different numbers of neurons in the 
embedding layer.  

First, we can see that DAN performed well on 
both HR and NDCG. The performance of DAN with 
different numbers of predictive factors was better than 
that of NCF. This demonstrates the advantage of DAN, 
which uses the association feature to learn implicit 
feedback. Second, NCF, GMF, and MLP also had 
good performance, of which NCF was better than 
GMF and MLP, because NCF combines GMF’s abil-
ity in linear expression with MLP’s nonlinear ex-
pression ability. In general, GMF was slightly better 
than MLP, but note that MLP can be further improved 
by adding hidden layers; however, we discuss only 
the case of three hidden layers here. Under the same 
conditions, compared with many other models, the 
traditional KNN model had the worst performance, 
which further verifies that the performance of a deep 
neural network is better than that of the traditional 
method. Moreover, we found that there was no ab-
solute positive or negative correlation between the 
number of predictive factors and the model perfor-

mance, which was inconsistent with our expectation. 
Within a certain range, the number of predictive fac-
tors that leads to the best performance is neither the 
highest, nor the lowest. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7 shows that the same training batch, 

learning rate, and ranking list were sampled in the 
experiment, and the performance of various models 
was different when different numbers of predictive 
factors were adopted. The training batch was selected 
as 480, the learning rate was 0.01, 10 was selected 
from the ranking list, and the numbers of predictive 
factors were selected as 2, 4, 8, 16, 32, respectively. 
This experimental setup was to explore the influence 
of the number of predictive factors on the model 
performance. Overall, we found that the performance 
of DAN was still better than those of other models. 
Similar to the results in Fig. 6, NCF, GMF, and MLP 
had good performance, and the performance of the 
traditional KNN model was unfavorable. However, 
the overall performance of MLP_5 was better than 
that of MLP_2, and even better than those of NCF and 
GMF at some nodes. The reason may be that MLP_5 
integrates auxiliary information based on the user and 
item, such as gender, age, and occupation. Compared 
with the traditional method, MLP_5 increased both 
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the depth and width of the model, enhancing the 
model’s ability to learn implicit feedback from 
large-scale data sets. Comparing Figs. 6 and 7, we 
found that the number of predictive factors (which 
also reflects the number of neurons in each hidden 
layer) is an important factor in determining the per-
formance of the model. In contrast, other parameters 
had limited effect on the model performance. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 shows the performance of the top-k rec-
ommendation list. The numbers of interceptions in the 
ranking list were 2, 4, 6, 8, and 10. As can be seen, the 
performance for DAN was still in an optimal position. 
The performances of NCF, MLP, and GMF were also 
good, and the performance of userKNN was the worst. 
These results were consistent with the above analysis. 
When there was an increase in k, HR and NDCG also 
gradually increased, and the performance of the 
model was gradually improved. 

5.3  Relationship between the number of negative 
samples and model performance (RQ2) 

To illustrate the influence of negative sampling 
on the model performance, different numbers of 
negative samples were used to compare the perfor-
mance. Under the premise that other parameters re-
main unchanged, we set the number of negative 

samples as 2, 4, 6, 8, and 10, respectively, to observe 
the relationship between the number of negative 
samples and the model performance. 

As shown in Fig. 9, the relationship between the 
number of negative samples and the model perfor-
mance is not very clear. What we can see is that 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)

2
Number of negative samples

3 5

0.80

H
R

@
1

0

(b)0.50

N
D

C
G

@
1

0

0.35

0.30

0.25

0.20

0.40

0.45

4 6 7 8 9 10

2 3 54 6 7 8 9 10

DAN
NCF
MLP
GMF

0.75

0.70

0.65

0.60

0.55

0.50

0.45

Number of negative samples

DAN
NCF
MLP
GMF

Fig. 9  HR@10 (a) and NDCG@10 (b) w.r.t. the number of 
negative samples 

(a)

5
Factors

10 15 20 25 30

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
R

@
1

0

(b)

DAN
NCF
MLP
GMF
KNN

DAN
NCF
MLP
GMF
KNN

5
Factors

10 15 20 25 30

0.40

N
D

C
G

@
1

0

0.35

0.30

0.25

0.20

0.15

0.10

0.05

Number of predictive factors 

Number of predictive factors 

Fig. 7  HR@10 (a) and NDCG@10 (b) w.r.t. the number of 
predictive factors 

(a)

2
k

3 5

0.2

0.5

0.6

H
R

@
k

(b)

DAN
NCF
MLP
GMF
KNN

DAN
NCF
MLP
GMF
KNN

0.40

N
D

C
G

@
k

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.1

0.3

0.4

4 6 7 8 9 10

2
k

3 54 6 7 8 9 10

Fig. 8  HR@k (a) and NDCG@k (b) w.r.t. k 



Wang and Tan / Front Inform Technol Electron Eng   2020 21(7):963-980 977

DAN still had a superior performance. Overall, in the 
local range, the more negative samples there were, the 
better the model performance was. However, the 
relationship is not absolute; when the number of 
negative samples continued to increase, the perfor-
mance showed sign of inversion.  

5.4  Deep learning vs. wide learning (RQ3) 

At present, deep structure neural networks have 
been applied in many fields and achieved a break-
through in large-scale data processing. Deep learning 
uses a deep network structure to learn the essential 
characteristics and implicit feedback of a data set. 
Another way is to try to obtain more effective rec-
ommendations by adding input data and feature nodes, 
that is, through increasing the width of the bottom 
layer of the model. It is necessary to further analyze 
the different performances of these two approaches. 
Based on the classical MLP model, we analyzed the 
performance of the deep neural network in depth 
using fewer feature nodes on the bottom layer (shown 
as “deep and narrow” in the network structure) and a 
shallow network with more feature nodes on the 
bottom layer (shown as “wide and shallow”). The 
experimental results are shown in Tables 3–6. With 
regard to the underlying data input in the experiment, 
the deep neural network with a “deep and narrow” 
structure selected the “user” and “item” indicators in 
the MovieLens data set, but the shallow network with 
a “wide and shallow” structure selected five indica-
tors: user, item, occupation, gender, and age. For ease 
of expression, we expressed the network model with 
two input indicators and n hidden layers as MLP_2_n, 
and the deep network model with five input indicators 
and n hidden layers as MLP_5_n. 

These tables showed that even for the model 
with the same input indicators, the increase in the 
number of layers was also conducive to an im-
provement of model performance. Under the same 
conditions, the average HR and average NDCG of 
MLP_5 were higher than the counterparts of MLP_2. 
This result has two implications: on one hand, it 
shows the effectiveness of using the deep structure 
model for recommendation; on the other hand, it 
shows that increasing the underlying width of the 
deep neural network (that is, enriching the feature 
categories of the underlying input) can improve the 
model performance based on the original deep neural 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

network. Note that even if the input data has abundant 
feature categories, if the advantages of the deep neu-
ral network are not fully used, the model performance 
will be inferior to that of the deep neural network 
model with fewer feature categories. 

Table 3  HR@10 of MLP_2_n with different layers 

Number 
of factors

HR@10 

MLP_
2_0 

MLP_
2_1 

MLP_ 
2_2 

MLP_ 
2_3 

MLP_
2_4 

1 0.400 0.405 0.425 0.452 0.405

2 0.405 0.452 0.476 0.524 0.524

4 0.429 0.452 0.524 0.548 0.595

8 0.385 0.405 0.476 0.550 0.560

16 0.350 0.400 0.452 0.500 0.550

32 0.381 0.476 0.548 0.560 0.561

64 0.333 0.405 0.405 0.545 0.530

128 0.400 0.452 0.476 0.490 0.500

Average 0.385 0.431 0.473 0.521 0.528

 

Table 4  NDCG@10 of MLP_2_n with different layers

Number 
of factors

NDCG@10 

MLP_
2_0 

MLP_
2_1 

MLP_ 
2_2 

MLP_ 
2_3 

MLP_
2_4 

1 0.364 0.204 0.217 0.350 0.453

2 0.189 0.339 0.235 0.235 0.265

4 0.153 0.223 0.158 0.259 0.222

8 0.202 0.181 0.229 0.231 0.268

16 0.180 0.172 0.195 0.205 0.250

32 0.174 0.202 0.254 0.204 0.244

64 0.141 0.170 0.200 0.240 0.222

128 0.216 0.176 0.220 0.215 0.202

Average 0.202 0.208 0.214 0.242 0.266

 

Table 5  HR@10 of MLP_5_n with different layers 

Number 
of factors

HR@10 

MLP_
5_0 

MLP_
5_1 

MLP_ 
5_2 

MLP_ 
5_3 

MLP_
5_4 

1 0.400 0.524 0.571 0.571 0.570

2 0.405 0.595 0.619 0.643 0.640

4 0.405 0.518 0.524 0.590 0.650

8 0.476 0.500 0.500 0.500 0.595

16 0.476 0.452 0.476 0.548 0.550

32 0.476 0.480 0.500 0.548 0.561

64 0.524 0.500 0.500 0.548 0.619

128 0.571 0.571 0.619 0.640 0.643

Average 0.467 0.518 0.539 0.574 0.604

 



Wang and Tan / Front Inform Technol Electron Eng   2020 21(7):963-980 978

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

6  Conclusions and future work 
 
In this work, we explored deep association 

networks (DAN) for recommendations. We designed 
a generic framework for DAN to simulate user–item 
interactions. The proposed model framework is sim-
ple and universal. We put forward a new way to study 
deep learning recommendations and provide guidance 
for further study of deep learning and recommenda-
tion systems. 

The proposed method can be used for personal-
ized recommendations in large-scale e-commerce 
platforms, and in various Internet life service plat-
forms based on various data derived from users and 
items, such as commodity recommendations, movie 
or music recommendations, and appropriate merchant 
recommendations.  

In future work, we will explore the internal 
personality characteristics of users based on the joint 
features of users, and promote this research to the 
fields of e-commerce recommendations, advertising 
promotion, and personalized user customizations, etc. 
At the same time, we will extend the DAN model to 
the combination of three or more feature categories, 
and further study the interaction between multiple 
input categories, which would help optimize the 
combination of feature categories in further improv-
ing the model performance. In addition, we are par-
ticularly interested in tracking users’ changes in 
preferences, and in exploring the factors that lead to 
such changes, such as the user’s own factors, or some 
other external factors. In this way, this study puts 
forward a new idea for research into recommendation 
systems. 
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