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Abstract: Hash-based message authentication code (HMAC) is widely used in authentication and message integrity.
As a Chinese hash algorithm, the SM3 algorithm is gradually winning domestic market value in China. The side
channel security of HMAC based on SM3 (HMAC-SM3) is still to be evaluated, especially in hardware implementa-
tion, where only intermediate values stored in registers have apparent Hamming distance leakage. In addition, the
algorithm structure of SM3 determines the difficulty in HMAC-SM3 side channel analysis. In this paper, a skillful
bit-wise chosen-plaintext correlation power attack procedure is proposed for HMAC-SM3 hardware implementation.
Real attack experiments on a field programmable gate array (FPGA) board have been performed. Experimental
results show that we can recover the key from the hypothesis space of 2256 based on the proposed procedure.
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1 Introduction

Message authentication code (MAC) (Menezes
et al., 1996) provides message integrity in many se-
curity applications. Hash-based message authentica-
tion code (HMAC) (Bellare et al., 1996; FIPS, 2002)
is a popular type of MAC, which is constructed by
a hash algorithm and a key. SM3 (SCA, 2010; Guo
et al., 2015) is a hash algorithm proposed by the Na-
tional Cryptography Administration of China as a
national standard. HMAC-SM3 side channel secu-
rity implementation remains to be studied further.
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Typically, differential power analysis (DPA)
(Kocher et al., 1999) and correlation power anal-
ysis (CPA) (Brier et al., 2004) are two side chan-
nel analysis (or attack) methods. They recover
the key by exploiting the statistical dependency be-
tween the power consumption of cryptographic de-
vices and the intermediate values inside the ongoing
cryptographic algorithm. Intermediate values can
be mapped into simulated power consumption with
power models. By evaluating the difference (DPA)
or correlation (CPA) between simulated and mea-
sured power consumptions, a correct hypothesis of
intermediate values can be found. The Hamming dis-
tance (HD) model and Hamming weight (HW) model
are two commonly used power models. Whether the
power model can effectively determine the depen-
dency strongly influences the final success rate of
power analysis.

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com


Yuan et al. / Front Inform Technol Electron Eng 2019 20(7):930-945 931

Side channel attacks on HMAC have been dis-
cussed in the literature. For example, McEvoy
et al. (2007) proposed DPA attack procedures in
HD models for HMAC implementation based on
the SHA2 family. Belaïd et al. (2015) presented a
new DPA strategy in HW models for HMAC-SHA1
and HMAC-SHA2. Even if some hints for attacking
HMAC-SM3 could be found from these attack meth-
ods, specific analysis methods for HMAC-SM3 are
required due to the different structures of the SM3
algorithm.

Guo et al. (2015) presented a DPA strategy for
HMAC-SM3 software implementation. Their work
is, to our knowledge, the first to deal with HMAC-
SM3 side channel security. The 256-bit secret value
can be recovered by eight consecutive DPA attacks
and several subsequent calculations. Each DPA at-
tack can recover one 32-bit secret intermediate value.
Sun et al. (2015) proposed an attack strategy against
HMAC-SM3 hardware implementation. Although
this work has assumed too many intermediates as
register values, almost as many as they wanted, it
can also provide some hints for attacking HMAC-
SM3 hardware. However, when it comes to hardware
implementation, something difficult occurs. It seems
quite easy because we just need to recover the same
set of intermediate values (eight in total) as those
in this literature (Guo et al., 2015). However, in a
practical situation, this is complicated, because the
power leakage model of HMAC-SM3 hardware imple-
mentation is totally different from that of software
implementation.

In this study, we deal with one-round-per-cycle
hardware implementation (Qu et al., 2015). The
eight intermediate values mentioned above are clas-
sified into two groups and specific attack strategies
are designed for each group. The first group is the
easier part to deal with, just like that in Guo et al.
(2015). The second group is more complicated. A
tricky bit-wise chosen-plaintext attack strategy is
proposed for the second group beyond the word-
wise chosen-plaintext strategy proposed in Guo et al.
(2015). Bit-wise here refers to choosing each bit of
one plaintext word as zero or random. By putting the
easy and tricky parts together, we achieve one pro-
cedure for attacking the whole key of HMAC-SM3
hardware implementation. We also evaluate the pro-
posed method on a field programmable gate array
(FPGA) board.

2 SM3 hash algorithm and hardware
implementation

The SM3 algorithm (SCA, 2010; Guo et al.,
2015) turns an l-bit (l < 264) message into a 256-
bit hash value. It includes two main steps: message
stuffing and compression iteration. In each itera-
tion, compression is executed once, and a 512-bit
message block is expanded into multiple 32-bit plain-
text words as inputs for the compression function.
To comply with the general concept in side channel
analysis, a message is called plaintext here. The to-
tal number of compression iterations is determined
by the number of blocks after message stuffing, and
the ith iteration is described in Algorithm 1.

Algorithm 1 The ith compression iteration
Input: message block Bi, chaining value Vi

Output: next chaining value Vi+1

1: (W0,W1, . . . ,W15)← Bi

2: for j = 16 to 67 do
3: Wj ← P1(Wj−16⊕Wj−9⊕(Wj−3 ≪ 15))⊕(Wj−13 ≪

7)⊕Wj−6

4: end for
5: for j = 0 to 63 do
6: Wj

′ ←Wj ⊕Wj+4

7: end for
8: (A0, B0, C0,D0, E0, F0, G0,H0)← Vi

9: for j = 0 to 63 do
10: SS1j ← ((Aj ≪ 12) +Ej + (Tj ≪ j)) ≪ 7

11: SS2j ← SS1j ⊕ (Aj ≪ 12)

12: TT1j ← FFj(Aj , Bj , Cj) + Dj + SS2j + Wj
′ =⇒

TT1j ← θj +Wj
′

13: TT2j ← GGj(Ej , Fj , Gj) + Hj + SS1j + Wj =⇒
TT2j ← ϕj +Wj

14: Dj+1 ← Cj

15: Cj+1 ← Bj ≪ 9

16: Bj+1 ← Aj

17: Aj+1 ← TT1j
18: Hj+1 ← Gj

19: Gj+1 ← Fj ≪ 19

20: Fj+1 ← Ej

21: Ej+1 ← P0(TT2j)

22: end for
23: Vi+1 ← (A63, B63, C63,D63, E63, F63, G63,H63)⊕ Vi

Notations include left assignment (←), 32-bit
XOR (⊕), left rotation (≪), AND (∧), OR (∨),
NOT (∼), and 32-bit modular addition (+), as
well as some internal functions and constants, such
as two j-related Boolean functions FFj (Eq. (1))
and GGj (Eq. (2)), two permutation functions P0

(Eq. (3)) and P1 (Eq. (4)), and a j-related constant
Tj (Eq. (5)).
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FFj(X,Y, Z) (1)

=

{
X ⊕ Y ⊕ Z, 0 ≤ i ≤ 15,

(X ∧ Y ) ∨ (X ∧ Z) ∨ (Y ∧ Z), 16 ≤ i ≤ 63,

GGj(X,Y, Z) (2)

=

{
X ⊕ Y ⊕ Z, 0 ≤ i ≤ 15,

(X ∧ Y ) ∨ (X̃ ∧ Z), 16 ≤ i ≤ 63,

P0(X) = X ⊕ (X ≪ 9)⊕ (X ≪ 17), (3)

P1(X) = X ⊕ (X ≪ 15)⊕ (X ≪ 23), (4)

Tj =

{
0x79CC4519, 0 ≤ i ≤ 15,

0x7A879D8A, 16 ≤ i ≤ 63.
(5)

In Algorithm 1, inputs include a 512-bit message
blockBi and a 256-bit chaining value Vi, and the out-
put is the next chaining value Vi+1. Lines 1–7 show
the message expansion, which generates Wj and Wj

′

for the jth (0 ≤ j ≤ 63) round in the compression
function. Lines 8–22 show the compression function,
which includes 64 rounds. For the jth round, eight
32-bit words, Aj , Bj , Cj , Dj , Ej , Fj , Gj , and Hj ,
and two 32-bit plaintext words, Wj and Wj

′, refer
to inputs. The outputs of the jth round are denoted
as Aj+1, Bj+1, Cj+1, Dj+1, Ej+1, Fj+1, Gj+1, and
Hj+1. In the so-called “one-round-per-cycle” hard-
ware implementation (Qu et al., 2015), Aj is stored
in register A before the jth round, and then Aj+1

becomes the new value in register A after this round.
This case is similar for registers B, C, D, E, F ,
G, and H . The initial values of the eight registers
are A0, B0, C0, D0, E0, F0, G0, and H0 (defined
in line 8). Finally, line 23 shows how to obtain the
output.

Based on Algorithm 1, we design the hardware
implementation for SM3-MAC. Fig. 1 shows how
our hardware implementation processes the single
512-bit message block. Our implementation employs
the structure of a single-cycle round function, which
means that each round function corresponds to one
clock cycle. The data path of the round function
is presented in Fig. 2, on which the power analysis
attacks depend. Table 1 shows the comparison be-
tween our implementation and the state-of-the-art
SM3 circuits. As presented in Table 1, when the de-
vice is Cyclone, the resource consumption refers to
LEs, and when the device is Virtex-5, the resource
consumption refers to Slices containing four look-up
tables (LUTs) and four flip flops (FFs).

512 bits 256 bits

Bi Vi

Message
expansion

W0, W0’

Wj, Wj’

W63, W63’

A     B     C     D     E      F    G     H

A     B     C     D     E      F    G     H

A     B     C     D     E      F    G     H

Round 0

Round j

Round 63

XOR

Vi+1

256 bits

...
...

Fig. 1 Process of a single 512-bit message block for
SM3-MAC

Tj

<<< j

<<<12

<<< 7

∑

∑Wj’

<<< 9

FFj GGj

∑ Wj

P0

<<<19

+

A      B     C     D      E      F     G     H

A      B     C     D      E      F     G     H

TT2
SS2

SS1

TT1

Fig. 2 Data path of the round function

3 Word-wise chosen-plaintext correla-
tion power attack

3.1 Whole picture

In the literature (Kocher et al., 1999; McEvoy
et al., 2007; Guo et al., 2015), the attack points for
the HMAC algorithm are illustrated, so details will
not be reviewed again in this study. The basic con-
cept is that the original HMAC key can never be
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recovered by side channel attack methods because it
is never combined with a plaintext before a compres-
sion function. We recover two constant unknown se-
cret values, which are generated from the original key
and some predefined constants. Once the two values
are retrieved, the final MAC value can be forged. In
this study, we will tackle one of the two secret val-
ues, the inner hash value; for simplicity, we call this
secret value the key. For the SM3 compression func-
tion in Algorithm 1, this key is the input chaining
value. It is then segmented into the initial values in
eight registers from A through H , and values are A0,
B0, C0, D0, E0, F0, G0, and H0, respectively, which
are what we try to recover. Moradi et al. (2011) suc-
cessfully performed side-channel attack against bit-
stream encryption of FPGAs, showing that the 232

combination of power analysis attacks can be pos-
sible using graphics processing units (GPUs), which
has inspired us with some hints for the proposed at-
tack strategy.

3.1.1 Basic ideas

First, two variables θj and ϕj are defined as
shown in steps 12 and 13 in Algorithm 1. It can be
observed that among all variables in the round func-

Table 1 Resource consumption comparison

SM3 implementation Device type Number of Slices/LEs

This paper Cyclone 2179 LEs
Wang and Yang (2012) Cyclone 1789 LEs
Ding and Gao (2012) Cyclone 1936 LEs

This paper Virtex-5 433 Slices
(1730 LUTs, 1025 FFs)

Liu et al. (2011) Virtex-5 328 Slices
Ma et al. (2012) Virtex-5 384 Slices

LE: logic element; LUT: look-up table; FF: flip flop

tion, only θj and ϕj are combined with the plaintext
in each round. It can also be observed that among
all θj and ϕj , only θ0 and ϕ0 are constant unknown
values which depend on the original keys A0, B0, C0,
D0, E0, F0, G0, and H0 if the plaintext is purely
random, while others are plaintext-controlled vari-
ables. So, the plaintext should be chosen carefully to
deliberately produce another six constant unknown
intermediate values (θ1–θ3 and ϕ1–ϕ3), as shown in
Table 2.

In Table 2, Tj (0 ≤ j ≤ 3) is simplified to a
constant T . The eight unknowns, θj (0 ≤ j ≤ 3) and
ϕj (0 ≤ j ≤ 3), are equivalent keys. The simplest
case is for θ0 and ϕ0, where all plaintext words are
random. In plaintext mode 2, two words, W0 and
W4, are chosen as zero, while others remain random,
and then W0

′ is apparently zero too. In this way,
θ1 and ϕ1 become constant unknown values. Simi-
larly, in plaintext mode 3, two more plaintext words
are chosen as zero, and then θ2 and ϕ2 also become
constant unknowns. The last case for θ3 and ϕ3 is
similar. Because 32-bit plaintext words are chosen
as zero or random in a certain manner, we define this
way of chosen-plaintext as word-wise.

Actually, the reason that we choose a plaintext
like this has already been explained in Guo et al.
(2015). A little more will also be explained here.
Now suppose that the equivalent keys have already
been recovered. Then A0 can be figured out through
the expression of θ3, and E0 can be calculated from
ϕ3. Then from θ2 and ϕ2, B0 and F0 can be recov-
ered. Next, it turns to C0 and G0. The last ones are
D0 and H0. In other words, once the equivalent keys
are recovered, original keys can be calculated. Ac-
tually, the word-wise chosen-plaintext modes listed
in Table 2 construct the one-to-one linear mapping

Table 2 Chosen-plaintext modes and corresponding to-be-attacked intermediate values

No. Plaintext mode To-be-attacked intermediate value

1 W0, W1, . . . , W15 θ0 = (A0 ⊕B0 ⊕ C0) +D0 + (((A0 ≪ 12) +E0 + T ) ≪ 7⊕ (A0 ≪ 12))

all random ϕ0 = (E0 ⊕ F0 ⊕G0) +H0 + ((A0 ≪ 12) + E0 + T ) ≪ 7

2 W0 = W4 = 0, θ1 = (θ0 ⊕A0 ⊕ (B0 ≪ 9)) + C0 + (((θ0 ≪ 12) + P0(ϕ0) + (T ≪ 1)) ≪ 7⊕ (θ0 ≪ 12))

others random ϕ1 = (P0(ϕ0)⊕ E0 ⊕ (F0 ≪ 19)) +G0 + ((θ0 ≪ 12) + P0(ϕ0) + (T ≪ 1)) ≪ 7

3 W0 = W4 = 0, θ2 = (θ1 ⊕ θ0 ⊕ (A0 ≪ 9)) + (B0 ≪ 9) + (((θ1 ≪ 12) + P0(ϕ1) + (T ≪ 2)) ≪ 7⊕ (θ1 ≪ 12))

W1 = W5 = 0, ϕ2 = (P0(ϕ1)⊕ P0(ϕ0)⊕ (E0 ≪ 19)) + (F0 ≪ 19) + ((θ1 ≪ 12) + P0(ϕ1) + (T ≪ 2)) ≪ 7

others random
4 W0 = W4 = 0, θ3 = (θ2 ⊕ θ1 ⊕ (θ0 ≪ 9)) + (A0 ≪ 9) + (((θ2 ≪ 12) + P0(ϕ2) + (T ≪ 3)) ≪ 7⊕ (θ2 ≪ 12))

W1 = W5 = 0, ϕ3 = (P0(ϕ2)⊕ P0(ϕ1)⊕ (P0(ϕ0) ≪ 19)) + (E0 ≪ 19) + ((θ2 ≪ 12) + P0(ϕ2) + (T ≪ 3)) ≪ 7

W2 = W6 = 0,
others random
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between the original keys and equivalent keys.

3.1.2 Complexity in attacking HMAC-SM3 hard-
ware implementation

In Guo et al. (2015), the θ group (including θ0,
θ1, θ2, and θ3) and the ϕ group (including ϕ0, ϕ1,
ϕ2, and ϕ3) can be treated in a similar way. DPA
attacks toward them are based on Hamming weight
leakage of TT1j and TT2j . In one-round-per-cycle
hardware implementation (Qu et al., 2015), however,
the attack complexity is different. Because power
leakage in hardware is mainly due to clocked register
transitions, we can construct only Hamming distance
models of registers. Note that TT1j and TT2j are
not in registers.

For the θ group, there are four CPA attacks (Ta-
ble 3). θ0 is combined with plaintext W0

′ and gener-
ates A1, which then replaces the former value A0 and
updates register A. This transition will leak power
consumption which is correlated with the Hamming
distance between A0 and A1. So, the power model of
CPA 1 is HD(A0, A1). Because both A0 and θ0 are
unknown and only W0

′ is controllable, the hypoth-
esis of A0 and θ0 should be made simultaneously in
the 264 space. When it comes to CPA 3, the key hy-
pothesis space reduces to 232, because θ0 has already
been recovered after CPA 1. The cases for θ2 and
θ3 are similar to that for θ1. So, the implementation
order should be CPA 1, CPA 3, CPA 5, and CPA 7.

In parallel, another four CPA attacks for the ϕ

group are shown in Table 3, which are really similar
to the four CPA attacks toward the θ group except
for the extra P0 function in their power models. Ac-
tually, this linear permutation function makes a lot
of difference in practice.

Another thing that should be considered is the
computational complexity. All operations in the
SM3 compression function are based on 32-bit words.

The hypothesis space of 232, or even 264, is too huge.
In real attack scenarios, to shrink the key space of one
single attack, each attack is divided into several par-
tial attacks (Brier et al., 2004; Tunstall et al., 2007),
which is the so-called divide-and-conquer method.
Typically, a key is divided into parallel sections, for
example, by bytes, which is employed in attack-
ing the θ group. However, the divide-and-conquer
method for the ϕ group is much more complicated.
The P0 function contributes to this. To deal with it,
a bit-wise chosen-plaintext strategy is proposed for
the ϕ group beyond the word-wise chosen-plaintext
strategy.

3.2 Attacking the θ group using the parallel
divide-and-conquer method

There are two kinds of attacks for the θ group
according to the size of the key hypothesis space. The
first kind is CPA 1, and the second kind includes CPA
3, CPA 5, and CPA 7. The key hypothesis spaces of
the two kinds are 264 and 232. In this subsection, we
will demonstrate principles and results of both kinds
by showing details of CPA 1 and CPA 3.

3.2.1 The first kind: CPA 1

The power model of CPA 1 is HD(A0, A1). In
practice, CPA 1 should be decomposed into eight
partial-CPA attacks, and its power model should
be decomposed into eight corresponding sub-power
models as well. The divide-and-conquer method is
shown in Fig. 3. In the figure, the numbers from 31 to
0 (below we write as “31:0”) represent bits of θ0 from
the most significant bit (MSB) to the least significant
bit (LSB). The red bits are unknown, and the black
bits are controllable. First, θ0 modular adds W0

′,
whose result is A1. Then the sub-power models can
be obtained, each of which has Hamming distance
between every four bits of A0 and A1. As there is

Table 3 Details of each word-wise chosen-plaintext CPA attack

CPA No. Chosen-plaintext mode Time range for attack Intermediate value(s) Expression for power models

CPA 1 Mode 1 Round 0 θ0, A0 HD(A0, A1) = HW(A0 ⊕ (θ0 +W0
′))

CPA 2 Mode 1 Round 0 ϕ0, E0 HD(E0, E1) = HW(E0 ⊕ P0(ϕ0 +W0))

CPA 3 Mode 2 Round 1 θ1 HD(A1, A2) = HW(θ0 ⊕ (θ1 +W1
′))

CPA 4 Mode 2 Round 1 ϕ1 HD(E1, E2) = HW(P0(ϕ0)⊕ P0(ϕ1 +W1))

CPA 5 Mode 3 Round 2 θ2 HD(A2, A3) = HW(θ1 ⊕ (θ2 +W2
′))

CPA 6 Mode 3 Round 2 ϕ2 HD(E2, E3) = HW(P0(ϕ1)⊕ P0(ϕ2 +W2))

CPA 7 Mode 4 Round 3 θ3 HD(A3, A4) = HW(θ2 ⊕ (θ3 +W3
′))

CPA 8 Mode 4 Round 3 ϕ3 HD(E3, E4) = HW(P0(ϕ2)⊕ P0(ϕ3 +W3))
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HD model 8
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Fig. 3 Divide-and-conquer method of CPA 1 (References to color refer to the online version of this figure)

carry propagation in modular addition, the partial-
CPA attacks are not independent. They should be
executed from right to left, one by one.

For partial-CPA 1, θ0(3 : 0) and A0(3 : 0) are
unknown, and W0

′(3 : 0) is the plaintext. Ac-
cordingly, the Hamming distance power model is
HD(A1(3 : 0), A0(3 : 0)) = HW

((
θ0(3 : 0) +W0

′(3 :

0)
)⊕A0(3 : 0)

)
. An attack has been performed on an

FPGA board. The results are shown in Fig. 4. The
horizontal axis is 28 hypothesis of θ0(3 : 0)||A0(3 : 0),
where “ ||” means concatenation of two bit vectors.
The vertical axis is the largest correlation coefficient
between power traces and the computed power model
vector based on each key hypothesis. Three features
can be observed on the blue waveform.

50 100 150 200 250
−0.1

0.0

0.1

Key hypothesis θ0(3:0) || A0(3:0)

ρ

0

Fig. 4 Results of partial-CPA 1 toward θ0 (References
to color refer to the online version of this figure)

First, it has a pseudo period of 27. The green
line is the boundary. If we have two key guesses
with the same θ0(2 : 0) and A0(2 : 0) but opposite
θ0(3) and opposite A0(3), for example, “10111111”
and “00110111,” we will obtain two of the same cor-
relation coefficients. The two key guesses have a
difference of 27 ± 23.

Second, one negative correlation coefficient al-
ways has one positive counterpart with the same ab-
solute value. In principle, this pair corresponds to
two key guesses with the same θ0(3 : 0) and opposite
A0(3 : 0), for example, “10111111” and “10110000.”
The waveform is divided into 16 segments. The ver-
tical dotted lines are boundaries between them. Key
guesses in each segment have the same θ0(3 : 0), with

all possible A0(3 : 0). So, one correlation coefficient
pair always locates in the same segment. Based on
our previous measurement of the register HD leak-
age from the FPGA board, it should be negative. So,
the correct key guess will be looked up only in the
negative half of the waveform.

Based on the two features, it can be guessed that
there should be two negative peaks corresponding to
two candidates for the correct key guess. However,
another two very close secondary peaks can be no-
ticed on the waveform, which cannot be neglected.
The peaks and secondary peaks are marked by black
and red stars. In fact, the red star corresponds to
the correct key guess, which will be verified later.

It can be seen that the secondary peaks locate
in the same segments as the peaks. As A0 will be
calculated after all eight CPA attacks are finished,
the target at this stage is the recovery of θ0(3 : 0).
In other words, we need to find which segment (as-
sociated with θ0(3 : 0)) gives negative peaks instead
of differentiating the peaks and secondary peaks lo-
cated in the same segments. Based on the above
analysis, due to the pseudo period feature, there are
two candidate values (MSB uncertain) that cannot
be distinguished at this moment for the correct guess
of θ0(3 : 0). Actually, all the above three features are
related to the Hamming distance power model for
hardware implementation. In the Hamming weight
model, there is no ⊕A0(3 : 0) term, so the candidate
for the correct key guess is unique.

Based on partial-CPA 1, partial-CPA 2 can be
done. Its power model is HD(A1(7 : 4), A0(7 :

4)) = HW
((

(θ0(7 : 4)||θ0(3 : 0)) + W0
′(7 : 0)

)
(7 :

4)⊕A0(7 : 4)
)
, with θ0(7 : 4) andA0(7 : 4) unknown,

W0
′(7 : 0) being the plaintext, and θ0(3 : 0) having

two candidates. For each candidate, power model
vectors can be built and their corresponding corre-
lation coefficient waveform can be acquired. FPGA
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attack results of partial-CPA 2 are shown in Fig. 5.
The results can be seen in two aspects. First, as the
negative peaks appear in candidate 2 rather than the
candidate 1 sub-figure, it can be affirmed that the
correct guess of θ0(3 : 0) is candidate 2. The reason
is that the carry from bit 3 to bit 4 in the modular
addition in the power model of partial-CPA 2 can be
correct only when θ0(3 : 0) is correct. Second, there
are two noticeable negative peaks which correspond
to two candidate θ0(7 : 4) guesses with their MSBs
uncertain.

Similar to the role that θ0(3 : 0) plays in partial-
CPA 2, θ0(7 : 4) will play a role in partial-CPA 3
whose power model is HD(A1(11 : 8), A0(11 : 8)) =

HW
((

(θ0(11 : 8)||θ0(7 : 4)||θ0(3 : 0)) + W0
′(11 :

0)
)
(11 : 8) ⊕ A0(11 : 8)

)
, where θ0(3 : 0) is known

after partial-CPA 2 and θ0(7 : 4) has two candidates.
The results of partial-CPA 3 are shown in Fig. 6. In
a similar way, partial-CPA 4 to partial-CPA 8 can be
done one by one. Each partial-CPA uses the same set
of power traces in word-wise chosen-plaintext mode 1
listed in Table 3, and depends on the results of all
former partial-CPA attacks. As partial-CPA 8 is the
last one and no one can distinguish its two key can-
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Fig. 5 Results of partial-CPA 2 toward θ0: (a) can-
didate 1; (b) candidate 2

didates (MSB uncertain), there are two candidates
for θ0 (MSB uncertain).

3.2.2 The second kind: CPA 3 as an example

According to Table 3, the word-wise chosen-
plaintext mode of CPA 3 is mode 2, and θ1 is the
to-be-attacked value. To maintain each partial-CPA
with the same key hypothesis space of 28, here CPA 3
is decomposed into four partial-CPA attacks (Fig. 7).

For partial-CPA 1 of CPA 3, the power model is
HD(A2(7 : 0), A1(7 : 0)) = HW

((
θ1(7 : 0) +W1

′(7 :

0)
) ⊕ θ0(7 : 0)

)
, where θ1(7 : 0) is unknown and

W1
′(7 : 0) is random. The FPGA attack results

are shown in Fig. 8. The waveform does not have
symmetrical and pseudo period features like Fig. 4,
as the XORed term θ0(7 : 0) is a constant value. So,
in theory the correct guess for θ1(7 : 0) is unique.
In practice, there is luckily a single peak in Fig. 8.
In terms of partial-CPA 2, its power model is based
on the hypothesis of θ1(15 : 8), whose experimental
results are shown in Fig. 9. Due to the interference
of noise, there is a secondary peak not far from the
peak, which cannot be abandoned, leading the two
candidates of θ1(15 : 8) into partial-CPA 3.
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Fig. 6 Results of partial-CPA 3 toward θ0: (a) can-
didate 1; (b) candidate 2
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Fig. 7 Divide-and-conquer method of CPA 3
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Fig. 9 Results of partial-CPA 2 toward θ1

As shown in Fig. 10, candidate 2 is the true
θ1(15 : 8), and the single peak in the candidate 2
sub-figure reveals the correct guess for θ1(23 : 16).
Whenever more peaks appear than expected in one
partial-CPA attack, they just need to be plugged
into the subsequent partial-CPA attack to remove
the confusing incorrect ones, which is a good way to
deal with noise, especially when the power model is
linear, as used in this study. Finally, partial-CPA 4 is
performed twice under the assumption of θ0(31) = 0

and θ0(31) = 1, whose results are shown in Fig. 11.
According to the figure, there is one peak marked in
red in each sub-figure. The two peaks correspond
to two key guesses with the same θ1(30 : 24) and
opposite θ1(31), and only one of them is true, but
the correct one cannot be distinguished now. So,
the conclusion is that there are also two candidates
for θ1 with uncertain MSB, but they have a fixed
relationship with the two candidates for θ0.

CPA 5 and CPA 7 are exactly in the same pro-
cedure as CPA 3. Just replace the variables and use
their own corresponding word-wise chosen-plaintext
modes. Both θ2 and θ3 will have two candidates with
MSB uncertain, but their relationship with the two
candidates of θ0 and θ1 is fixed. Therefore, there are
two candidate groups for the θ group.

4 Bit-wise chosen-plaintext attack: at-
tacking the ϕ group

As shown in Table 3, CPA 2, CPA 4, CPA 6,
and CPA 8 are four subsequent CPA attacks toward
the ϕ group. In the first subsection, the first kind
of attack, CPA 2, will be introduced. The second
subsection introduces the second kind by showing
the details of CPA 4. As mentioned, due to the extra
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Fig. 10 Results of partial-CPA 3 toward θ1: (a) can-
didate 1; (b) candidate 2
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Fig. 11 Results of partial-CPA 4 toward θ1 assuming
θ0(31) = 0 (a) and θ0(31) = 1 (b)

P0 permutation function, the ϕ group is much more
complicated to deal with compared with the θ group.

4.1 The first kind: CPA 2

As listed in Table 3, the power model of CPA 2 is
HD(E0, E1) = HW(E0 ⊕ P0(ϕ0 +W0)) = HW(E0 ⊕
P0(TT20)), where TT20 = ϕ0 +W0. The operations
in this power model are shown in Fig. 12, in which the
numbers (31 : 0) above the horizontal line represent
bits of TT20. TT20, TT20 ≪ 9, and TT20 ≪ 17

are XORed together according to the P0 function in
Eq. (3) and results in E1. Then the Hamming dis-
tance between E1 and E0 can be calculated. As men-
tioned, CPA 2 should also be decomposed into sev-
eral partial-CPA attacks, but the divide-and-conquer
method is totally a new thing. Due to permutation
among bits of TT20, the key space cannot be simply
divided into parallel sections like in Section 3. How
CPA 2 is decomposed is shown in Fig. 12, whose
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details will be demonstrated later.

Fig. 13 shows the structure of the ϕ0 modu-
lar adding W0. Obviously, there is carry propaga-
tion from lower to higher bits. It can be observed
from Fig. 12 that to use HD leakage on the lower
two bits of register E and build a power model
as HD(E0(1 : 0), E1(1 : 0)) = HW

((
TT20(1 :

0)⊕TT20(16 : 15)⊕TT20(24 : 23)
)⊕E0(1 : 0)

)
, six

bits of TT20 including TT20(1 : 0), TT20(16 : 15),
and TT20(24 : 23) should be determined. As pre-
sented in Fig. 13, TT20(1 : 0) is easy to obtain,
and depends on the hypothesis of ϕ0(1 : 0) and the
controllable W0(1 : 0). Because there are so many
unknown bits of ϕ0, how to determine all six bits
of TT20 inside the three boxes becomes the major
problem.

Now we discuss our bit-wise chosen-plaintext
mode for partial-CPA 1. As shown in Fig. 13, except
the random bits marked as r, all other bits of W0 are
selected as “0.” It is noted that W0 is just random

in the word-wise chosen-plaintext mode for CPA 2.
The to-be-recovered bits of ϕ0 in partial-CPA 1 are
marked as “?” and there are 26 hypotheses of them.
Other bits of ϕ0 are marked as “*.” They are also
unknown bits, but they are not the to-be-recovered
bits in partial-CPA 1. Unless ϕ0(14 : 2) is a vector
of “1,” there must be no carry from bit 14 to bit 15.
When ϕ0(14 : 2) is a vector of “1,” whether there
is carry from bit 14 to bit 15 depends on ϕ0(1 : 0)

and W0(1 : 0). In other words, the carry from bit 14
to bit 15 is predictable. Then TT20(16 : 15) can be
determined and the carry from bit 16 to bit 17 is also
predictable. Similarly, the carry from bit 22 to bit 23
can be predicted and TT20(24 : 23) can be figured
out according to whether ϕ0(22 : 17) is a vector of
“1” or not. So, there exist four cases for partial-
CPA 1 as shown in Table 4. The power model in
each case is calculated differently (Table 5).

The key bits of partial-CPA 1, concatenated as
an 8-bit vector of ϕ0(1 : 0)||ϕ0(16 : 15)||ϕ0(24 :

23)||E0(1 : 0), whose hypothesis space is 28, are the

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12  11  

14 13 12 11 10   9   8   7   6   5   4   3   2   1   0 31 30  29 28 27 26  

HD 
model 7

HD 
model 6

HD 
model 5

HW HW HW

Partial-
CPA 5

Partial-
CPA 6

Partial-
CPA 7

TT20<<<17
TT20<<<9
TT20

E0

22 21 20 19 18 17 16 15 14 13 12 11 10   9   8   7   6   5   4   3   2    

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15  14 13 12 11  

10     9      8
  1     0    31
 25   24   23

 10    9     8

HD 
model 4

HW

Partial-
CPA 4

     7      6

     7      6

    30    29
    22    21

HD 
model 3

HW

Partial-
CPA 3

     5      4

     5      4

    28    27
    20    19

HD 
model 2

HW

Partial-
CPA 2

     3      2

     3      2

    26    25
    18    17

HD 
model 1

HW

Partial-
CPA 1

     1      0 

     1      0 

    24    23
    16    15

�

�

� � � � � � �

Fig. 12 Divide-and-conquer method of CPA 2
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Fig. 13 Bit-wise chosen-plaintext mode for partial-CPA 1 toward ϕ0

Table 4 Four cases of partial-CPA 1 in CPA 2

Case ϕ0(14 : 2) vector of “1”? ϕ0(22 : 17) vector of “1”? Carry from bit 14 to bit 15? Carry from bit 22 to bit 23?

A No No Never Never
B No Yes Never Possible
C Yes No Possible Never
D Yes Yes Possible Possible
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Table 5 Power models in four cases of partial-CPA 1 in CPA 2

Case Power model of partial-CPA 1

A HW
((

ϕ0(1 : 0)+W0(1 : 0)
)⊕(ϕ0(16 : 15)+W0(16 : 15)

)⊕(ϕ0(24 : 23)+W0(24 : 23)
)⊕E0(1 : 0)

)

B HW
((

ϕ0(1 : 0)+W0(1 : 0)
)⊕(ϕ0(24 : 15)+W0(24 : 15)

)
(1 : 0)⊕(ϕ0(24 : 15)+W0(24 : 15)

)
(9 : 8)⊕E0(1 : 0)

)

C HW
((

ϕ0(16 : 0)+W0(16 : 0)
)
(1 : 0)⊕(ϕ0(16 : 0)+W0(16 : 0)

)
(16 : 15)⊕(ϕ0(24 : 23)+W0(24 : 23)

)⊕E0(1 : 0)
)

D HW
((

ϕ0(24 : 0)+W0(24 : 0)
)
(1 : 0)⊕(ϕ0(24 : 0)+W0(24 : 0)

)
(16 : 15)⊕(ϕ0(24 : 0)+W0(24 : 0)

)
(24 : 23)⊕E0(1 : 0)

)

same as the partial-CPA attacks towards the θ group.
This is the reason why partial-CPA 1 is done based
on two bits of register E.

Partial-CPA 1 attack experiments were success-
fully performed in four cases on an FPGA board. As
shown in Fig. 14, eight negative peaks appear in case
A, and the four peaks in case B are their subset. It is
almost impossible to confirm which case is correct as
the magnitudes of peaks in cases A and B have little
difference. Actually, there is no need to recognize the
correct case; the only thing to do is to find all candi-
dates for the correct key hypothesis corresponding to
the peaks in all the four cases. There are eight can-
didates for ϕ0(1 : 0)||ϕ0(16 : 15)||ϕ0(24 : 23). The
true one will be determined in partial-CPA 2.

As shown in Fig. 12, partial-CPA 2 uses HD
leakage on bit 3 and bit 2 of register E, so TT20(3 :

2), TT20(18 : 17), and TT20(26 : 25) should be pre-
dictable. To obtain the six bits, a specific bit-wise
chosen-plaintext mode for partial-CPA 2 is needed
(Fig. 15), where the bits referred to ϕ0(1 : 0)||ϕ0(16 :

15)||ϕ0(24 : 23) are recovered with eight candidates.
Every two “?” bits before the “

√
” bits are to-be-

recovered bits of ϕ0 in partial-CPA 2. Considering
another two key bits E0(3 : 2), the key hypothesis
space is also 28. In plaintext W0, there are six more
random bits compared to W0 in partial-CPA 1. For
partial-CPA 2, there are also four cases. The defini-
tion of each case is similar to that in Table 4, with
ϕ0(14 : 2) replaced by ϕ0(14 : 4) and ϕ0(22 : 17)

replaced by ϕ0(22 : 19). In each case, the carries
from bit 14 to bit 15 and from bit 22 to bit 23 can
be predicted, and the six new bits of TT20 in the
new boxes can be determined to calculate the power
model as listed in Table 6.

A partial-CPA 2 attack on an FPGA board
has been performed successfully, and the results are
shown in Fig. 16. It can be seen that the differ-
ence between the cases in the same column is rela-
tively small, while the difference between the candi-
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Fig. 14 Results of partial-CPA 1 toward ϕ0: (a)
case A; (b) case B; (c) case C; (d) case D

dates in the same row is rather large. Luckily, our
goal is to find the true candidate rather than car-
ing about the cases, which does not mean that there
is no point in building the power models in differ-
ent cases at the beginning. Obviously, candidate 8
for ϕ0(1 : 0)||ϕ0(16 : 15)||ϕ0(24 : 23) is the correct
one because it results in the largest peaks in all the
four cases compared with other candidates. In ad-
dition, because there are again eight peaks in each
sub-figure of candidate 8, there are eight candidates
for ϕ0(3 : 2)||ϕ0(18 : 17)||ϕ0(26 : 25).

The partial-CPA attacks are introduced as fol-
lows. For each new partial-CPA attack, new
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Fig. 15 Bit-wise chosen-plaintext mode for partial-CPA 2 toward ϕ0

Table 6 Power models in four cases of partial-CPA 2 in CPA 2

Case Power model of partial-CPA 2

A HW
((

ϕ0(3 : 0)+W0(3 : 0)
)
(3 : 2)⊕(ϕ0(18 : 15)+W0(18 : 15)

)
(3 : 2)⊕(ϕ0(26 : 23)+W0(26 : 23)

)
(3 : 2)⊕E0(3 : 2)

)

B HW
((

ϕ0(3 : 0)+W0(3 : 0)
)
(3 : 2)⊕(ϕ0(26 : 15)+W0(26 : 15)

)
(3 : 2)⊕(ϕ0(26 : 15)+W0(26 : 15)

)
(11 : 10)⊕E0(3 : 2)

)

C HW
((

ϕ0(18 : 0)+W0(18 : 0)
)
(3 : 2)⊕(ϕ0(18 : 0)+W0(18 : 0)

)
(18 : 17)⊕(ϕ0(26 : 23)+W0(26 : 23)

)
(3 : 2)⊕E0(3 : 0)

)

D HW
((

ϕ0(26 : 0)+W0(26 : 0)
)
(3 : 2)⊕(ϕ0(26 : 0)+W0(26 : 0)

)
(18 : 17)⊕(ϕ0(26 : 0)+W0(26 : 0)

)
(26 : 25)⊕E0(3 : 0)

)

0  50    150    250 50     150    250 50     150    250 50     150    250 50     150    250 50     150    250 50     150    250 50     150    250

−0.2

0.0

0.2

−0.2

0.0

0.2

−0.2

0.0

0.2

−0.2

0.0

0.2

Candidate 1 Candidate 2 Candidate 3 Candidate 4 Candidate 5 Candidate 6 Candidate 7 Candidate 8

ρ
ρ

ρ
ρ

Key hypothesis

(a)

(b)

(c)

(d)

Fig. 16 Results of partial-CPA 2 toward ϕ0: (a) case A; (b) case B; (c) case C; (d) case D
Each row represents one case of the power model of partial-CPA 2, while each column corresponds to one candidate for
ϕ0(1 : 0)||ϕ0(16 : 15)||ϕ0(24 : 23) from the results of partial-CPA 1. In each sub-figure, the horizontal axis represents the
value of the key hypothesis denoted by ϕ0(3 : 2)||ϕ0(18 : 17)||ϕ0(26 : 25)||E0(3 : 2), and the vertical axis is the correlation
coefficient ρ

to-be-recovered bits on the left of the recently re-
covered bits by the former partial-CPA attack are
defined. At the same time, more bits on the ad-
jacent left in the plaintext word W0 are added as
random bits. For example, as shown in Fig. 17,
for partial-CPA 3, ϕ0(3 : 2), ϕ0(18 : 17), and
ϕ0(26 : 25) are recovered (eight candidates), and the
new to-be-recovered bits are just neighbor bits on
their left. There are also four cases of partial-CPA 3.
Partial-CPA 4 is similar, but there are only two cases
(Fig. 18), because only one unknown middle part of
ϕ0 is left and should be assumed as a vector of “1” or
not. The results of partial-CPA 3 and partial-CPA 4

are shown in Figs. 19 and 20, respectively. These fig-
ures show that partial-CPA 3 confirms candidate 8
from partial-CPA 2 as the correct one, and partial-
CPA 4 confirms candidate 6 from partial-CPA 3 as
the correct one.

As shown in Fig. 12, partial-CPA 1–4 all use HD
leakage on every two bits of register E. However,
from partial-CPA 5–7, things seem to have changed.
Actually, as more bits of ϕ0 are recovered, HD leak-
age on more than two bits of register E are used to
keep the key space at around 28. For a better un-
derstanding, we take partial-CPA 5 as an example.
In partial-CPA 5, if the HD leakage on only two bits
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Fig. 17 Bit-wise chosen-plaintext mode for partial-CPA 2 toward ϕ0
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Fig. 18 Bit-wise chosen-plaintext mode for partial-CPA 4 toward ϕ0
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Fig. 19 Results of partial-CPA 3 toward ϕ0: (a) case A; (b) case B; (c) case C; (d) case D
Each row represents one case of the power model of partial-CPA 3, while each column corresponds to one candidate for
ϕ0(3 : 2)||ϕ0(18 : 17)||ϕ0(26 : 25) from the results of partial-CPA 2. In each sub-figure, the horizontal axis represents the
value of the key hypothesis denoted by ϕ0(5 : 4)||ϕ0(20 : 19)||ϕ0(28 : 27)||E0(5 : 4), and the vertical axis is the correlation
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Fig. 20 Results of partial-CPA 4 toward ϕ0: (a) case A; (b) case B
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(bit 9 and bit 8) of register E is used, the key space
will be only 25 because ϕ0(0) and ϕ0(24 : 23) are
known based on former partial-CPA attacks. How-
ever, if leakage on one more bit is used as shown in
Fig. 12, the key space will be 27; if we use leakage on
two more bits, then the key space is 29. In this study,
the 27 choice is selected for partial-CPA 5, whose key
is then ϕ0(31)||ϕ0(10 : 8)||E0(10 : 8). The bit-wise
chosen-plaintext mode for partial-CPA 5 is shown in
Fig. 21. Under the assumption that ϕ0(14 : 11) is
all “1” vector or not, there are also two cases. The
experimental results are shown in Fig. 22, indicat-
ing that candidate 2 from partial-CPA 4 is the true
one. Although there are four negative peaks in the
sub-figure of candidate 2, only the two candidates
for ϕ0(10 : 8) will be distinguished by the following
partial-CPA 6. The MSB ϕ0(31) cannot be distin-
guished, because the carry generated on bit 31 is
discarded and does not influence other bits. Only
the bits that can propagate carries to the higher bits
can be recovered.

In partial-CPA 6, W0 has no chosen feature
(Fig. 23), and all four remaining unknown bits of ϕ0

are to-be-recovered bits. Considering E0(14 : 11),
the key space is again 28. This is why we use leakage
on four bits of register E in partial-CPA 6. Ex-
perimental results are shown in Fig. 24. Because
there are two peaks in the sub-figure of candidate 1,
the true value of ϕ0(10 : 8) is “011” rather than
“111.” The values of ϕ0(14 : 11) corresponding to
the two peaks have only one different bit ϕ0(14).
Because this bit may propagate carry to higher bits,
another partial-CPA attack occurs, called partial-
CPA 7, with the same set of plaintext as in partial-
CPA 6, to recover the single bit. Leakage on bits
(15:11) of register E can be used in partial-CPA 6,
and we can save partial-CPA 7. However, in this way,
the key space of partial-CPA 6 will be 29. Attack-
ers can choose either way. Now we have recovered
all bits of ϕ0 except its MSB ϕ0(31). In conclusion,
the key bits and bit-wise chosen-plaintext modes for
each partial-CPA are listed in Table 7.

31 30 29 28 27 26 25 24 23  22 21 20 19 18 1716 15 14 13 12 11 10   9   8   7  6   5   4    3   2   1   0

All “1” ?
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Fig. 21 Bit-wise chosen-plaintext mode for partial-CPA 5 toward ϕ0
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Fig. 22 Results of partial-CPA 5 toward ϕ0: (a) case A; (b) case B
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Fig. 23 Bit-wise chosen-plaintext mode for partial-CPA 6 toward ϕ0
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4.2 The second kind: CPA 4 as an example

In practice, CPA 4 should also be decomposed
into several partial-CPA attacks like we did for
CPA 2. The divide-and-conquer method is shown
in Fig. 25. Note TT21 = ϕ1+W1. The keys and bit-
wise chosen-plaintext modes of W1 for each partial-
CPA attack are given in Table 8. The basic principles
are quite similar to those in CPA 2. Remember that
ϕ0(31) is uncertain after CPA 2. Because bit 8 of
P0(ϕ0) which is marked red in Fig. 25 is related to
ϕ0(31), it is also uncertain. So, ϕ1(31) cannot be
determined, but one possible ϕ1(31) corresponds to

only one possible ϕ0(31).
For CPA 6 and CPA 8, the story is quite similar.

Thus, two candidate groups for the ϕ group can be
acquired. Combining the two candidate groups for
the θ group, four possible original keys will be deter-
mined. In other words, the key space can be reduced
from 2256 to 4 at this stage.

5 Recovery of the unique key

All attack experiments on FPGA boards have
been performed successfully. In total, 39 partial-
CPA attack experiments have been implemented,

50 100 150 200 250
Key hypothesis φ0(14:11) || E0(14:11)

0

(a)

50 100 150 200 2500

(b)

−0.1

0.0

0.1

ρ

−0.1

0.0

0.1
ρ

Key hypothesis φ0(14:11) || E0(14:11)

Fig. 24 Results of partial-CPA 6 toward ϕ0: (a) candidate 1 (ϕ0(10 : 8) = 011); (b) candidate 2 (ϕ0(10 : 8) =

111)

Table 7 Conclusions for important details of all partial-CPA attacks in CPA 2

Partial-
CPA No.

Key bits to be recovered
Key
space

Bit-wise chosen-plaintext mode of W0

1 ϕ0(1 : 0)||ϕ0(16 : 15)||ϕ0(24 : 23)||E0(1 : 0) 28 Bits on (24:23), (16:15), and (1:0) random, other bits fixed at “0”
2 ϕ0(3 : 2)||ϕ0(18 : 17)||ϕ0(26 : 25)||E0(3 : 2) 28 Bits on (26:23), (18:15), and (3:0) random, other bits fixed at “0”
3 ϕ0(5 : 4)||ϕ0(20 : 19)||ϕ0(28 : 27)||E0(5 : 4) 28 Bits on (28:23), (20:15), and (5:0) random, other bits fixed at “0”
4 ϕ0(7 : 6)||ϕ0(22 : 21)||ϕ0(30 : 29)||E0(7 : 6) 28 Bits on (30:15) and (7:0) random, other bits fixed at “0”
5 ϕ0(31)||ϕ0(10 : 8)||E0(10 : 8) 27 Bits on (31:15) and (10:0) random, other bits fixed at “0”
6 ϕ0(14 : 11)||E0(14 : 11) 28 All bits random

Table 8 Conclusions for important details of all partial-CPA attacks in CPA 4

Partial-
CPA No.

Key bits to be recovered
Key
space

Bit-wise chosen-plaintext mode of W0

1 ϕ0(2 : 0)||ϕ0(17 : 15)||ϕ0(25 : 23) 29 Bits on (25:23), (17:15), and (2:0) random, other bits fixed at “0”
2 ϕ0(5 : 3)||ϕ0(20 : 18)||ϕ0(28 : 26) 29 Bits on (28:23), (20:15), and (5:0) random, other bits fixed at “0”
3 ϕ0(8 : 6)||ϕ0(22 : 21)||ϕ0(31 : 29) 28 Bits on (31:15) and (8:0) random, other bits fixed at “0”
4 ϕ0(14 : 9) 26 All bits random

31 30 29 28 27 26 25 24 23  22 21 20 19 18  17 16  15 14  13 12  11 10  9    8   7    6    5    4   3    2   1   0
22 21 20 19 18 17 16 15 14  13 12 11 10   9    8   7   6    5    4   3   2   1  0    31 30 29   28 27 26   25 24 23 

 14 13 12  11 10  9   8   7   6    5   4   3   2   1    0  31 30  29  28 27 26 25 24  23 22 21   20 19 18   17 16 15
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Fig. 25 Divide-and-conquer method of CPA 4 (References to color refer to the online version of this figure)
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with each recovering several bits of the equivalent
keys. Over 400 000 power traces have been collected
and analyzed. Due to the inherent linearity of the
attacked operations, power leakage does not differ
so much between some key guesses, which can be
seen in the above figures showing attack results, so
each partial-CPA attack consumes more than 10 000
power traces on average. After all the experiments
and some calculations, four possible original keys,
which are listed in Table 9, were recovered. Recall
that A0 plays a role in CPA 1 and that E0 plays a
role in CPA 2. Some of their bits can be recovered
by every partial-CPA attack, although there is some
uncertainty. The recovery results of θ0 and A0 in
our experiment are given in Table 10. By compar-
ing Tables 9 and 10, we can conclude that the first
candidate for the original key is the correct one. Of
course the correct candidate can also be found by
comparing recovered E0 and calculated E0. In other
words, any uncertainty due to the inherent linearity
of power leakage can be eliminated in this stage.

6 Conclusions

In this paper, an attack procedure has been
proposed for the one-round-per-cycle HMAC-SM3
hardware implementation. The prerequisite here
is that we assume that only the round registers
leak and they leak only their HD but not HW,
which is consistent with our real measurement on
an FPGA (SAKURA-G) implementation of HMAC-
SM3. Because no power leakage models except
the round register Hamming distance models were
available, the CPA attack on HMAC-SM3 hardware
implementation was much more complex than its
software counterpart. Based on this prerequisite,

the improved word-wise chosen-plaintext attack
procedure theory was first given in this paper. By
following this procedure, the secret values should be
determined by executing eight CPA attacks with a
key hypothesis space of 264 or 232, which is, however,
too large and impossible for modern computers
to process. In practice, the divide-and-conquer
method can be used to decompose each CPA attack
into several partial-CPA attacks, each with a much
smaller key hypothesis space. According to the
different inherent properties of the two groups of
secret values in the SM3 algorithm, the methods of
divide-and-conquer for them are totally different.
One is straightforward, and involves segmenting the
long key into parallel shorter subkeys. The other is
more trickier, requiring the bit-wise chosen-plaintext
CPA attack procedure, which is the main focus of
this paper. For the recovery of the whole key, 39
partial-CPA attacks for the two groups were needed,
and they should follow the strict sequence in the
same group. All partial-CPA attack experiments
on FPGA boards have been performed successfully,
which verifies the proposed attack scheme. By com-
paring experimental results with some computation
results, the unique key was obtained.
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Table 9 Four candidates for the correct key in one attack experiment

No. Candidate for the correct key

1 7380166F4914B2B9172442D7DA8A0600A96F30BC163138AAE38DEE4DB0FB0E4E
2 F3C0186AC914BAC1974FADDACA5C27CC296F30BD163138A963A1EE4CA0F30B91
3 93FFD62F494FB0B8C0FC00D78F610B8439783FCD76323968620963F45E030312
4 13BFD82BC94FB8C040C8EFDBA0392CD8B9783FCD76323969E20D63F44E230553

Table 10 Recovery results of θ0 and A0 in one attack experiment

Bits θ0 A0 Bits θ0 A0 Bits θ0 A0

31:28 0101, 1101 0111(7), 1111(F) 19:16 1011 0000(0), 0001(1) 7:4 1010 0110(6)
27:24 1000 0011(3), 0111(7) 15:12 0101 0001(1) 3:0 1011 1111(F), 1110(E)
23:20 1000 1000(8) 11:8 1101 0110(6)
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