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Abstract: Different types of cloth show distinctive appearances owing to their unique yarn-level geometrical details.
Despite its importance in applications such as cloth rendering and simulation, capturing yarn-level geometry is
nontrivial and requires special hardware, e.g., computed tomography scanners, for conventional methods. In this
paper, we propose a novel method that can produce the yarn-level geometry of real cloth using a single micro-image,
captured by a consumer digital camera with a macro lens. Given a single input image, our method estimates the
large-scale yarn geometry by image shading, and the fine-scale fiber details can be recovered via the proposed fiber
tracing and generation algorithms. Experimental results indicate that our method can capture the detailed yarn-level
geometry of a wide range of cloth and reproduce plausible cloth appearances.
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1 Introduction

Capturing and rendering realistic cloth appear-
ance is important for applications such as cloth ani-
mation (Wang et al., 2011), human performance cap-
ture and rendering (Li et al., 2013; Liu et al., 2013;
Xu et al., 2014; Zhu et al., 2017), and virtual try on.
However, this task is still challenging, because real-
world cloths have complex and varying geometries at
the yarn level, which makes their surface reflectance
functions spatially varying and anisotropic. There-
fore, it is crucial to deliver an effective method for
capturing yarn geometry.

To accurately obtain a real-world yarn geom-
etry, Zhao et al. (2012, 2014, 2016) proposed a
method for modeling yarns from three-dimensional
(3D) volumetric data captured by a micro-computed
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tomography (CT) scanner. Their methods can trace
every individual 3D fiber and reproduce a volumet-
ric cloth model according to the user-specified fabric
designs. These methods can recover high-resolution
volumetric yarns and fibers, and the output is of high
resolution and physically correct. However, consid-
ering the expensive hardware required and the time
cost, the need for a micro-CT scanner greatly re-
stricts the applicability of the methods, especially
for common users in their daily life.

The volumetric cloth model needs massive
amounts of random access memory (RAM) or disk
storage. Schröder et al. (2015) proposed a procedu-
ral yarn model that uses several intuitive parameters
to generate complex yarns. Furthermore, they pro-
posed an image-based method for automatic analysis
of weaving patterns. Although their method works
well for woven fabrics, it may fail for other types such
as knitted fabrics.

In this study, we propose a novel method for
modeling yarn-level geometry on the surface from
a single image (Fig. 1). Compared with existing

www.jzus.zju.edu.cn
engineering.cae.cn
www.springerlink.com


1166 Wu et al. / Front Inform Technol Electron Eng 2019 20(9):1165-1174

(a) (b) 

(c) (d) 

Fig. 1 Given a single micro-image of a cloth sample
(a), our method can recover the yarn-level geometry
with fiber details (b). This enables realistic render-
ing of the cloth mesh (c) and a close-up view of the
rendering result (d)

methods, the proposed technique can handle differ-
ent types of cloths. More importantly, it is designed
to be widely available in daily life at a low cost. Inter-
net applications, virtual dressing, and virtual reality
can also benefit from our method. The only input is
a single image captured by a consumer digital cam-
era. To this end, we build a novel yarn database
containing the micro-images from 60 different kinds
of cloth. Guided by the database, the yarn layout can
be recovered. To further model the fibers of yarn, we
propose techniques that trace individual fibers in the
image and generate dense fiber geometry details. Ex-
perimental results show that our method can recover
plausible yarn-level geometry.

Different from yarn-level cloth design and mod-
eling (Yuksel et al., 2012; Leaf et al., 2018), the inner
yarn structure is ignored in our study, because the
cloth appearances depend mostly on the yarn-level
geometry of the cloth surface.

The contributions of this study are summarized
as follows: (1) a novel framework to capture the yarn-
level geometry from a single image; (2) techniques for
automatic yarn layout and shape recovery, fiber trac-
ing, and generation. Overall, the proposed method
shows a good potential for being used in real appli-
cations because it is effective, inexpensive, and easy
to use.

2 Related work

In this section, we review the existing works that
are related to cloth micro-geometry capture and the
fiber scattering function.

2.1 Cloth micro-geometry

The small-scale structure is a key factor of fab-
ric appearance. Capturing the small-scale structure
is important for realistic fabric rendering. The data
from CT scanning can provide extremely detailed
volumetric information about fibers. The fibers are
traced in the discrete CT data, and the cloth micro
structure is recovered from the traced fibers. Based
on fiber tracing, the volumetric fibers of woven cloth
are built from CT data, and the optical parameters of
the volumetric fibers are estimated from the images
(Zhao et al., 2014). Given the volumetric fabric sam-
ples, a new volumetric cloth model has been created
according to the user-specified fabric designs (Zhao
et al., 2012).

The procedural models are used to generate
the small-scale 3D structure. The interlaced/
intertwisted displacement subdivision surface is used
to represent the fabric micro-structure of woven fab-
ric (Zhang et al., 2013). Schröder et al. (2015) pre-
sented a procedural yarn model based on the state-
of-the-art results from textile research. This model
statistically describes the yarn structure using sev-
eral parameters. Based on the yarn model, an au-
tomatic parsing approach from a single image was
proposed to estimate the parameters of the model
and the weave pattern. Zhao et al. (2016) proposed
an end-to-end pipeline for automatically fitting the
CT measurements using Schröder et al. (2015)’s pro-
cedural yarn model. The flyaway fiber model was
improved for creating high-quality cloth rendering
results with fiber-level details. Our study also uses
Schröder et al. (2015)’s procedural yarn model to
generate the fiber-level cloth geometry model.

An elastic material coated with specially de-
signed powder is used to contact the object sur-
face. The powder replaces the uncontrolled surface
material, so that the photometric stereo algorithm
can be used to recover the micro-geometry precisely
(Johnson et al., 2011). However, the elastic material
cannot fully contact the gap between curved yarns
and the contact pressure may lead to yarn shape
deformation.

The multi-view or multi-light technology has
been used to capture the bidirectional reflectance dis-
tribution function (BRDF) and geometry of a surface
(Zhou et al., 2013; Nam et al., 2016). However, the
gap between curved yarns is relatively deep, which
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may lead to occlusion of light and obvious inter-
reflection. Moreover, calibrating the camera and
lights before the capture is tedious.

2.2 Fiber scattering function

The scattering characteristic of single fibers has
been explored for a long time. Marschner et al.
(2003) illuminated an individual hair with a nar-
row beam of various directions and measured the
scattered light at various positions. An analytical
scattering function that models the surface reflec-
tion, refractive transmission, and internal reflection
was used to fit the measurements. Similarly, the
scattering measurements of a single yarn were ac-
quired with a fully automatic, four-axis image-based
gonioreflectometer in Sadeghi et al. (2013). The yarn
scattering function uses two Gaussian lobes to model
the surface reflectance and volume scattering. The
cloth BRDF model is the weighted sum of all the
yarn scattering functions. Irawan and Marschner
(2012) proposed a procedural yarn scattering model
with a small set of parameters which describe the
fiber scattering characteristics, the geometry of the
yarns, and the pattern of the weave. They simpli-
fied the light transport inside the yarn, so that the
complex light scattering can be described by some
simple equations derived from the yarn geometry.
The cloth micro-geometry models can produce real-
istic rendering results with extreme fiber details. A
new cloth appearance matching framework to deter-
mine the optical parameters of the geometry model
was proposed in Khungurn et al. (2015). The optical
parameters of the micro-geometry model were opti-
mized to match the appearance photographs taken
under many different lighting conditions.

3 Overview

We estimate the yarn geometry parameters
through three steps (Fig. 2). We first extract the
unit patch and yarn layout. The yarn layout ac-
counts for the number, two-dimensional (2D) size,
and locations of yarns. Then we recover the geom-
etry of every yarn using image shading (Section 4).
Finally, 2D fibers are traced in the images and the 3D
fibers are fitted to them. The recovered yarn shapes
with fiber details are used to produce the final output
(Section 6).

We first describe the yarn geometry model of

yarns used in this study. The surface of knit or
weave cloth has a periodic texture. The global cloth
appearance can be represented by the spatial dupli-
cation of a unit path. The yarn layout describes
the size, location, and rotation of the yarn segments
in the unit path, and the geometry of every yarn is
modeled by two parts, its shape and fibers.

To model and detect the yarn layout from an
image, we introduce a 3 × 3 grid (Sudoku) for yarn
layout representation (Fig. 3a). Yarn modeling or
detection is performed on the center grid, and the
yarn layout is copied to the other eight squares in
the grid. If a yarn layout is valid, the area of the
overlapping region between the yarns or blank region
in the Sudoku grid is small. Fig. 3 shows two yarn
layouts. The left is a valid layout and the right is an
invalid one.

(b) (c)

(d)(e)

(a)

Fig. 2 Pipeline of yarn geometry capture. The input
is a micro-image of a cloth sample (a) captured under
a circular light. First, we extract the unit patch and
yarn layout (b). The yarn shape (c) parameters are
then estimated by image shading. Next, the yarn
twist angle is estimated based on the traced fiber (d).
Finally, we obtain the yarn-level geometry (e) from
the estimated yarn parameters

(a) (b) 

Fig. 3 A 3×3 grid representation of yarn layout. The
layout in (a) has a small overlapping region; it can be
treated as a valid layout. The layout in (b) has an
obvious overlapping region; it is an invalid layout

The yarn shape is designed based on the state-
of-the-art yarn model proposed by Irawan and
Marschner (2012). Fig. 4 illustrates the yarn
shape, which is a curved cylinder with width w and
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Fig. 4 Parameterization of the outer shape and loca-
tion of yarn. Some parameters are not shown in this
figure: the yarn curvature κ can be found in Irawan
and Marschner (2012); fiber count m and migration
Rmin can be found in Schröder et al. (2015)

projection length l. The cross-section of the cylin-
der is an ellipse with long axis w/2 and short axis
α. The curvature of the cylinder is controlled by
umax and κ. The relationship between the parame-
ters was described in Irawan and Marschner (2012).
The parameters (xc, yc, zc) indicate the location of
the top of the curved cylinder. The yarn rotation
angle around the z axis is denoted by θ.

The fiber model is a simplified version of the
procedural model in Schröder et al. (2015), because
a single micro-image is not sufficient for estimating
the full range of parameters. We found that a single-
ply yarn is sufficient for modeling the appearance of
the yarn surface, even if the yarn has multiple plies.
Flyaway fibers are not considered in this study. The
original version of the procedural yarn model used
nine parameters to control the fibers of a ply. In our
study, we use two parameters: fiber twisting ϕ and
fiber count m. The other parameters are constant.

4 Yarn layout extraction

We use the periodic pattern detection technol-
ogy from Asha et al. (2012) to extract the unit patch
(Fig. 3b). Owing to cloth distortion, there are ob-
vious discontinuities when putting the unit patch on
a 3 × 3 grid. This makes the yarn detection and
fiber tracing step difficult. We employ the image
quilting technology to reduce the blockiness when
putting the unit patch together (Efros and Freeman,
2001). The yarn layout can be extracted by detect-
ing the yarns inside or across the center grid based
on the 3 × 3 representation. We use a deformable-
part model (DPM) (Felzenszwalb et al., 2010) to de-
tect the yarn bounding box. The DPM is trained
using the discriminative learning algorithm (latent
support vector machine (SVM)), which needs only
yarn bounding boxes from the yarn database. The

DPM algorithm can detect only the vertical yarns,
but the yarns of knitted cloth are not vertical or hor-
izontal. To make DPM compatible with those yarns,
we rotate the 3× 3 grid by 60 angles uniformly sam-
pled between 0◦ and 180◦. Then the detected bound-
ing boxes are rotated back to the original position.
After the above steps, we can obtain several bound-
ing boxes on the center grid and manually delete the
incorrect bounding boxes. The periodic pattern and
yarn detection methods may fail in some cases, so
we manually adjust the detection results. The yarn
length l, width w, rotation θ, and the position on
the image (xc, yc) of every yarn can be computed
directly from the detected bounding boxes.

5 Yarn shape estimation

Under uniform environmental light, a surface
point will be shaded darker if it lies deeper. This
simple phenomenon is known as “dark is deep,” and
inspired by this, we propose to estimate the yarn
shape according to the pixel intensity values (an or-
thogonal projection assumption for the micro-image
capture is made in this study). In particular, we
assume that the relationship between surface depth
and corresponding pixel intensity can be modeled
by a linear function. The scaling factor converting
pixel intensity values to depth values is determined
by cloth thickness, which can be either estimated or
assigned by the user. In addition, if the captured im-
age contains yarns with different colors, they should
be separated and re-grouped according to their col-
ors in advance, and this can be done using the image
matting technique (Chen et al., 2013b) with required
user strokes. Note that in such cases, the scaling fac-
tor should be calculated separately for different yarn
areas.

Owing to the complex fiber structure, the raw
depth estimated from the image is also noisy. Ac-
cordingly, we remove the high-frequency component
from the yarn shape using the weighted least squares
(WLS) edge-preserving filter (Farbman et al., 2008)
and retain the global shading information produced
by illumination (Chen et al., 2013a). Figs. 5a and 5b
show the image capture process and captured image,
respectively. Fig. 5c shows the yarn depth estimated
from a single image and we can obtain the yarn shape
parameters by fitting the yarn shape model to the
depth image.
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(a)

(b) (c)

Fig. 5 Yarn depth from image shading: (a) image
capture process; (b) captured image; (c) yarn surface
depth

6 Fiber tracing and generation

Inspired by Chai et al. (2012, 2015), we trace
the fibers of every yarn to estimate the twist an-
gle. We first detect the fiber orientation of every
pixel on the center patch of the 3 × 3 grid using the
same orientation filters (Chai et al., 2012). Different
from hair images, the micro-image of fabric is noisy
owing to fiber specular reflection, translucence, and
impurities, which introduce noise into the orienta-
tion map. Thus, we discretize the orientation map
into rectangular sticks with rotation angle θ̂ (Fig. 6).
The blending angle difference between the covered
orientations and θ̂ is minimized:

argmin
∑

p∈Ω

B(θ̃(p), θ̂), (1)

where Ω is the region covered by the stick, p the
image coordinate, θ̃ the detected orientation map,
and B(·, ·) the blending angle (0, π/2) between two
orientations.

The orientation map discretization is imple-
mented by iteratively filling the grid with sticks.
During each iteration, a stick is placed at the point
that has the maximum distance to the filled re-
gion. In our case, the maximum distance can be
computed by distance transform. The stick orien-
tation is computed using Eq. (1). The iteration
stops when there is insufficient space to contain a
stick. Note that the discretization is performed on
the center patch of the 3 × 3 grid. When a stick is
put on the center patch, eight of the same sticks are

(a) (b) (c)

(d)(e)

Traced fiber：
Generated fiber:

Fig. 6 Illustration of fiber tracing. We first calculate
the fiber orientation of every pixel from the unit patch
(a) and discretize the orientation map into sticks (b).
Next, we trace the fibers stick by stick (the color lines
in (c)). (d) is fiber fitting. We fit the fiber parametric
model to the traced fiber to obtain the twisting angle
and obtain the generation of fiber (e). References to
color refer to the online version of this figure

simultaneously put on the other eight patches.
Similar to the approach in Chai et al. (2012,

2015), we trace a stick sequence belonging to a single
fiber by moving from one stick to another from a
seed stick, and the seed stick is selected randomly.
We start tracing from a seed pixel in both directions
from its center to its two ends. At the current stick,
the untraced sticks are selected as candidate sticks
from the radius (four times the stick length in our
experiment) around the end of the stick sequence.
The stick that has the minimum blending angle is
selected from the candidate sticks, and the selected
stick is set to be traced. The tracing stops when the
traced fiber reaches out of the yarn region. When the
tracing step finishes, we connect the stick sequence
and obtain a traced fiber.

We have revealed the yarn outer shape through
the previous steps, so the yarn twisting can be es-
timated according to the traced fibers. The yarn
twisting ϕ of a fiber can be estimated by fitting the
procedural model to the traced fiber. Based on the
matched shape in Section 4, the fiber count m of ev-
ery yarn is set to m = 0.3αw/r2, where r is the fiber
radius and the default value is 4.5 μm in our study.
From our observations, we find that the width of a
fiber takes up 8–10 pixels in the micro-image.

7 Results

Our prototype system was implemented in Mat-
lab on a PC with a quad-core CPU (Intel i7–4790)
and 16 GB memory. For a unit patch with about
1000 × 1000 pixels, the total time to recover the
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yarn-level geometry from a single micro-image was
about 15 min. The only user interaction required
was manual adjustment of the yarn and unit patch
detection, which took about an additional 3–5 min
for a trained user to finish.

In our experiment, we generated 200–400 fibers
for each yarn and the fibers were stored as a polyline.
The cloth was constructed by repeating the yarns
along the x- and y-axis by the size of the unit patch.
We rendered the fibers using the physics-based ren-
derer (Jakob, 2010). We can recover the plausible
yarn-level geometry of a variety of cloths not lim-
ited to woven cloth. The advantage of our method is
that we need only one micro-image. Fig. 7 shows the
yarn-level geometry of nine different kinds of cloth,
including six knit cloths and three weave cloths. The
yarns of knit cloth are no longer aligned vertically,
which makes them difficult to capture; another ad-
vantage of our method is that we can capture the
complex yarn geometry of knit cloth. The two ad-
vantages of our method reveal its potential for future
consumer applications owing to its low-cost nature.

The cloth appearance is affected mainly by the
location of specular reflection, specular and diffuse
albedo, and yarn glossiness. To simulate the appear-
ance of cloth/garment mesh, we consider the state-
of-the-art yarn texture model proposed by Irawan
and Marschner (2012). The specular reflection loca-
tion is determined by the yarn layout and yarn shape.
The yarn specular and diffuse albedo and glossiness
are determined by the yarn optical properties, in-
cluding ks, kd, α, β, and δ. The micro-image cannot
represent optical properties of the yarn: a cloth ap-
pearance photo is necessary for estimating the yarn
optical parameters. For the purpose of daily use,
we use the same lightweight configuration (a mobile
phone camera and built-in flash) as that in Aittala
et al. (2015) to capture a cloth image for appearance
matching. Fig. 8 shows the rendering results at dif-
ferent scales using the estimated optical parameter:
the cloth appearance model can generate the yarn
details on the cloth surface, and rendering results
have similar visual effect to the captured photo.

The Sudoku representation allows the user to
design new cloth. Users can add or delete a yarn
at the center grid and, at the same time, our sys-
tem copies the yarn layout to the other eight grids,
which guarantees that the users can immediately pre-
view the yarn layout. The user can adjust the yarn

location, rotation, or size to make the yarn layout
repeatable. Fig. 9 shows two user designs, which
took 10 min of manual interaction. After that, our
system can generate the yarn geometry and cloth
appearance model.

8 Conclusions and future work

In this paper, we have proposed a novel method
that can capture the yarn-level geometry of cloth
from a single micro-image. We used a Sudoku rep-
resentation for yarn layout. The yarn shape was es-
timated by image shading and the fiber details were
recovered by fiber tracing. Experimental results in-
dicated that our method can capture the plausible
detailed yarn-level geometry. Our techniques also
showed a good potential for various applications be-
cause it is very easy to use for non-experts and the re-
quired hardware is widely available and inexpensive.

8.1 Limitations

The yarn layout detection of our method is heav-
ily reliant on the periodic features of the cloth image,
and therefore the micro-geometry of certain cloth
types such as velvet cannot be recovered by our
method (Fig. 10a). Our method often fails when
the cloth is seriously distorted or has a high density
of flyaway fibers on the surface (Figs. 10b and 10c).
When the cloth is made of high-transparency yarns,
the yarn cannot be detected easily. We used image
shading to estimate the yarn shape, so our method
cannot recover the yarn shapes accurately when a
cloth is made of yarns of different colors.

8.2 Future work

A major limitation of our approach is the
manual correction of yarn layout detection results,
which is difficult for amateurs. A data-driven
strategy based on deep learning such as those in
Chai et al. (2016) and Zhang et al. (2017) can be ex-
plored to achieve automatic yarn geometry capture.
Capturing the micro-geometry and appearance of
cloth with yarns of different colors is still a difficult
problem, and requires further investigation. A cloth
shader for real-time rendering that can enhance
the yarn details of cloth also needs to be explored
in future work. We do not deal with the knotting
of the yarns in this study. We just simply place
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Fig. 7 Experimental results for yarn-level geometry recovery. We show nine different kinds of cloth in this
figure. The first six ((a)–(f)) are knit cloth and the last three ((g)–(i)) are weave cloth
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   (b) (c)(a)

Fig. 8 Three appearance rendering results using estimated parameters. The top row shows the three appear-
ance images. Rows 2–4 show the recovered yarn geometry (a), cloth mesh rendering results (b), and close-up
view (c)
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(a) (b) (c) (d)

(e) (f)

Fig. 9 User-designed weave patterns: (a) and (c) are designed weave patterns, (b) and (d) are yarn geometries
generated according to the user design, and (e) and (f) are cloth appearance rendering results of (a) and (c)
respectively

(a) (b) 

(c) (d) 

Fig. 10 Four cases where our method failed: (a)
cloth with no periodic features on the surface; (b)
seriously distorted cloth; (c) cloth with heavy density
of flyaway fibers on the surface; (d) cloth made of
high-transparency yarns

the detected yarn segments together without really
connecting and knotting them together. In future
work, the entire weave structure can be inferred
from a single micro-image, which can benefit the
yarn-level simulation of woven cloth (Cirio et al.,
2014).
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