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Abstract: Given that the existing image denoising methods damage the texture details of an image, a new method based on 
fractional integration is proposed. First, the fractional-order integral formula is deduced by generalizing the Cauchy integral, and 
then the approximate value of the fractional-order integral operator is estimated by a numerical method. Finally, a fractional-order 
integral mask operator of any order is constructed in eight pixel directions of the image. Simulation results show that the proposed 
image denoising method can protect the edge texture information of the image while removing the noise. Moreover, this method 
can obtain higher image feature values and better image vision after denoising than the existing denoising methods, because a 
texture protection mechanism is adopted during the iterative processing. 
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1  Introduction 
 

With the rapid development of computer tech-
nology, digital image filtering technology has been 
widely used. Image denoising is an important part of 
image filtering. Fractional calculus is an important 
branch of mathematical analysis (Pu et al., 2014; Shao 
et al., 2014; Nandal et al., 2018). However, its ap-
plication in signal analysis and processing, especially 

in digital image processing, is still a new research 
direction (Jiang and Wang, 2012; Jalab and Ibrahim, 
2015; Yu et al., 2017; Jain et al., 2018). So far, re-
searchers have proposed many conventional methods 
for image denoising (Chen DL et al., 2013; Zhang 
GM et al., 2016; Wu GC et al., 2019a). The fractional 
integral operator weakens the high-frequency part of 
the signal while preserving the highest-frequency part. 
Furthermore, it strengthens the low-frequency part of 
the signal while preserving the lowest-frequency part 
(Tian et al., 2015; Pu et al., 2016, 2018). Therefore, it 
can remove noise and retain the edge and texture 
information of the image so that the denoised image 
will not produce serious blur (Pu et al., 2008; He et al., 
2014; Jalab et al., 2017). The fractional integral op-
erator can effectively suppress the background targets 
and improve the signal-to-noise ratio (SNR), so that 
the weak and small targets can be detected (Liu ZJ 
and Liu, 2007; Zhang J et al., 2012). Liu ST et al. 
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(2001) used the frequency characteristics of the  
fractional-order integral operator to detect infrared 
small targets. To solve the problem of losing edge and 
texture information in the existing image denoising 
methods, Li and Xie (2016) proposed a new one using 
a global adaptive fractional-order integral. Liu Y et al. 
(2011) proposed an integral operator based on the 
fractional Riemann-Liouville integral, which was 
applied to digital image denoising, and gave the cor-
responding algorithm to realize the circuit model of 
the hardware. Wu XJ et al. (2015) proposed a novel 
color image encryption algorithm using a fractional- 
order chaotic system, and compared it with other 
image encryption schemes. The new algorithm has 
higher security and is fast for practical image en-
cryption. The discretization representation of the 
image processing model based on fractional calculus 
is the key to determine the image processing effect 
(Chen E et al., 2017; Bai et al., 2018; Wu GC et al., 
2019b). Several discretization methods of fractional 
calculus have been studied in detail and applied to 
image processing, and good numerical simulation 
results have been obtained (Amoako-Yirenkyi et al., 
2016; Bhrawy and Zaky, 2017; Ding et al., 2017). 

To determine the image processing effect, the 
discretization representation of the image processing 
model based on fractional calculus should be given. 
However, the denoising effect is found not to be ideal 
for images with strong noise, and the integral mask 
operator has sharp low-pass characteristics because of 
the relatively large integral order, which will easily 
destroy the details such as edge and texture of noisy 
images in the denoising process. The denoising algo-
rithm determines a denoising mask operator con-
structed by the order of minor integral, and uses 
multiple iterations to control the effect of image de-
noising. However, the fractional-order integral oper-
ator has low-pass characteristics, and some details of 
the image will be damaged because of the multi- 
iteration process. 

Denoising effect of traditional denoising meth-
ods based on fractional-order integral is not ideal. In 
this study, an improved fractional-order integral de-
noising operator is proposed. The basic principle of 
the image denoising model based on fractional inte-
gration is to introduce two parameters, i.e., integral 
order v and iteration number n. The corresponding 
image denoising mask can be constructed by setting 

the micro-integration order, and the local fine-tuning 
of the noisy image can be realized by combining large 
iteration numbers. In the iterative denoising process, 
the fractional gradient modulus of the image is ob-
tained by the fractional differential mask operator of 
eight pixel directions; then, the intensity of image 
edge compensation is determined by the classical 
mathematical model using the fractional gradient 
modulus as the parameter. Based on this, the de-
noising algorithm sets a higher order of small integral 
to construct the denoising mask in the rising stage of 
the image feature value. Furthermore, it sets a rela-
tively low order of minor integral to construct the 
denoising mask at the beginning of the decline of the 
image feature value. The denoising algorithm  
partially restores the edge and texture information of 
the image combined with the edge compensation 
mechanism, maximizes the edge preservation and 
denoising of the image, and obtains better visual  
effect. 

 
 

2  Related work and theory 

2.1  Definition of fractional calculus 

Fractional calculus is the operation order in the 
calculus operation which is extended from integer to 
non-integer. As the basis of fractal geometry and 
fractal dynamics, it has been widely applied in many 
areas and achieved remarkable success. Different 
definitions of fractional calculus can be obtained by 
analyzing problems from different application per-
spectives. So far, there is no unified time-domain 
definition for fractional calculus. Among many defi-
nitions, the three classical definitions of fractional 
calculus are the Grünwald-Letnikov (G-L) definition, 
the Riemann-Liouville definition, and Caputo defini-
tion, as shown in Eqs. (1), (2), and (3), respectively 
(Podlubny, 1999): 
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2.2  Fractional gradient formula 

Assume that the function g(x, y)∈M×N can be 
discretized as , , 1( )M N

i j i jg g ×
==  according to the distance 

h=1 in the M×N plane. Thus, the fractional gradient 
and fractional gradient modulus of g(x, y) can be 
obtained as follows: 

 

( ) ( ), , ,, 1 , 1
, ,

= =
∇ = ∇ =

N Nv v v v
i j x i j y i ji j i j

g g D g D g     (4) 

( , ) , .
 ∂ ∂

∇ =  ∂ ∂ 

v v
v

v v

g gg x y
x y

               (5) 

 
Because in this study we calculate the fractional 

gradient modulus of an image, it is necessary to con-
sider the neighbor pixels in eight dimensions of the 
image. Thus, the modulus of the gradient operator of 
fractional differential is extended to eight dimensions 
of the image: 
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where x+, x−, y+, y−, x45°, x135°, x225°, and x315° represent 
eight dimensions centered at the current pixel, v the 
order of the fractional-order differential, and |∇vg| the 
gradient modulus value in the eight dimensions of 
image pixels. 
 
 
3  Fractional-order integral denoising model 

3.1  Establishment of the fractional-order integral 
operator 

Function g(x) can be obtained according to the 

definition of the integral formula: 
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Combining Eq. (1) with the inductive hypothesis, 

we can obtain 
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The integral order n of the Cauchy integral 

formula can be extended to fractional order v; that is, 
the fractional-order Cauchy integral formula can be 
obtained: 
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Based on the basic properties of the Cauchy in-

tegral formula, the integral order of the integer order 
is extended to the order of the fractional-order integral. 
Eq. (9) can be discretized using the basic properties of 
the integral function, and Eq. (10) can be obtained: 
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Using the method of slope approximation, the 

following numerical formula can be obtained for the 
fractional Cauchy integral: 
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The high-dimensional fractional Fourier trans-

form is detachable, so we assume that the fractional- 
order integral mask operator of a two-dimensional 
image g(x, y) in any direction can be separated. 
Therefore, the duration [a, t] of the image g(x, y) is 
divided equally according to the unit interval. 
Therefore, assuming h=1, we have N=[(t−a)/h]=t−a 
and can obtain the numerical formulas for the frac-
tional Cauchy integral in the x and y directions, as 
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shown in Eqs. (12) and (13), respectively: 
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Digital images have the characteristic of self- 

similarity: the closer the pixel to the central target, the 
higher the similarity. The weight functions of Eqs. (12) 
and (13) cannot have a general term expression, so the 
computational complexity and accuracy are consid-
ered. To simplify the calculation, by setting φ(x)= 
1/[x(1+x)Γ(x)], the first four terms (N=4) of Eqs. (12) 
and (13) are taken as the estimated values. The de-
noising mask based on the fractional Cauchy integral 
can be obtained; its coefficients are given by 
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3.2  Construction of the denoising model 

Having determined the fractional gradient mod-
ulus of the image, we now introduce the exponential 
function θ(x)=exp[(x/k)α] to obtain the weight coeffi-
cient ωi,j (Here, k is the boundary factor and α the 
velocity factor). 

The relationship between the fractional gradient 
modulus and the weighting coefficient can be ex-
pressed as  
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The weight function θ(x) is a subtraction function in 
[0, 1], and its decreasing amplitude is controlled by 
the velocity factor α. The larger the value of α, the 
faster the curve will fall. k represents the boundary 
factor, and the weight function θ(x) decreases more 
rapidly in the range of x∈[0, k] than in the range of 

x∈[k, 1]. 
When θ=0, 1

, ,
n n
i j i jg g+ =  can be obtained from 
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which means that the pixel is more likely to be an 
edge; this means that there is no need to deal with the 
pixel in the denoising process (that is, the pixel value 
is kept unchanged). When θ=1, 1

, ,
n v n
i j i jg g+ = ∇ can be 

obtained from Eq. (16), which means that the pixel is 
less likely to be an edge; therefore, the problem of 
edge protection does not need to be considered in the 
denoising process, and the maximum denoising is 
carried out using the fractional-order integral operator. 
When 0<θ<1, the fractional-order integral operator 
can be used to denoise the image to varying degrees 
according to the magnitude of the fractional gradient 
modulus of any pixel of the image; in other words, the 
edge of the denoised image can be compensated for to 
a certain extent. 

3.3  Denoising process 

The execution process of the new denoising 
model proposed in this study is expressed algorith-
mically as follows:  

Step 1: basic parameter setup 
Parameters of the proposed denoising algorithm 

are as follows: The order of the fractional-order in-
tegral is set to v1=0.02 when SNR increases, and 
v2=0.01 when SNR decreases (According to the ex-
perimental results in Huang et al. (2011), when the 
fractional integration order is 0.01 or 0.02, good de-
noising effect can be obtained after a certain number 
of iterations). The order of the differential operator for 
calculating the fractional gradient modulus of the 
image is set to v=0.8, the boundary factor k=0.1, and 
the speed factor α=2. The maximum number of itera-
tions is set to 150. 

Step 2: image denoising processing 
(1) Assume that the noise image is g0(x, y), and 

set the fractional-order integral order v1=0.02 or 0.01 
according to the SNR difference of the image after 
two adjacent denoising processes (The first denoising 
process is the increasing stage of SNR, so the integral 
order is v1=0.02). The denoising mask operator based 
on the fractional Cauchy integral formula is used to  
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convolve the noisy image, and the first denoised im-
age g1(x, y) is obtained. 

(2) Calculate the SNR of the denoised image 
g1(x, y) and set g0(x, y)=g1(x, y). 

Step 3: image edge compensation 
(1) The noise image g0(x, y) is processed using a 

Gaussian low-pass filter, and g0(x, y)=g0(x, y)Gμ,σ. 
(2) The fractional differential mask operator 

constructed by Eq. (11) is used to calculate the frac-
tional gradient modulus |∇vg|, which is then smoothed 
by a Gaussian low-pass filter. 

(3) Eq. (12) is used to obtain the coefficient θi,j of 
each pixel of the denoised image g1(x, y) according to 
the value range of parameter ωi,j, and the denoised 
image is compensated for by Eq. (13). The total 
number of iterations is set to 150, and the absolute 
value of the SNR difference of the image after two 
adjacent denoising processes is smaller than the 
threshold ε. If the iterative termination condition is 
satisfied, the iteration stops, and the program outputs 
the final denoised image using edge compensation; if 
the condition is not satisfied, back to step 2. 

 
4  Simulations and discussion 

4.1  Image denoising evaluation index 

The simulation platform is MATLAB R2014a, 
and the test images are a simple synthetic image and a 
detailed Barbara image. In the simulations, the mean 
squared error (MSE), SNR, edge preservation index 
(EPI), and average gradient (AG) are used to quanti-
tatively analyze the denoising performance of the 
image denoising operator. The superiority of the 
proposed denoising algorithm is verified when com-
bined with the residual image and horizontal image. 

1. MSE and SNR 
Suppose that the original noise image is g(i, j) 

and that the denoised image is g′(i, j) (i=1, 2, …, M; 
j=1, 2, …, N). Then, MSE between g(i, j) and g′(i, j) is 
expressed as 
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Similarly, SNR between the original image g(i, j) 

and the denoised image g′(i, j) can be obtained as 
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2. EPI 
EPI describes the ability of the filter operator to 

maintain the horizontal or vertical edge of the image: 
the higher the EPI, the better the ability of the oper-
ator to keep the edge. EPI is expressed as 
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where nrow and ncol are the numbers of rows and 
columns of digital image, respectively, and Δhorizontal 
and Δvertical are the pixel differences in the horizontal 
and vertical directions of the image, respectively. 

3. AG 
AG of an image can describe the contrast of de-

tails and the change of texture in the image, and thus 
to a certain extent, it reflects the clarity of the image. 
AG is expressed as 
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4.2  Simulations and theoretical analysis 

Figs. 1b and 1c show the denoising effect of the 
G-L method and the proposed method, respectively, 
when applied to the Barbara image with Gaussian 
white noise. Fig. 1 shows that the proposed method 
has better visual effect than the fractional G-L method, 
and retains more image details such as edges and 
textures. Fig. 2 compares the denoising performances 
of the proposed method and the G-L method. As can 
be seen from Fig. 2, in the process of image iterative 
denoising, both SNRs increase with the increase of 
the number of iterations. After denoising, SNRs of the 
image increase to a certain peak and then decrease.  
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The maximum SNR of the proposed method is 
18.78 dB, and the corresponding number of iterations 
is 49; the maximum SNR obtained by the fractional 
G-L method is 18.27 dB, and the corresponding 
number of iterations is 79. Therefore, the proposed 
method can achieve a higher SNR than the fractional 
G-L method in a smaller number of iterations. 

Fig. 3 shows the denoising effect of different 
image denoising methods. The proposed method can 
better preserve the edge and texture details of the 
image while removing the noise than the existing  
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Denoising performance comparison between the 
proposed method and the G-L method 
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Fig. 1  Noise image (a), denoising effect of the Grünwald-Letnikov (G-L) method (b), denoising effect of the proposed 
method (c), horizontal line image of the noise image (d), horizontal line image of the G-L method (e), and horizontal line 
image of the proposed method (f) 

(a) (b) (c)

(d) (e) (f)

Fig. 3  Noise image (a) and the denoising effect obtained by the mean denoising method (b), Gaussian method (c), Wiener 
method (d), G-L method (e), PDE method (f), NLM method (g), and the proposed method (h) 

(a) (b) (c) (d)

(e) (f) (g) (h)
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classical image denoising methods, and the visual 
effect of the processed image is better. Fig. 4 shows 
the horizontal line images of different image de-
noising methods. The existing denoising methods 
either cannot effectively remove image noise or se-
riously blur the edges and contours of the denoised 
image, whereas the proposed method can effectively 
preserve the details of the image while removing 
noise. Table 1 compares the performances of dif-
ferent image denoising methods. It can be seen that 
the proposed method has the smallest MSE and the 
largest SNR; i.e., it has the best denoising  
performance. 

 
 
5  Conclusions 
 

In this study, a new fractional-order integral 
denoising method has been proposed which uses the 
fractional gradient modulus to control the intensity of 
edge compensation. The fractional-order integral 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

formula can be obtained by extending the integral 
order of the Cauchy integral formula from a positive 
integer to a positive real number. The slope approx-
imation method has been used to realize the numerical 
calculation of the fractional Cauchy integral formula.  

In the denoising process, the proposed method 
sets a higher order of small integral to construct the 
denoising mask in the increasing stage of SNR. At the 
beginning of the decrease of SNR, a lower order of 
the micro-integral has been set to construct the de-
noising mask, and an compensation mechanism has 
been used to partially restore the edge and texture 
information of the image. Simulation results showed 
that the proposed method has better denoising per-
formance than the popular denoising methods based 
on the fractional-order integral theory. However, the 
noise reduction attained by fractional-order integral 
denoising methods should be compared with those of 
other denoising methods to find and establish the 
advantage and position of fractional-order theory in 
image processing. In future research, we need to focus 
on studying how to set the integral order, and try to 
select an appropriate value according to the local and 
non-local features of the image. In this way, we will 
be able to solve the problem of retaining edge and 
texture information in the process of image denoising. 
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Table 1  Performance comparison of Lena image pro-
cessed by different image denoising models 

Method MSE SNR (dB) AG EPI 
Mean denoising 0.0049 14.6732 10.5327 2.3962 
Gaussian 0.0042 15.6993 11.2498 2.8953 
Wiener 0.0041 16.5922 11.3890 3.0242 
G-L 0.0039 17.1527 12.0012 3.2189 
PDE 0.0038 17.2315 11.8965 3.1682 
NLM 0.0036 17.9212 13.6793 3.7639 
Proposed method 0.0034 18.2165 13.5985 3.7038 

 

Fig. 4  Noise image (a) and horizontal line images obtained by the mean denoising method (b), Gaussian method (c), 
Wiener method (d), G-L method (e), PDE method (f), NLM method (g), and the proposed method (h) 

(a) (b) (c) (d)

(e) (f) (g) (h)
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