
Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 963

DAN: a deep association neural network approach for

personalization recommendation*

Xu-na WANG, Qing-mei TAN‡
College of Economic and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

E-mail: Xuna@nuaa.edu.cn; tanchina@nuaa.edu.cn

Received May 10, 2019; Revision accepted Oct. 9, 2019; Crosschecked June 22, 2020

Abstract: The collaborative filtering technology used in traditional recommendation systems has a problem of data sparsity. The
traditional matrix decomposition algorithm simply decomposes users and items into a linear model of potential factors. These
limitations have led to the low accuracy in traditional recommendation algorithms, thus leading to the emergence of recommen-
dation systems based on deep learning. At present, deep learning recommendations mostly use deep neural networks to model
some of the auxiliary information, and in the process of modeling, multiple mapping paths are adopted to map the original input
data to the potential vector space. However, these deep neural network recommendation algorithms ignore the combined effects of
different categories of data, which can have a potential impact on the effectiveness of the recommendation. Aimed at this problem,
in this paper we propose a feedforward deep neural network recommendation method, called the deep association neural network
(DAN), which is based on the joint action of multiple categories of information, for implicit feedback recommendation. Specifi-
cally, the underlying input of the model includes not only users and items, but also more auxiliary information. In addition, the
impact of the joint action of different types of information on the recommendation is considered. Experiments on an open data set
show the significant improvements made by our proposed method over the other methods. Empirical evidence shows that deep,
joint recommendations can provide better recommendation performance.

Key words: Neural network; Deep learning; Deep association neural network (DAN); Recommendation
https://doi.org/10.1631/FITEE.1900236 CLC number: TP391

1 Introduction

With the development of information technology,
information overload has become an increasingly
serious issue. The key to a personalized recommen-
dation system is to explore users’ preferences based
on their interactive behavior (such as ratings, clicks,
and comments) and provide users with personalized
services in line with their wishes and needs (Lu et al.,
2015).

For simplicity, we can regard the recommenda-
tion problem as a prediction of user preferences.

According to the explicit or implicit feedbacks of
users, a scientific method is adopted to predict users’
preference for projects (Yeung, 2016). The widely
used idea to achieve a personalized recommendation
is to explore users’ preferences based on their histor-
ical rating behavior or information (Jung, 2012;
Buettner, 2016). There are two types of historical
rating information, one of which has a rating of more
than two scales, and the other just two scales (Aiolli,
2014; Fu et al., 2019). For example, in the former case,
in the public data set “MovieLens,” users’ rating of a
movie is an integer between 1 and 5, which indicates
the users’ preference for the movie using the rating
data number. In the latter case, users express their
preferences for the project through a “like” or “dis-
like,” or suggest the users’ preferences through im-
plicit feedback that is expressed by the interaction

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* Project supported by the National Social Science Foundation of
China (No. 19AGL003)

 ORCID: Xu-na WANG, https://orcid.org/0000-0002-5882-9562
© Zhejiang University and Springer-Verlag GmbH Germany, part of
Springer Nature 2020

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 964

between users and projects (He et al., 2017). In recent
years, the high cost of collecting users’ historical
rating data and the fact that users’ ratings on multiple
scales tend to be concentrated around the central score
have led to a challenge in reflecting user preferences.
Thus, the interest in the former (that is, the multi-scale
rating) has gradually decreased (Li Y et al., 2019).
However, compared with the former case, it is rela-
tively easy to obtain implicit feedback for various
kinds of use, such as users’ purchase history, watch
history, and installed applications. Through the ex-
tension of implicit feedback information, users’
preferences can be further excavated from one field to
multiple fields, thereby improving the accuracy and
diversity of the recommendation. In the latter case
(that is, a binary rating), there is a growing tendency
toward studying implicit feedback recommendations.

At present, traditional recommendation algo-
rithms adopted by recommendation systems include
collaborative filtering (CF) and matrix decomposition.
Many researchers have launched some updated ver-
sions based on these classical algorithms (Barkan and
Koenigstein, 2016; Hernando et al., 2016; Ha and Lee,
2017). The CF algorithm holds that similar users have
the same or similar preferences for a certain project,
which determines the nearest neighbor of the target
user by analyzing the historical rating information,
and generates recommendations for target users based
on the neighbor ratings (Verstrepen et al., 2017).
However, the major drawback of a CF algorithm lies
in its data sparsity. In other words, due to the large
number of users and projects, most users rate only a
few projects (Zheng et al., 2016). In a historical rating
matrix composed of users and projects, we find that
the rating information for most positions in the matrix
is absent, which leads to low recommendation accu-
racy in traditional CF (Liu Y et al., 2018). The matrix
decomposition algorithm maps users and projects to
the shared potential space, and reconstructs the scor-
ing matrix using the inner product of the potential
feature matrix of the users and projects. With the help
of a gradient descent algorithm, the error loss between
the reconstructed scoring matrix and the original
scoring matrix is minimized (del Corso et al., 2019).
At present, a large amount of work has been done to
enhance the performance of matrix decomposition,
such as comprehensive integration of the matrix de-
composition algorithm and a neighborhood-based

recommendation algorithm (Wu et al., 2012; Cao et
al., 2018), integration of the matrix decomposition
algorithm and time information (Luo et al., 2018;
Xiao et al., 2018), and expanding it to factorization
machines (Zhou et al., 2018; Knoll et al., 2019).
However, the matrix decomposition algorithm as-
sumes that the user and the project are independent
for each dimension of the potential space, and linearly
combines them with the same weight (Li ZC and Tang,
2017). The matrix decomposition algorithm can be
regarded as a linear model of potential factors, but this
simple way of linearly combining the product of po-
tential features is not enough to capture the complex
structure of the interaction between users and projects
(He et al., 2017).

In recent years, owing to its strong learning
ability, deep learning has made real progress in image
processing, natural language processing, speech
recognition, and other fields, and this progress has
also introduced new opportunities for recommenda-
tion systems (Noda et al., 2015; Cheng et al., 2018;
Hossain and Muhammad, 2018). Deep learning uses a
deeper neural network to build the model and obtains
the nonlinear structural features of multi-sourced
heterogeneous information (Liu JT and Wu, 2017).
Recommendation systems based on deep learning
usually take data about users and projects as inputs,
learn more abstract and dense representations of fea-
tures, and generate recommendations for users based
on these implicit representations (Pan J et al., 2017).
Although some studies have applied deep neural
networks (DNNs) to recommendations and have been
shown to be effective, they mostly use DNNs to
model some of the auxiliary information, such as text
descriptions of recommended products, content de-
scriptions of videos, and visual descriptions of images.
For the key factors that affect the model’s effective-
ness, they still adopt traditional approaches, such as
top-level connections or the inner product, to combine
the potential characteristics of users and projects. In
addition, the basic idea of most deep learning rec-
ommendations is to set up two types of mapping
pathways, and to map the information of users and
projects into the same hidden space. There is a lack of
in-depth research on integrated recommendations
from users, projects, and auxiliary information, and
on recommendations derived from interactions of
multiple sources of information.

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 965

Based on the above analysis, in this study we
propose a recommendation method based on deep
neural networks—a deep association neural network
(DAN), and our work is concentrated on binary im-
plicit feedback. Compared with explicit feedback,
implicit feedback can be tracked automatically,
making it easier to collect on the part of content pro-
viders (Pan WK et al., 2019). Wang et al. (2020) fo-
cused on exploring the effects of different types of
joint forms on the final results of the model from the
perspective of different joint forms. In contrast, this
paper focuses on the alliance effect of different cat-
egory features, and explores the influence of category
feature alliance of the deep neural network on the
model recommendation effect from a macro perspec-
tive. In this paper we not only discuss the basic per-
formance of DAN, but also explore the performance
from two aspects of “depth” and “width” of the model.
To improve the recommendation accuracy, a neural
network that is three layers deep is adopted in DAN to
carry out the output vector. In addition, compared
with the traditional deep neural network, the DAN
model has the following contributions: First, DAN
incorporates multiple types of input vectors at the
bottom of the network, rather than just information
about users and projects. Second, DAN considers the
impact of joint characteristics derived from different
projects on the recommendation. Finally, when con-
sidering the influence of joint characteristics on the
model, DAN reconstructs the original feature projects
from the perspective of feature vectors.

2 Problem statement

In this paper we consider a typical recommen-

dation problem, the basic form of which is as follows.
For a recommendation system, the basic information
that can be collected includes users, items, users’
occupations, genders, ages, and user’s ratings of items.
Although the information about occupations, genders,
and ages may not be complete, it is still used in the
recommendation system. Here, we use U, I, O, G, and
A to represent the sets of users, items, occupations,
genders, and ages, respectively. Since we concentrate
our study on implicit feedback that is binary, we use
“1” and “0” to indicate whether there is an interaction
between the user and the item (He et al., 2017):

1, if interaction(user , item) is observed,

0, otherwise.

u i
y


 


 (1)

We obtain the user–item interaction y from the
users’ implicit feedback. Here y=1 indicates that there
is an interaction between the user and the item, and
the interaction can be the action of clicking, com-
menting, browsing, etc.; y=0 indicates that there is no
interaction between the user and the item. The value
of 0 may indicate that the user does not like the item,
or that the user is not aware of the item. The recom-
mendation problem with implicit feedback can be
expressed as the problem of estimating users’ ratings
on unobserved items (this score can be used to eval-
uate the ranking of items) (Hsu et al., 2018). The
classical recommendation approaches suggest that the
missing ratings can be generated by the underlying
model, and that the interactions between users and
items can be used to predict users’ ratings on the
unobserved items. In fact, if a user rates an item, then
there is an interaction between the user and the item.
In contrast to traditional recommendation ideas, by
the reconstruction of category projects through the
combination of the user and the item, we can predict
the users’ rating on the unobserved items (that is,
predict users’ rating on the non-interactive items). If
the information that the recommendation system can
use is not limited to the interactive records of users
and items, but contains a mix of auxiliary information,
such as occupation, gender, age, and other infor-
mation about users, we need to consider whether the
joint effect between different categories of infor-
mation has a positive effect on the recommendation
results. Therefore, the DAN constructed in this study
focuses on the impact of the joint effect of input
projects on the recommendation results. DAN con-
siders the number of features at the element level to be
huge in actual situations, which leads to the number of
joint features increasing at the multiplier level, and
makes it difficult to learn the model parameters. Thus,
based on the project features at the vector level, we
combine different categories of projects to construct
new underlying input projects. Finally, to explore the
influence of the combined effect of individual fea-
tures and joint features on recommendation effec-
tiveness, we combine the two models of multi-layer
perceptron (MLP) and DAN, and compare the rec-
ommendation results of the different models.

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 966

3 Related works

The related works cover two systems: traditional
recommendation systems and deep learning recom-
mendation systems. The classical technique in tradi-
tional recommendation systems is CF, and CF based
on matrix decomposition has been widely used.
However, the classical recommendation model for
deep learning is the MLP model.

3.1 Traditional recommendation

Reports in the early literature on recommenda-
tion systems focused mainly on explicit feedback, but
due to the difficulty in data collection in explicit
feedback, the focus in recommendation systems
shifted to implicit feedback. CF can be used for im-
plicit feedback, which transforms the recommenda-
tion task into a list of items matching the user’s pref-
erences. Unlike the widely used rating prediction for
explicit feedback, solving the item recommendation
problem is more in line with the actual needs of users.

The core idea of CF is to make a recommenda-
tion based on the preferences of users with the same
interest. This kind of recommendation can be divided
into two forms: user-based recommendation and
item-based recommendation. User-based CF rec-
ommendation measures the similarity among users
through their behaviors toward different items, finds
“neighbor users,” and makes recommendations based
on such a similarity. The essence is to recommend to
the target user what his/her neighbor likes. The prin-
ciple of item-based CF recommendation is similar to
that of user-based CF recommendation, except that
similar neighbors are calculated from the perspective
of the project, not from the perspective of the user. In
other words, the system finds similar projects and
recommends similar projects to target users. Overall,
user- and item-based recommendations are applicable
to different scenarios. For large e-commerce sites, the
number of users is much larger than that of items, and
the items are relatively stable, so it is appropriate to
adopt item-based CF recommendation. Of course,
user-based CF recommendation mechanisms are
more effective in systems with social attributes.

When recommendation based on matrix de-
composition is adopted, a rating matrix can be de-
composed into two matrices about users and items,
and each user and item can be represented by a po-

tential eigenvector. The evaluation score ,î jr of user i

on item j can be expressed by the following formula
(Xiong et al., 2018):

T
,

1

ˆ ,
K

i j i j ik kj
k

r p q


 p q (2)

where K represents the dimensionality of potential
eigenvectors, and pi and qj represent the potential
eigenvectors of users and items, respectively. To learn
the potential pi and qj, we usually use the square of the
error between the original score and the prediction
score as the loss function, and solve it using the gra-
dient descent method to minimize the error loss. Here,
we can use the product of pi and qj to predict users’
ratings, and recommend several items with high rat-
ings to the user.

3.2 Deep learning recommendation

As for deep learning recommendations, the early
work used a two-layer restricted Boltzmann machine
(RBM) to simulate users’ ratings (Jia et al., 2016).
Subsequently, autoencoders became the general
choice for recommendation systems. Autoencoders
take the users’ historical ratings as input, and recon-
struct the users’ ratings by learning the hidden struc-
ture (Ma et al., 2018). To avoid the autoencoders
learning constant functions, some researchers applied
denoising autoencoders to accept corrupted data as
input (Marchi et al., 2015). Zheng et al. (2016) pro-
posed a neural autoregressive method for CF. He et al.
(2017, 2018) designed the common framework of
neural CF (NCF) based on the classical deep learning
model, MLP. The above studies demonstrate the ef-
fectiveness of deep neural networks for recommen-
dation systems. Specifically, the main architecture
and idea behind the classical MLP deep neural net-
work model is described as follows.

The generalized MLP is extended from the sim-
ple perceptron, and its main feature is that it has
multiple layers of neurons. The network structure of a
simple perceptron is depicted in Fig. 1.

For the perceptron model, the input signal and
output signal simulate the biological input neuron and
output neuron, respectively. The weight simulates the
axon, which is the transmission mechanism between
the input neuron and receiving neuron. Activation
functions mimic the work of neural transmission.
The biases simulate the structure of the synapse,

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 967

indicating the extent to which neurons are easily ac-
tivated (Liu WB et al., 2017).

Assume that the input signal of the perceptron is
x (xún), which is an n-dimensional vector. The input
vector is received by the receiving neuron through the
input neurons, and each input neuron has a weight that
represents the weight of the input vector at the cor-
responding position. The weight is represented by wi,
and the bias is represented by b. The input of a simple
perceptron can be expressed as

1 1 2 2

T

1

...

= ,

n n

n

i i
i

z w x w x w x b

w x b b


    

   w x
 (3)

where w, xún are n-dimensional vectors. The output
of the perceptron can be expressed as y=f(z), where f
is the activation function of the neuron. However, a
single-layer perceptron is limited to learning linear
functions and cannot effectively learn nonlinear data.
In theory, a multi-layer network can simulate any
complex function. Therefore, the MLP model is gen-
erated by increasing the number of network layers
based on the single-layer perceptron. The number of
hidden layers is not specified in MLP, and there is no
limit on the number of neurons of hidden layers and
the output layer, which can be selected according to
their own needs. The activation function of MLP is
usually a nonlinear one, and adding the activation
function can enable the neural network to deal with
more complex nonlinear problems.

The input data set of MLP is X=[x1, x2, …, xm],
where m represents the sample size, and xi (i=1, 2, …,
m) represents a single training sample. In the previous

expression, xiún, and its components are i
jx (j=1,

2, …, n), where n is the dimensionality of the input
vector. For a sample xi in the input sample data set, the
process of obtaining the output result using MLP is as
follows. Here, the inputs of the model are represented
by zi (i=1, 2, …, L), and the outputs of the middle
layer by λi.

The input of the first layer is

1 1 2(, ,...,).i i i i
nx x x z x (4)

The output of the first layer is

1 1 1 2(, ,...,).i i i
nx x xλ (5)

The input of the second layer is shown as

2 21 22 2

T T T
21 1 21 22 1 22 2 1 2

(, ,...,)

(, ,...,),

k

k k

z z z

b b b



   

z

W λW Wλ λ
 (6)

where k represents the number of neurons in the

second layer, and T
2iW (i=1, 2, …, k) denotes the

weight vector of layer 1 pointing to the ith neuron of
layer 2.

The output of the second layer is

T
2 2 2 2 2 1 2() ().   λ λz W b (7)

The output of the third layer is

T
3 3 3 2 3(). λ bλW (8)

The output of the Lth layer is

T
1(),L L L L L  λ λW b (9)

where i (i=1, 2, …, L) represents the activation

function of layer i, T
iW (i=2, 3, …, L) denotes the

weight matrix transposition that layer i−1 points to
layer i, and bi (i=1, 2, …, L) represents the bias.

The final output result of the output layer is

T T T
1ˆ () (()),L L L L Ly      h h W bλ λ (10)

where σ represents the activation function of the
output layer, and hT represents the weight matrix
transposition of the output layer. The schematic of
MLP can be depicted in Fig. 2.

Fig. 1 Simple perceptron model

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 968

4 The proposed model

In this section, we first introduce the extended

MLP, which is the basis of our proposed model. Then,
we explore the influence that the different types of
joint actions may have on the recommendation results,
and based on the above analysis, we put forward DAN
for recommendation. Lastly, to learn the parameters
of the proposed model, we provide our loss function
designed for optimization.

4.1 Extended multi-layer perceptron

In this study, the input of the MLP model is not
limited to the data of one category, but contains the
raw data of multiple categories such as users, movies,
occupation, gender, and age. Therefore, the input of
the extended MLP adopted in this study is [U, I, O, G,
A], U=(u1, u2, …), I=(i1, i2, …), O=(o1, o2, …), G=(g1,
g2, …), A=(a1, a2, …), where U, I, O, G, and A rep-
resent the data sets of users, items, occupations,
genders, and ages, respectively. uiúm (i=1, 2, …)
represents a single training sample, and its compo-

nents are i
ju (j=1, 2, …, m), i.e., 1 2(, ,...,),i i i i

mu u uu

where m denotes the dimensionality of the user vector.

In the same way, we can find that 1 2(, ,...,),i i i i
ni i ii

1 2=(, ,...,),i i i i
so o oo 1 2=(, ,...,),i i i i

vg g gg 1 2=(, ,...,),i i i i
ra a aa

where n, s, v, and r represent the dimensionalities of
the item, occupation, gender, and age, respectively.
For a sample [ui, ii, oi, gi, ai] (i=1, 2, …) in the input
sample data set, the process of obtaining the output
result using the extended MLP is as follows. Similarly,
the inputs of the model are represented by zi (i=1,
2, …, L), and the outputs of the middle layer by λi.

The input of the first layer is

1 [, , , ,].i i i i iz u i o g a (11)

The output of the first layer is shown as

1 11 12 13 14 15

1 1 2 1 1 2

[, , , ,]

[(, ,...,),..., (, ,...,)].m ru u u a a a 




λ λ λ λ λ λ
 (12)

The output of the second layer is shown as

2 21 22 23 24 25

T
2 2 1 2

T T
2 21 11 21 2 25 15 25

[, , , ,]

()

[(),..., ()].b b



 



 

  

W b

W W

λ λ λ λ λ λ

λ

λ λ

 (13)

The output of layer L is

T
1 2 3 4 5 1

T T
1 (1)1 1 5 (1)5 5

[, , , ,] ()

[(),..., ()].

L L L L L L L L L L

L L L L L L L Lb b



 


 

  

  

λ λ λ λ λ λ W λ b

W λ W λ
 (14)

The result of the output layer is

T T T
1 (1)1 1

T
5 (1)5 5

ˆ () ((()

 ... ())).

L L L L L

L L L

y b

b

   



  

  

h λ h W λ

W λ
 (15)

What needs to be explained is that recommen-

dation systems usually use one-hot encoding to con-
vert the input variables into a form that can be easily
used by a computer. However, the vector transformed
by one-hot encoding is high-dimensional and sparse.
The embedding layer can convert a high-dimensional
sparse vector into a dense one, which is convenient
for computer processing. Based on the above analysis,
the schematic of the extended MLP in this study can
be expressed as Fig. 3.

4.2 Deep association neural network

In practice, the features of each field are not in-
dependent, and some features always interact with
each other. Indeed, in recommendation systems, the
interactions between different features also suggest a
joint effect between them. At the same time, by ob-
serving a large amount of sample data, after some
features are combined, the correlation with the target
results will be improved. The polynomial model is the
most intuitive one that contains joint features. For
comparison, we focus only on the second-order

Fig. 2 Classical multi-layer perceptron model

Input layer

Hidden layer

Output layer

x1 x2 xn b1...

z2,1 z2,2 z2,k b2

bLzL,1 zL,2 zL,m

ŷ1 ŷ2

...

...

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 969

polynomial model. The expression for the polynomial

model can be shown as
1

0 1 1
.



  
  n n

ij i ji j i
y w w x x

Here, the bias is represented by w0, with the combi-
nation of features xi and xj represented by xixj. When
both xi and xj are non-zero, the feature combination
xixj is meaningful. In addition, the interaction weight
between xi and xj is denoted by wij.

Note that, for the problem of second-order pol-
ynomial regression, if the number of input data fea-
tures is n, then the feature interactions wij that need to
be learned have a total number of n(n−1)/2. When the
number of features in the actual situation is large, it
will cause difficulty in learning interactive parameters.
In addition, after being encoded by one-hot encoding,
most features of sample data are sparse. When the
feature in any sample data is 0, it is impossible to
learn the interaction weight wij between other features
and this feature.

We can consider matrix decomposition to solve
this problem. Since joint features xixj and xjxi are
equivalent, it can be concluded that interaction
weights wij and wji are equivalent (that is, wij=wji). In
this case, all of the interaction weights form a sym-
metric matrix. Since weight wii is meaningless, the
diagonal elements of the symmetric matrix equal 0.
The above matrix is decomposed into the product
of two lower-order matrices, which can avoid the
difficulty in learning wij. Thus, the second-
order polynomial model can be expressed as

1

0 , ,1 1 1
,



   
   n n k

i f j f i ji j i f
y w v v x x where vi,f and

vj,f represent the hidden factors of features xi and xj,
respectively. The product of vi and vj can be used to
predict the interaction weight wij between xi and xj.

However, there are some limitations in using
matrix decomposition to predict the weight of inter-
active features. Matrix decomposition uses the prod-
uct of two hidden vectors to estimate the interaction
between two features. It assumes that each hidden
factor in the two hidden vectors is independent, and
they are combined linearly with the same weight. This
simple approach is insufficient for capturing the
complex interactions between different features.

On the other hand, in the study of combined
features using deep neural networks, the common
mode with underlying data is to convert all features
with one-hot encoding. In other words, all features are
encoded uniformly, and different combined features
are not distinguished at the bottom (Guo et al., 2017).
In this way, the mixed data is put into the neural
network after all the features are mixed. If the total
number of features is n, this method nominally ana-
lyzes the influence of the nth-order combined features
on the output. However, it is not wise to classify all
the features into one combination, and it is even more
difficult to mine the effects of combination.

The limitations of the above methods are shown
as follows: the above research predicts the interaction
between all features by matrix decomposition. Yet, in

Fig. 3 The extended multi-layer perceptron

0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 10 1

Activation function

Activation function

Activation function

Input layer

Embedding layer

Hidden layer

Output layer

User Item Occupation Gender Age

ŷ

…

lm ln ls lv lr

… … …

u
1mp

u
mkp

i
1np

i
nkp
o
1sp

o
skp

g
1vp g

vkp

a
1rp

a
rkp

...

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 970

actual situations, there is no interaction between some
features, so it is meaningless to calculate the interac-
tion weight wij between these features, and it will also
interfere with the output. We explain this with a sim-
ple example. Table 1 shows part of the user rating
information on movies, and each row represents the
rating information for a user.

The “Rating” type in Table 1 is a numeric system,

and it is labeled in the rating system of Movies.
“Movie,” “Genre,” “Occupation,” and “Gender” all
belong to categorical variables which need to be
converted into numerical features through encoding.
The encoded data is shown in Table 2.

Excluding the labels, the categorical variables of
these two records can be encoded into 10 features. In
the second-order polynomial model, there are
n(n−1)/2=45 kinds of combinations for these features.
However, there are many combined features without
practical significance. For example, in the case of
“Gender,” the combination of “male” and “female”
does not make sense, because a single user’s gender
could only be “male” or “female.” Furthermore, when
it comes to “occupation,” it does not make much
sense for a user to be both a lawyer and a student. In
the feature combination of “Genre,” if the features
“comedy” and “drama” are combined, on the surface,
the learned weight w is the interaction parameter of
these two features. Yet, fundamentally speaking, the
objects described by these two features are the same
movie, and the interaction weight of these two fea-
tures is also the weight for the same movie “3 Idiots.”
However, there still exist some problems if combina-
tions of “Genre” are (comedy, adventure), (comedy,
children’s), (drama, adventure), and (drama,

children’s). For example, like the case in the above
analysis, if these feature combinations potentially
represent the same movie, then it does not make sense
to obtain the interaction weight of these features. On
the contrary, if these feature combinations represent
different movie combinations, their interaction
weights express the interactive effect of different
genres on the user rating. However, a problem coming
with this is that a single user rarely watches two or
more movies at the same time and rates them. The
reality is that users watch different movies at different
times. In other words, two movies correspond to two
labels, which show two records in the one-hot en-
coded data table. The interaction weight obtained by
such a feature combination is not consistent with our
intention, and what we need is the result when the
user conforms to features xi and xj under the same
condition. Similar to the classical example of “beer”
and “diapers,” it is emphasized that a user purchases
“diapers” as well as “beer,” and the combination of
“beer” and “diapers” occurs during the same shop-
ping trip.

Combined with the above analysis, we find that a
feature combination within the same categorical var-
iable tends to produce some meaningless interaction
weights. These meaningless weights may even inter-
fere with the output of the model. Compared with the
above feature combinations, feature combinations
between different categories are more likely to exist
and more acceptable, so they are more valuable for
research. An example is the feature combinations of
(attorney, male) and (student, female), which suggest
that there is a male attorney or a female student. Of
course, although the above encoded data is not shown,
the feature combination of (attorney, female) and
(student, male) also makes sense.

In addition, it is found that in the feature sets
composed by a variety of categorical variables, the
local features covered by some categories are the
ductility features of other categorical variables. For
example, as shown in Table 1, the features covered by
the categorical variable “Genre” are the expansion

Table 1 Part of the user rating information

Rating Movie Genre Occupation Gender
3 3 Idiots Comedy,

drama
Attorney Male

4 Jumanji
(1995)

Adventure,
children’s

Student Female

Table 2 Encoded user rating information

Rating
Movie=
3 Idiots

Movie=
Jumanji
(1995)

Genre=
Comedy

Genre=
Drama

Genre=
Adventure

Genre=
Children’s

Occupation=
Attorney

Occupation=
Student

Gender=
Male

Gender=
Female

1 1 0 1 1 0 0 1 0 1 0
1 0 1 0 0 1 1 0 1 0 1

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 971

features of another category “Movie.” Specifically,
the features “comedy” and “drama” for categorical
variable “Genre” essentially describe “3 Idiots,”
which is included in the categorical variable “Movie.”
Therefore, it is not appropriate to combine features of
different categories when they have a dependent re-
lationship as described above.

Based on the above analysis, consider that the
total number of categories in the original input data is
limited compared with that of the features, and that a
single categorical variable is a vector composed of
multiple features. For a new data set, the features of
different categories are combined according to the
categories contained in the data set, and the combi-
nation of category features that have a membership
relationship is eliminated to form a potential new
category feature. Unlike traditional studies that fea-
ture interactions occurring at the element level, the
new feature combinations adopt the method of cate-
gory vector combinations. Each new feature is nu-
merically encoded, and the encoded input data is
mapped into a potential representation of the new
feature through the embedding layer, and then sent to
the neural network for learning.

In this study we select features of five categories
in the public data set “MovieLens,” including user,
film, occupation, gender, and age. U, I, O, G, and A
represent the feature data sets of the five categories. In
this study, based on the above analysis about feature
association, the features of the five categories are
used to form four newly combined features, which are
the combinations of user and film, occupation and
gender, age and gender, and occupation and age. The
new features are represented by <U·I>, <O·G>,
<A·G>, <O·A>. The representation of the input for

the DAN model is ()l
iz , which denotes the input of the

ith neuron in layer l. The output is represented by ()l
ia ,

which represents the output of the ith neuron in layer l.
The neuron connection weights between layers are

represented by ()l
ijW , which represents the weight

from the jth neuron in the lth layer to the ith neuron in
the (l+1)th layer. l represents the activation function
of the output layer, and i (i=1, 2, …, l−1) represents
the activation function in the ith layer. The process for
a sample using DAN to obtain a prediction result is
described as follows.

The first layer of DAN is the preparation layer,
and its output can be obtained by combining the fea-
tures of categorical variables. The training sample set
is represented by (X, Y), and the format of a single
training sample is (X(s), Y(s)), which indicates the sth
training sample.

() () () () () ()[, , , ,],s s s s s sX U I O G A (16)

() 1, if ratings are observed,

0, otherwise.
sY


 


 (17)

The input for the DAN preparation layer is

(1) () () () () () ()[, , , ,].s s s s s s z X U I O G A (18)

The output of the ith neuron in the preparation layer is

(1) ()
1() (,1), 0,1,..., ,s

i C i l   X E (19)
() () () ()

() () () ()

(, ,

 ,),

s s s s

s s s s

      

     

E U I O G

A G O A
 (20)

where φ denotes the combination function that rep-
resents the combination mechanism of categorical
vectors, E represents different combinations of cate-
gorical vectors, and l1 represents the number of neu-
rons in the preparation layer.

The input data for DAN is essentially a matrix
recombined by the categorical vectors contained in
the original data, which is a three-dimensional tensor
representing a new category project in the potential
sense. The schematic of the input data can be ex-
pressed as follows.

As shown in Fig. 4, both x=[x1, x2, …, xi] and
y=[y1, y2, …, yj] represent the input category matrices,
where the components xa (a=1, 2, …, i) and yb (b=1,
2, …, j) have dimensionalities of m and n, respectively.
The category matrices x and y are combined to form a
three-dimensional tensor, which is represented by
symbol xy, where the single matrix formed by the
three-dimensional tensor has the form of m rows and
n columns.

Therefore, the input for the DAN input layer is

1

(2) (1) (1) (1) (1)
0 1(, ,...,).l   z λ (21)

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 972

The output of the input layer is

1

(2) (2) (1) (1) (1)
2 2 0 1() (, ,...,),l     z (22)

where the ith neuron in λ(2) can be represented as (2)
i .

The input layer in DAN is followed by the embedding
layer, which is used to map the new features to po-
tential feature vectors. In the following formulae, i
represents the ith neuron, and the input of the ith neu-
ron in the embedding layer is expressed as

(2)

(3) (2) (2)
2

1

,
n

i ij j
j

z W b


  (23)

where n(2) stands for the number of neurons in the
front layer. Usually, to improve the calculation effi-
ciency, additional neuron nodes a0=1 are introduced,
and the original bias is represented by symbol w0. In

the current situation, it is expressed as (2)
0 =1, b2=w0.

After the form is changed, the input of the em-
bedding layer can be expressed as follows:

(2) (2)

(2)

(3) (2) (2) (2) (2) (2) (2)
2 0 0

1 1

(2) (2)

0

.

n n

i ij j ij j i
j j

n

ij j
j

z W b W W

W

  



 



   



 


 (24)

The output of the embedding layer can be expressed
as

(2)

(3) (3) (2) (2)
3 3

0

() .
n

i i ij j
j

z W   


 
   

 
 (25)

The fourth layer of DAN is the first hidden layer, and
its input is

(3) (3)

(4) (3) (3) (3) (3)
3

1 0

.
n n

i ij j ij j
j j

z W b W 
 

    (26)

The output of the first hidden layer is

(3)

(4) (4) (3) (3)
4 4

0

() .
n

i i ij j
j

z W   


 
   

 
 (27)

Similarly, the output of the fifth layer, namely the
second hidden layer, can be expressed as

(4)

(5) (5) (4) (4)
5 5

0

() .
n

i i ij j
j

z W   


 
   

 
 (28)

The input of the last layer is

(1)

() (1) (1)

0

.
ln

l l l
i ij j

j

z W 


 



  (29)

The output of the last layer, namely the output layer,
can be expressed as

(1)

() () (1) (1)

0

() .
ln

l l l l
i l i l ij j

j

z W   


 



 
   

 
 (30)

Based on the above analysis, the overall structure of
DAN is as shown in Fig. 5.

4.3 Parameter learning

A key issue for recommendation is to define a
loss function based on the observed data and contin-
uously optimize the model parameters with the goal
of minimizing error losses. In terms of model pa-
rameter learning, the existing point-by-point method
uses mainly the mean square error for regression:

2

sqr
,

ˆ() ,
 

  ij ij ij
i j y y

L w Y Y (31)

..
.

x11 x12 x1m

x21 x22 x2m

xi1 xi2 xim

..
.

..
.

..
.

...

...

...

..
.

y11 y12 y1n

y21 y22 y2n

yj1 yj2 yjn

..
.

..
.

..
.

...

...

...

xy11 xy12 xy1n

xy21 xy22 xy2n

xym1 xym2 xymn

..
.

..
.

..
.

..
.

...

...

...

Fig. 4 Category composition of the input data for the
DAN model

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 973

where y represents the information that users have
participated in the rating, and y− represents the nega-
tive sample information, that is, the information that
users did not watch and did not participate in the
rating. wij represents a super parameter, which shows
the weight of the training instance (i, j). Considering
that a recommendation with implicit feedback in-
volves a problem of binary classification, the target
value Yij is represented by binary value “0” or “1”; “1”
means there is interaction between i and j, and “0”
means there is no interaction. Since there are only two
fixed target values for the binary classification prob-
lem, training the model with the mean square error
method will cause the parameter adjustment gradient
to be too large or too small, which will further lead to
deviations in the prediction results. Thus, for the bi-
nary classification problem, it is not suitable to take
the mean square error as the loss function.

Essentially, for the binary classification problem,
the output of neurons in the output layer reflects the
interaction probability between training instances.
Since there are only two categories to choose, the
probability distribution of the output layer obeys a

Bernoulli distribution. Y{0, 1} is used to represent
the category of the target value. Then the probability
that the actual output value belongs to “1” or “0” is
expressed as follows:

1 1 ()
1(1| ,) ,L L Lp Y   λ W (32)

1 1 ()
1(0 | ,) 1 ,L L Lp Y    λ W (33)

where λL−1 is the output vector of the last hidden layer,
and WL−1 is the connection weight matrix from the last
hidden layer to the output layer. After the above two
formulas are combined, they can be expressed by the
following formula:

1 1 () () 1

1 1(| ,) () (1) .L L L Y L Yp Y     λ W (34)

Therefore, we can define the negative logarith-
mic likelihood function as the loss function based on
the above equation, and the final form of the loss
function can be obtained as follows:

1 1

1 1

log((| ,))

(1)log(1) log .

L L

L L

L p Y

Y Y 

  

    

 λ W
 (35)

In this way, the parameter optimization problem
of the model is transformed into the problem of
minimizing the loss function value by adjusting the
parameters of each layer. We can use the stochastic
gradient descent algorithm to solve the problem. By
applying such a probabilistic approach to the model,
we transform the implicit feedback recommendation
problem into a binary classification problem.

Fig. 5 Deep association neural network model

()ui
1vp

()ui
vkp

()og
1cp

()og
ckp ()ag

1dp ()ag
dkp

()oa
1ep

()oa
ekp

1
ju 2

ju 1
j
mu 

j
mu 1

ji 2
ji 1

j
ni 

j
ni 1

jo 2
jo 1

j
so 

j
so 1

jg 2
jg

1
ja 2

ja 1
j
ra 

j
rg

(,)1
ju i (,)2

ju i (,) 
j
m nu i (,)1

jo g (,)2
jo g (,) 2

j
so g (,)1

ja g (,)2
ja g (,) 2

j
ra g (,)1

jo a (,)2
jo a (,) 

j
s ro a

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 974

5 Experiments

We conducted a series of experiments based on

an actual data set to answer the following questions:
RQ1: Is the DAN method proposed in this study

better than traditional methods?
RQ2: Is there necessarily a linear relationship

between the number of negative samples in training
samples and the performance of the model?

RQ3: Of the additional feature nodes and deep
network structure, which is useful?

5.1 Experimental settings

Data set: We used the public data set “Mov-
ieLens,” which has been widely used in projects re-
lated to information filtering, CF, and recommenda-
tion systems. The version we used includes 100 000
ratings from 943 users, who rated 1682 movies on a
scale of 1 to 5, and each user had at least 20 data
ratings. The data set contains user id, item id, rating,
timestamp, age, gender, occupation, zip code, and
other information. Although it is an explicit feedback
data set, we can still use it to learn some implicit
feedback. We converted the data set into implicit data,
where “1” means that there is an interaction between
the user and the item, and “0” means that there is no
interaction.

Evaluation schemes: To evaluate the perfor-
mance of the recommendation, we used the leave-
one-out method, which is used to train and test the
learner, and has been widely used (Bayer et al., 2017;
Guo et al., 2017). The advantage of the leave-one-out
method is that it is not affected by the random sample
division approach, and the largest number of available
samples is used for training in each iteration. Specif-
ically, the settings in our experiments are as follows.
For each user, based on the time when the user rated
the items, we took its last interaction as the test set
and the rest of the data as the training set. In the
evaluation process, we followed the main idea behind
the common strategies (Elkahky et al., 2015; He et al.,
2016); i.e., for each user, we randomly selected 20
items that did not interact with the user and ranked the
test item among the 20 items. The model evaluation
results were measured by the hitting ratio (HR) and
normalized damage cumulative gain (NDCG) (He et
al., 2017); if there was no special mention, we trun-
cated the ranking list at 10 for both metrics. The

higher the values of HR@10 and NDCG@10, the
better the recommendation effect. HR intuitively
measures whether the test item is present on the
top-10 list, and NDCG accounts for the position of the
hit by assigning higher scores to hits at top ranks. In
this experiment, the two metrics HR and NDCG were
calculated for each test user and the mean values
obtained.

Baselines: The DAN approach proposed in this
study was compared with the following methods:

1. userKNN: This is the standard user-based CF
algorithm. Compared with deep neural network
recommendation, it is the most traditional recom-
mendation algorithm.

2. GMF (generalized matrix factorization algo-
rithm): The algorithm is the interaction of the under-
lying factors of the user and the item. It decomposes
the high-dimensional user-item scoring matrix into
two low-dimensional factor matrices for the user and
the item, and uses the inner product of these two ma-
trices to predict the user’s rating on unknown items.

3. MLP: This algorithm is a feedforward neural
network model with hidden layers, mapping multiple
input data sets to the output.

4. NCF: In terms of modeling the potential
structure of the user/item, this algorithm unifies the
linear modeling advantages of matrix decomposition
and the nonlinear modeling advantages of MLP.

Parameter settings: To determine the parameters
of the method proposed in this paper, we extracted
interactive data for each user as test data. We set the
loss function of the model and used the corresponding
optimizer to optimize the loss function to learn and
adjust the parameters. We sampled two negative
samples for each positive sample. For the model
trained from the beginning, the Gaussian distribution
with mean of 0 and standard deviation of 0.01 was
used to randomly initialize the model parameters, and
the Adam optimizer was used to optimize the model.
Without special mention, DAN and MLP in this paper
adopted three hidden layers, and the common tower
structure was accepted (that is, the number of neurons
in each layer was gradually reduced from bottom to
top). To facilitate a comparison of the model’s basic
performance, we unified the hidden layer structure of
DAN and MLP in the experiment (that is, the number
of neurons in the higher hidden layer was reduced by
half compared with that in the previous hidden layer).

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 975

Because the last hidden layer of the model determines
the model performance, we used it as the predictive
factor. In this study, if the size of the predictive factor
is 2, the structure of the hidden layer is 8-4-2, and the
factor size of the embedding layer is 4. We used pre-
dictive factors of [2, 4, 8, 16, 32] and batch sizes of
[60, 120, 240, 480, 960] for the model evaluation. To
further explore the influence of the number of pre-
dictive factors on the model performance, we fixed
the batch size to 480 and tested the model perfor-
mance when the predictive factors were [2, 4, 8, 16,
32]. We tested the model performance in five different
cases where the recommendation list was ranked [2, 4,
6, 8, 10], and evaluated the performance of the model
when the numbers of negative samples of the training
samples were [2, 4, 6, 8, 10].

5.2 Performance comparison (RQ1)

Fig. 6 shows the changes in HR@10 and
NDCG@10 with the number of predictive factors
under different training batches. For the userKNN
model, we tested the performance under different
numbers of neighbors. The GMF model needs to first
encode the original data through one-hot encoding,
and then sends the encoded data to the embedding
layer. For the GMF model, the model performance
was tested with different numbers of neurons in the
embedding layer.

First, we can see that DAN performed well on
both HR and NDCG. The performance of DAN with
different numbers of predictive factors was better than
that of NCF. This demonstrates the advantage of DAN,
which uses the association feature to learn implicit
feedback. Second, NCF, GMF, and MLP also had
good performance, of which NCF was better than
GMF and MLP, because NCF combines GMF’s abil-
ity in linear expression with MLP’s nonlinear ex-
pression ability. In general, GMF was slightly better
than MLP, but note that MLP can be further improved
by adding hidden layers; however, we discuss only
the case of three hidden layers here. Under the same
conditions, compared with many other models, the
traditional KNN model had the worst performance,
which further verifies that the performance of a deep
neural network is better than that of the traditional
method. Moreover, we found that there was no ab-
solute positive or negative correlation between the
number of predictive factors and the model perfor-

mance, which was inconsistent with our expectation.
Within a certain range, the number of predictive fac-
tors that leads to the best performance is neither the
highest, nor the lowest.

Fig. 7 shows that the same training batch,

learning rate, and ranking list were sampled in the
experiment, and the performance of various models
was different when different numbers of predictive
factors were adopted. The training batch was selected
as 480, the learning rate was 0.01, 10 was selected
from the ranking list, and the numbers of predictive
factors were selected as 2, 4, 8, 16, 32, respectively.
This experimental setup was to explore the influence
of the number of predictive factors on the model
performance. Overall, we found that the performance
of DAN was still better than those of other models.
Similar to the results in Fig. 6, NCF, GMF, and MLP
had good performance, and the performance of the
traditional KNN model was unfavorable. However,
the overall performance of MLP_5 was better than
that of MLP_2, and even better than those of NCF and
GMF at some nodes. The reason may be that MLP_5
integrates auxiliary information based on the user and
item, such as gender, age, and occupation. Compared
with the traditional method, MLP_5 increased both

(a)

5
Factors

10 15 20 25 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

H
R

@
1

0

(b)

DAN
NCF
MLP
GMF
KNN

DAN
NCF
MLP
GMF
KNN

5
Factors

10 15 20 25 30

0.1

0.5

0.6

N
D

C
G

@
1

0

0.2

0.3

0.4

Fig. 6 HR@10 (a) and NDCG@10 (b) w.r.t. the number of
predictive factors under different training batches

Number of predictive factors

Number of predictive factors

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 976

the depth and width of the model, enhancing the
model’s ability to learn implicit feedback from
large-scale data sets. Comparing Figs. 6 and 7, we
found that the number of predictive factors (which
also reflects the number of neurons in each hidden
layer) is an important factor in determining the per-
formance of the model. In contrast, other parameters
had limited effect on the model performance.

Fig. 8 shows the performance of the top-k rec-
ommendation list. The numbers of interceptions in the
ranking list were 2, 4, 6, 8, and 10. As can be seen, the
performance for DAN was still in an optimal position.
The performances of NCF, MLP, and GMF were also
good, and the performance of userKNN was the worst.
These results were consistent with the above analysis.
When there was an increase in k, HR and NDCG also
gradually increased, and the performance of the
model was gradually improved.

5.3 Relationship between the number of negative
samples and model performance (RQ2)

To illustrate the influence of negative sampling
on the model performance, different numbers of
negative samples were used to compare the perfor-
mance. Under the premise that other parameters re-
main unchanged, we set the number of negative

samples as 2, 4, 6, 8, and 10, respectively, to observe
the relationship between the number of negative
samples and the model performance.

As shown in Fig. 9, the relationship between the
number of negative samples and the model perfor-
mance is not very clear. What we can see is that

(a)

2
Number of negative samples

3 5

0.80

H
R

@
1

0

(b)0.50

N
D

C
G

@
1

0

0.35

0.30

0.25

0.20

0.40

0.45

4 6 7 8 9 10

2 3 54 6 7 8 9 10

DAN
NCF
MLP
GMF

0.75

0.70

0.65

0.60

0.55

0.50

0.45

Number of negative samples

DAN
NCF
MLP
GMF

Fig. 9 HR@10 (a) and NDCG@10 (b) w.r.t. the number of
negative samples

(a)

5
Factors

10 15 20 25 30

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
R

@
1

0

(b)

DAN
NCF
MLP
GMF
KNN

DAN
NCF
MLP
GMF
KNN

5
Factors

10 15 20 25 30

0.40

N
D

C
G

@
1

0

0.35

0.30

0.25

0.20

0.15

0.10

0.05

Number of predictive factors

Number of predictive factors

Fig. 7 HR@10 (a) and NDCG@10 (b) w.r.t. the number of
predictive factors

(a)

2
k

3 5

0.2

0.5

0.6

H
R

@
k

(b)

DAN
NCF
MLP
GMF
KNN

DAN
NCF
MLP
GMF
KNN

0.40

N
D

C
G

@
k

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.1

0.3

0.4

4 6 7 8 9 10

2
k

3 54 6 7 8 9 10

Fig. 8 HR@k (a) and NDCG@k (b) w.r.t. k

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 977

DAN still had a superior performance. Overall, in the
local range, the more negative samples there were, the
better the model performance was. However, the
relationship is not absolute; when the number of
negative samples continued to increase, the perfor-
mance showed sign of inversion.

5.4 Deep learning vs. wide learning (RQ3)

At present, deep structure neural networks have
been applied in many fields and achieved a break-
through in large-scale data processing. Deep learning
uses a deep network structure to learn the essential
characteristics and implicit feedback of a data set.
Another way is to try to obtain more effective rec-
ommendations by adding input data and feature nodes,
that is, through increasing the width of the bottom
layer of the model. It is necessary to further analyze
the different performances of these two approaches.
Based on the classical MLP model, we analyzed the
performance of the deep neural network in depth
using fewer feature nodes on the bottom layer (shown
as “deep and narrow” in the network structure) and a
shallow network with more feature nodes on the
bottom layer (shown as “wide and shallow”). The
experimental results are shown in Tables 3–6. With
regard to the underlying data input in the experiment,
the deep neural network with a “deep and narrow”
structure selected the “user” and “item” indicators in
the MovieLens data set, but the shallow network with
a “wide and shallow” structure selected five indica-
tors: user, item, occupation, gender, and age. For ease
of expression, we expressed the network model with
two input indicators and n hidden layers as MLP_2_n,
and the deep network model with five input indicators
and n hidden layers as MLP_5_n.

These tables showed that even for the model
with the same input indicators, the increase in the
number of layers was also conducive to an im-
provement of model performance. Under the same
conditions, the average HR and average NDCG of
MLP_5 were higher than the counterparts of MLP_2.
This result has two implications: on one hand, it
shows the effectiveness of using the deep structure
model for recommendation; on the other hand, it
shows that increasing the underlying width of the
deep neural network (that is, enriching the feature
categories of the underlying input) can improve the
model performance based on the original deep neural

network. Note that even if the input data has abundant
feature categories, if the advantages of the deep neu-
ral network are not fully used, the model performance
will be inferior to that of the deep neural network
model with fewer feature categories.

Table 3 HR@10 of MLP_2_n with different layers

Number
of factors

HR@10

MLP_
2_0

MLP_
2_1

MLP_
2_2

MLP_
2_3

MLP_
2_4

1 0.400 0.405 0.425 0.452 0.405

2 0.405 0.452 0.476 0.524 0.524

4 0.429 0.452 0.524 0.548 0.595

8 0.385 0.405 0.476 0.550 0.560

16 0.350 0.400 0.452 0.500 0.550

32 0.381 0.476 0.548 0.560 0.561

64 0.333 0.405 0.405 0.545 0.530

128 0.400 0.452 0.476 0.490 0.500

Average 0.385 0.431 0.473 0.521 0.528

Table 4 NDCG@10 of MLP_2_n with different layers

Number
of factors

NDCG@10

MLP_
2_0

MLP_
2_1

MLP_
2_2

MLP_
2_3

MLP_
2_4

1 0.364 0.204 0.217 0.350 0.453

2 0.189 0.339 0.235 0.235 0.265

4 0.153 0.223 0.158 0.259 0.222

8 0.202 0.181 0.229 0.231 0.268

16 0.180 0.172 0.195 0.205 0.250

32 0.174 0.202 0.254 0.204 0.244

64 0.141 0.170 0.200 0.240 0.222

128 0.216 0.176 0.220 0.215 0.202

Average 0.202 0.208 0.214 0.242 0.266

Table 5 HR@10 of MLP_5_n with different layers

Number
of factors

HR@10

MLP_
5_0

MLP_
5_1

MLP_
5_2

MLP_
5_3

MLP_
5_4

1 0.400 0.524 0.571 0.571 0.570

2 0.405 0.595 0.619 0.643 0.640

4 0.405 0.518 0.524 0.590 0.650

8 0.476 0.500 0.500 0.500 0.595

16 0.476 0.452 0.476 0.548 0.550

32 0.476 0.480 0.500 0.548 0.561

64 0.524 0.500 0.500 0.548 0.619

128 0.571 0.571 0.619 0.640 0.643

Average 0.467 0.518 0.539 0.574 0.604

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 978

6 Conclusions and future work

In this work, we explored deep association

networks (DAN) for recommendations. We designed
a generic framework for DAN to simulate user–item
interactions. The proposed model framework is sim-
ple and universal. We put forward a new way to study
deep learning recommendations and provide guidance
for further study of deep learning and recommenda-
tion systems.

The proposed method can be used for personal-
ized recommendations in large-scale e-commerce
platforms, and in various Internet life service plat-
forms based on various data derived from users and
items, such as commodity recommendations, movie
or music recommendations, and appropriate merchant
recommendations.

In future work, we will explore the internal
personality characteristics of users based on the joint
features of users, and promote this research to the
fields of e-commerce recommendations, advertising
promotion, and personalized user customizations, etc.
At the same time, we will extend the DAN model to
the combination of three or more feature categories,
and further study the interaction between multiple
input categories, which would help optimize the
combination of feature categories in further improv-
ing the model performance. In addition, we are par-
ticularly interested in tracking users’ changes in
preferences, and in exploring the factors that lead to
such changes, such as the user’s own factors, or some
other external factors. In this way, this study puts
forward a new idea for research into recommendation
systems.

Contributors
Xu-na WANG designed the research and drafted the

manuscript. Qing-mei TAN helped organize the manuscript.
Xu-na WANG revised and finalized the paper.

Compliance with ethics guidelines

Xu-na WANG and Qing-mei TAN declare that they have
no conflict of interest.

References
Aiolli F, 2014. Convex AUC optimization for top-n recom-

mendation with implicit feedback. Proc 8th ACM Conf on
Recommender Systems, p.293-296.
https://doi.org/10.1145/2645710.2645770

Barkan O, Koenigstein N, 2016. Item2Vec: neural item em-
bedding for collaborative filtering. Proc IEEE 26th Int
Workshop on Machine Learning for Signal Processing,
p.1-6. https://doi.org/10.1109/MLSP.2016.7738886

Bayer I, He XN, Kanagal B, et al., 2017. A generic coordinate
descent framework for learning from implicit feedback.
Proc 26th Int Conf on World Wide Web, p.1341-1350.
https://doi.org/10.1145/3038912.3052694

Buettner R, 2016. Predicting user behavior in electronic mar-
kets based on personality-mining in large online social
networks. Electron Mark, 27(3):247-265.
https://doi.org/10.1007/s12525-016-0228-z

Cao YL, Li WL, Zheng DX, 2018. An improved neighborhood-
aware unified probabilistic matrix factorization recom-
mendation. Wirel Pers Commun, 102(4):3121-3140.

 https://doi.org/10.1007/s11277-018-5332-2
Cheng G, Yang CY, Yao XW, et al., 2018. When deep learning

meets metric learning: remote sensing image scene clas-
sification via learning discriminative CNNs. IEEE Trans
Geosci Remote Sens, 56(5):2811-2821.
https://doi.org/10.1109/TGRS.2017.2783902

del Corso GM, Gianna M, Romani F, 2019. Adaptive
nonnegative matrix factorization and measure compari-
sons for recommender systems. Appl Math Comput,
354:164-179. https://doi.org/10.1016/j.amc.2019.01.047

Elkahky AM, Song Y, He XD, 2015. A multi-view deep
learning approach for cross domain user modeling in
recommendation systems. Proc 24th Int Conf on World
Wide Web, p.278-288.
https://doi.org/10.1145/2736277.2741667

Fu MS, Qu H, Yi Z, et al., 2019. A novel deep learning-based
collaborative filtering model for recommendation system.
IEEE Trans Cybern, 49(3):1084-1096.
https://doi.org/10.1109/TCYB.2018.2795041

Guo HF, Tang RM, Ye YM, et al., 2017. DeepFM: a factorization-
machine based neural network for CTR prediction.

 https://arxiv.org/abs/1703.04247
Ha T, Lee S, 2017. Item-network-based collaborative filtering:

a personalized recommendation method based on a user’s
item network. Inform Process Manag, 53(5):1171-1184.
https://doi.org/10.1016/j.ipm.2017.05.003

Table 6 NDCG@10 of MLP_5_n with different layers

Number
of factors

NDCG@10

MLP_
5_0

MLP_
5_1

MLP_
5_2

MLP_
5_3

MLP_
5_4

1 0.212 0.456 0.312 0.542 0.266

2 0.246 0.240 0.293 0.278 0.540

4 0.210 0.290 0.262 0.235 0.239

8 0.203 0.193 0.227 0.239 0.223

16 0.221 0.191 0.209 0.277 0.249

32 0.227 0.174 0.272 0.207 0.200

64 0.204 0.220 0.264 0.218 0.217

128 0.238 0.270 0.303 0.266 0.333

Average 0.220 0.254 0.268 0.283 0.283

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 979

He XN, Zhang HW, Kan MY, et al., 2016. Fast matrix factor-
ization for online recommendation with implicit feedback.
Proc 39th Int ACM SIGIR Conf on Research and Devel-
opment in Information Retrieval, p.549-558.
https://doi.org/10.1145/2911451.2911489

He XN, Liao LZ, Zhang HW, et al., 2017. Neural collaborative
filtering. Proc 26th Int Conf on World Wide Web, p.173-
182. https://doi.org/10.1145/3038912.3052569

He XN, Du XY, Wang X, et al., 2018. Outer product-based
neural collaborative filtering.
https://arxiv.org/abs/1808.03912

Hernando A, Bobadilla J, Ortega F, 2016. A non negative
matrix factorization for collaborative filtering recom-
mender systems based on a Bayesian probabilistic model.
Knowl-Based Syst, 97:188-202.
https://doi.org/10.1016/j.knosys.2015.12.018

Hossain MS, Muhammad G, 2018. Emotion recognition using
deep learning approach from audio-visual emotional big
data. Inform Fus, 49:69-78.
https://doi.org/10.1016/j.inffus.2018.09.008

Hsu CC, Yeh MY, Lin SD, 2018. A general framework for
implicit and explicit social recommendation. IEEE Trans
Knowl Data Eng, 30(12):2228-2241.
https://doi.org/10.1109/TKDE.2018.2821174

Jia XW, Li XY, Kang L, et al., 2016. Collaborative restricted
Boltzmann machine for social event recommendation.
IEEE/ACM Int Conf on Advances in Social Networks
Analysis and Mining, p.402-405.
https://doi.org/10.1109/ASONAM.2016.7752265

Jung JJ, 2012. Attribute selection-based recommendation
framework for short-head user group: an empirical study
by MovieLens and IMDB. Expert Syst Appl, 39(4):4049-
4054. https://doi.org/10.1016/j.eswa.2011.09.096

Knoll J, Stübinger J, Grottke M, 2019. Exploiting social media
with higher-order factorization machines: statistical arbi-
trage on high-frequency data of the S&P 500. Quant Fi-
nan, 19(4):571-585.
https://doi.org/10.1080/14697688.2018.1521002

Li Y, Wang SH, Pan Q, et al., 2019. Learning binary codes with
neural collaborative filtering for efficient recommenda-
tion systems. Knowl-Based Syst, 172:64-75.
https://doi.org/10.1016/j.knosys.2019.02.012

Li ZC, Tang JH, 2017. Weakly supervised deep matrix factor-
ization for social image understanding. IEEE Trans Image
Process, 26(1):276-288.
https://doi.org/10.1109/TIP.2016.2624140

Liu JT, Wu CH, 2017. Deep learning based recommendation: a
survey. Int Conf on Information Science and Applications,
p.451-458.
https://doi.org/10.1007/978-981-10-4154-9_52

Liu WB, Wang ZD, Liu XH, et al., 2017. A survey of deep
neural network architectures and their applications.
Neurocomputing, 234:11-26.

https://doi.org/10.1016/j.neucom.2016.12.038
Liu Y, Li LF, Liu J, 2018. Bilateral neural embedding for

collaborative filtering-based multimedia recommendation.
Multim Tools Appl, 77(10):12533-12544.
https://doi.org/10.1007/s11042-017-4902-8

Lu J, Wu DS, Mao MS, et al., 2015. Recommender system
application developments: a survey. Dec Supp Syst,
74:12-32. https://doi.org/10.1016/j.dss.2015.03.008

Luo L, Xie HR, Rao YH, et al., 2018. Personalized recom-
mendation by matrix co-factorization with tags and time
information. Expert Syst Appl, 119:311-321.
https://doi.org/10.1016/j.eswa.2018.11.003

Ma C, Zhang YX, Wang QL, et al., 2018. Point-of-interest
recommendation: exploiting self-attentive autoencoders
with neighbor-aware influence. Proc 27th ACM Int Conf
on Information and Knowledge Management, p.697-706.
https://doi.org/10.1145/3269206.3271733

Marchi E, Vesperini F, Eyben F, et al., 2015. A novel approach
for automatic acoustic novelty detection using a de-
noising autoencoder with bidirectional LSTM neural
networks. IEEE Int Conf on Acoustics, Speech and Signal
Processing, p.1996-2000.

 https://doi.org/10.1109/ICASSP.2015.7178320
Noda K, Yamaguchi Y, Nakadai K, et al., 2015. Audio-visual

speech recognition using deep learning. Appl Intell,
42:722-737.

 https://doi.org/10.1007/s10489-014-0629-7
Pan J, Zi YY, Chen JL, et al., 2017. LiftingNet: a novel deep

learning network with layerwise feature learning from
noisy mechanical data for fault classification. IEEE Trans
Ind Electron, 65(6):4973-4982.

 https://doi.org/10.1109/TIE.2017.2767540
Pan WK, Chen L, Ming Z, 2019. Personalized recommenda-

tion with implicit feedback via learning pairwise prefer-
ences over item-sets. Knowl Inform Syst, 58(2):295-318.
https://doi.org/10.1007/s10115-018-1154-5

Verstrepen K, Bhaduriy K, Cule B, et al., 2017. Collaborative
filtering for binary, positiveonly data. ACM SIGKDD
Explor Newsl, 19(1):1-21.

 https://doi.org/10.1145/3137597.3137599
Wang XN, Tan QM, Zhang LF, 2020. A deep neural network of

multi-form alliances for personalized recommendations.
Inform Sci, 531:68-86.
https://doi.org/10.1016/j.ins.2020.03.062

Wu L, Chen EH, Liu Q, et al., 2012. Leveraging tagging for
neighborhood-aware probabilistic matrix factorization.
Proc 21st ACM Int Conf on Information and Knowledge
Management, p.1854-1858.

 https://doi.org/10.1145/2396761.2398531
Xiao YY, Wang GW, Hsu CH, et al., 2018. A time-sensitive

personalized recommendation method based on proba-
bilistic matrix factorization technique. Soft Comput,
22(20):6785-6796.

Wang and Tan / Front Inform Technol Electron Eng 2020 21(7):963-980 980

https://doi.org/10.1007/s00500-018-3406-4
Xiong RB, Wang J, Zhang N, et al., 2018. Deep hybrid col-

laborative filtering for Web service recommendation.
Expert Syst Appl, 110:191-205.

 https://doi.org/10.1016/j.eswa.2018.05.039
Yeung CH, 2016. Do recommender systems benefit users? A

modeling approach. J Stat Mech Theory Exp, 4:2-13.
 https://doi.org/10.1088/1742-5468/2016/04/043401

Zheng Y, Tang BS, Ding WK, et al., 2016. A neural auto-
regressive approach to collaborative filtering.

 https://arxiv.org/abs/1605.09477
Zhou F, Zhou HM, Yang ZH, et al., 2018. EMD2FNN: a

strategy combining empirical mode decomposition and
factorization machine based neural network for stock
market trend prediction. Expert Syst Appl, 115:136-151.
https://doi.org/10.1016/j.eswa.2018.07.065

