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Abstract:    The realization of road traffic prediction not only provides real-time and effective information for travelers, but also 
helps them select the optimal route to reduce travel time. Road traffic prediction offers traffic guidance for travelers and relieves 
traffic jams. In this paper, a real-time road traffic state prediction based on autoregressive integrated moving average (ARIMA) 
and the Kalman filter is proposed. First, an ARIMA model of road traffic data in a time series is built on the basis of historical road 
traffic data. Second, this ARIMA model is combined with the Kalman filter to construct a road traffic state prediction algorithm, 
which can acquire the state, measurement, and updating equations of the Kalman filter. Third, the optimal parameters of the 
algorithm are discussed on the basis of historical road traffic data. Finally, four road segments in Beijing are adopted for case 
studies. Experimental results show that the real-time road traffic state prediction based on ARIMA and the Kalman filter is feasible 
and can achieve high accuracy. 
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1  Introduction 
 

Considering the complex road conditions and 
traffic problems, road traffic state prediction has re-
ceived increasing interest from researchers who have 
been investigating this topic in the past decade. Road 
traffic state prediction is not only an important 
foundation for traffic management and control, but 
also the key to formulate road traffic system guidance 
and a safe traffic strategy. Road traffic state prediction 
plays an important role in intelligent transportation 
systems. Besides, it is very useful in relieving traffic 
jams and making full use of road resources to predict 
the state of road traffic at future time intervals. 

Many methods for predicting the state of road 
traffic have been proposed. Hoong et al. (2012) pro-
posed a predictive analytic framework based on a 
Bayesian network for road condition prediction. 
Chang et al. (2011) established an advanced traffic 
management system that depends on obtaining com-
plete data for dynamic traffic prediction. Recently, 
spatial-temporal correlations have stirred up the in-
terest in road traffic prediction. Min and Wynter 
(2011) predicted the speed and volume of traffic at an 
interval of 5 min for up to 1 h in advance, based on a 
multivariate spatial-temporal autoregressive model, 
which proved to be fast and scalable for a full urban 
network. Pan et al. (2013) presented a stochastic cell 
transmission model framework to consider the spa-
tial-temporal correlation of traffic flow and to conduct 
short-term traffic state prediction. Ma T et al. (2015) 
proposed a time-threshold vector error correction 
model for short-term traffic state prediction. Although 
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road traffic state prediction based on spatial-temporal 
correlations can achieve high accuracy, the traffic 
state of a specific site is greatly affected by its up-
stream and downstream traffic conditions, which are 
computationally intensive in different locations. 
Hidden Markov models also perform well in pre-
dicting short-term traffic conditions (Qi and Ishak, 
2014). However, their changes in capacity can lead to 
unexpected outcomes. The k-nearest neighbor (k-NN) 
models also perform well in terms of short-term urban 
expressway flow prediction systems. Zhang et al. 
(2013) proposed an improved k-NN model for 
short-term traffic flow prediction. The algorithm is 
based on three components: an historical database, a 
search mechanism and algorithm parameters, and a 
prediction plan. The experiment was based on a sec-
tion of Shanghai urban expressway. The accuracy of 
the algorithm can reach over 90%, and prove the 
feasibility of prediction of short-term road traffic 
states. A k-NN model combined with a wavelet neural 
network has also received attention. Lin et al. (2013) 
proposed an online short-term road traffic prediction 
based on a k-NN based local linear wavelet neural 
network. Results from the proposed method are better 
in terms of accuracy and running time than those of 
the k-NN based local linear wavelet neural network 
and support vector regression. Neural networks (NNs) 
and artificial neural networks (ANNs) have been 
applied in road traffic prediction in the past decade. 
NN traffic models trained with historical traffic data 
are capable of predicting the vehicle speed profile 
with current traffic information (Ma XL et al., 2015; 
Moretti et al., 2015; Park et al., 2011; Vlahogianni et 
al., 2005). Vlahogianni et al. (2005) proposed an 
optimized and meta-optimized NN for short-term 
traffic flow prediction. Park et al. (2011) and Ma XL 
et al. (2015) presented a short-term NN for traffic 
speed prediction. However, when developing NNs, 
researchers have to rely on time-consuming and 
questionably efficient rules of thumb because of lim-
ited knowledge of the network’s optimal structure 
given a specific dataset. Liu et al. (2011) proposed a 
short-term road traffic prediction model with multiple 
dimensions based on support vector machine (SVM). 
They used the Global Positioning System (GPS) data 
of Guiyang City, China as an example, and compared 
the proposed model with the ARIMA model to test the 
reasonability of the method. An ANN for short-term 

traffic flow prediction using the past traffic data has 
also been investigated (Kumar et al., 2013; Sommer 
et al., 2015). Kumar et al. (2013) presented an ANN 
algorithm to predict speed data, and the ANN was 
trained using the data produced by a microscopic road 
traffic simulator. The test experiment of the method 
was based on a fixed interval of 30-min measurement, 
and the state prediction was conducted for different 
horizontal periods (5, 15, and 30 min). The method 
proved to be feasible in traffic speed prediction. De-
spite the advantages of SVM and ANN models, ap-
proaches sensitive to the quality of training data 
cannot be neglected. A hybrid model integrates the 
advantages of all types of single technologies, and 
achieves greater accuracy in short-term traffic speed 
prediction (Smith et al., 2002; Liu JY et al., 2012; 
Wang and Shi, 2013). However, installing this model 
in every traveler’s car is expensive and time con-
suming. Recent efforts to improve traffic flow by 
using advanced information feedback (such as pre-
diction feedback) with a cellular automaton (CA) 
model in intelligent transportation systems should 
also be remembered. Dong et al. (2009; 2010) intro-
duced a prediction feedback strategy. The model in-
corporates the effects of adaptability into cellular 
automaton models of traffic flow. Simulation results 
adopting this optimal information feedback strategy 
demonstrate high efficiency in controlling the spatial 
distribution of traffic patterns. Chen et al. (2012) 
presented a feedback strategy, called the vacancy 
length feedback strategy (VLFS). Simulation results 
suggest that VLFS outperforms others in terms of 
value, stability, average flux, balance of the vehicle 
number, and the convenience of its application in real 
traffic conditions.  

Apart from the aforementioned road traffic pre-
dictions, the autoregressive moving average (ARMA) 
model is one of the most widely used regression 
analysis methods, which aims to determine the type of 
regression relationship between historical data and 
future data (Smith et al., 2002; Chen et al., 2011; 
Durbin and Koopman, 2012; Lv et al., 2015). The 
autoregressive integrated moving average (ARIMA) 
model has been extensively applied to road traffic 
prediction. Chen et al. (2011) proposed an ARIMA 
with a generalized autoregressive conditional heter-
oscedasticity (ARIMA–GARCH) model for traffic 
flow prediction. A plane-moving average algorithm 
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was presented to solve the urban road flow forecast-
ing problem (Lv et al., 2015). Smith et al. (2002) 
compared a seasonal ARIMA model and a nearest 
neighbor technique in predicting a 15-min express-
way traffic flow around London. They concluded that 
the seasonal ARIMA model performs better than the 
nearest neighbor technique. Durbin and Koopman 
(2012) proposed a process of time series modeling 
and analysis by a state space method, and used the 
characteristics of the ARIMA model. Their work is a 
very useful introduction for researchers. The Kalman 
filter has been widely applied in stationary and 
non-stationary data analysis because of its favorable 
performance. The model is also computationally ef-
ficient, as it requires only an extremely small storage 
capacity, and is suitable for real-time traffic volume 
prediction. Zhang et al. (2012), Ojeda et al. (2013), 
and Guo et al. (2014) presented an adaptive Kalman 
filter for traffic flow prediction. Liu JY et al. (2012) 
proposed a hybrid model based on a Kalman filter and 
NN to predict the travel time from the Wenhui Bridge 
to the Mingguang Bridge in Shanghai, China. Data 
were collected by a mobile phone that supports GPS, 
and thus the feasibility of the hybrid model was val-
idated. The Kalman filter can dynamically modify the 
prediction weight, and has high prediction accuracy. 
However, since road traffic time series is influenced 
by many factors and cannot be quantitatively ana-
lyzed, the estimation and measurement equations are 
difficult to obtain. Liu H et al. (2012) compared 
ARIMA–ANN and ARIMA–Kalman models in terms 
of wind speed prediction, and proved the superiority 
of the latter. 

The models in most of these studies, especially 
spatial-temporal correlations and hidden Markov 
models, are excessively intensive in different loca-
tions and conditions. This study aims to develop a 
traffic prediction algorithm that is adequately robust 
and accurate to handle full-day road traffic state data. 
ANN, NN, and SVM have high accuracy in road 
traffic prediction, but their accuracy depends on the 

 
 

 
 
 
 
 

road traffic dataset and training quality. Hybrid mod-
els incorporate the advantages of single models, and 
thus they are extremely expensive and complex for 
travelers. Although the ARIMA model conducts 
short-term traffic prediction effectively, high predic-
tion accuracy in a low-order ARIMA model and pa-
rameter estimation in a high-order ARIMA model are 
difficult to achieve. 

Therefore, a real-time road traffic state predic-
tion based on ARIMA and the Kalman filter  
(ARIMA–Kalman) is proposed in this study to solve 
the difficulties found in single modeling methods and 
to improve prediction accuracy. The contributions of 
the proposed algorithm are three fold:  

1. A novel road traffic prediction algorithm, 
ARIMA–Kalman, is proposed to construct the meas-
urement, state, and updating equations of the Kalman 
filter for road traffic prediction. 

2. The proposed algorithm can determine opti-
mal parameters through a training process based on 
the historical road traffic data. 

3. A comparative study is conducted with four 
other algorithms to prove the feasibility of the pro-
posed one. 

 
 

2 Road traffic state prediction algorithm 
based on ARIMA and the Kalman filter 

2.1  Framework 

The main idea of the proposed road traffic state 
prediction algorithm is illustrated in Fig. 1. The his-
torical traffic data are obtained from Beijing, China. 
The proposed algorithm constructs the ARIMA model 
based on historical road traffic data. The ARIMA 
model is then introduced into the Kalman filter to 
construct the state, measurement, and updating equa-
tions to complete the training process, using historical 
road traffic data. The optimal model parameters cor-
responding to the smallest absolute percentage error 
of the historical prediction results are determined 
 

 
 
 
 
 
 

Fig. 1  Road traffic state prediction algorithm based on autoregressive integrated moving average and the Kalman filter 
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in the process. Finally, real-time road traffic data are 
introduced into the proposed algorithm to complete 
the real-time road traffic data prediction. 

2.2  Modeling the road traffic ARIMA model of a 
time series 

When modeling an ARIMA model in a time se-
ries, the series should be stationary. A non-stationary 
time series can become stationary when a differencing 
technique is used to handle it. If the time series xt to be 
studied is non-stationary, a stationary series can be 
obtained in a standard ARIMA model by proper dif-
ferencing (Brockwell and Davis, 2006; Kirchgässner 
et al., 2012): 
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where t=1, 2, … is the serial number, {xt} is the time 
series, {αt} is the normal white noise process, with a 
mean value of zero and a variance of σ2, φi(t) (i=1, 
2, …, p) and θj(t) (j=1, 2, …, q) are the parameters 
that must be estimated, p is the order of autoregressive 
(AR) polynomial, q is the order of moving average 
(MA) polynomial, B is the backshift operator, d is the 
order of differencing, φ(B) is the AR polynomial, and 
θ(B) is the MA polynomial. 

The stationary time series can be used to for-
mulate an ARIMA model and determine its order and 
parameters. The order (p, q) can be preliminarily 
determined using the autocorrelation function (ACF) 
feature and the partial ACF (PACF) feature of the 
stationary time series. Finally, (p, q) can be deter-
mined using the Akaike information criterion (AIC). 
The stationary nature and reversibility of the  
estimated parameters can be validated by solving the 
equations of the ARIMA model to determine the 
model parameters. In the analysis of time series, the 
Yule–Walker equation plays an important role in 
pattern recognition and parameter estimation. Thus, 
the Yule–Walker equation is introduced in this study. 
The residual of the ARIMA model can be regarded as 
the model estimation criterion. A likelihood maxi- 
mization method is used in the model estimation  
procedure. By solving the ACF of the residual, we can 
judge whether the residual series is white noise or not. 

If the residual series is not white noise, (p, q) will be 
redefined. 

Therefore, the road traffic state at moment t+1 
can be predicted and described as follows:  
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where {x(t+1), x(t), …, x(t−p+1)} is the road traffic 
series corresponding to moments {t+1, t, …, t−p+1}, 
φ1(t), φ2(t), …, φp(t) are the autoregressive coeffi-
cients at moment t, {θ1(t), θ2(t), …, θq(t)} is the 
moving average coefficients series at moment t, and 
{e(t+1), e(t), …, e(t−q+1)} is the noise series, which 
is normally distributed, corresponding to moment 
{t+1, t, …, t−p+1}. 

Seasonal ARIMA (SARIMA) models reflect the 
feature of seasonal variation in time series, and can be 
divided into simple and multiple models. The sea-
sonal component will be considered in this study. 
Generally, the original time series {Xt} uses a lag 
operator B to process SARIMA (p, d, q)(P, D, Q). A 
seasonal ARIMA model can be written as 
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where ΦP(BS) and ΘQ(BS) are polynomial in B of 
degrees P and Q, respectively, P is the order of sea-
sonal autoregression, D is the number of seasonal 
differences, Q is the order of the seasonal moving 
average, and S is the length of the season. 

2.3  Construction  

The Kalman filter solves the best linear filter 
problem based on the criterion of minimum mean 
square error. The best estimation of the state variables 
for the filter is made by a recursive algorithm. By 
computing the state and measurement equations, the 
former estimation, and the latest observations, we  
can estimate the current value to acquire the best  
estimation data. The Kalman filter method has many 
advantages. It relies only on the recursive method and 
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does not require all the historical data. It can be used 
to deal with not only the stationary and non-stationary 
random processes, but also time-varying and non- 
time-varying systems. Generally, the observation and 
measurement equations of the Kalman filter are de-
scribed in Eqs. (4) and (5), respectively: 

 

 Xt+1=AXt+Wt,  (4) 
 Yt=BXt+Vt,  (5) 
 

where Xt+1 and Yt are n-dimensional state vector and 
m-dimensional observation vector of the system, 
respectively, A and B are m×n-dimensional state 
transition matrix and observation matrix, respectively, 
and Wt and Vt are n-dimensional random interference 
vector and m-dimensional observed noise vector of 
the system, respectively.  

Determining the state and observation equations 
is difficult, because the single road traffic state time 
series cannot effectively reflect the road traffic state. 
Thus, the mathematical expression of the ARIMA 
model is introduced into the state and measurement 
equations of the Kalman filter to predict the road 
traffic state. 

If x1(t)=x(t), x2(t)=x(t−1), …, xp(t)=x(t−p+1), 
e1(t)=e(t), e2(t)=e1(t−1), …, eq(t)=eq−1(t−1), the 
ARIMA model of road traffic data is introduced into 
the state and measurement equations of the Kalman 
filter prediction algorithm. The ARIMA model can be 
described as follows: 
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where {x1(t), x2(t), …, xp(t)} corresponds to the road 
traffic data sequence {1, 2, …, p} at moment t. 

From Eq. (6), we can find x2(t+1)=x1(t), x3(t+1)= 
x2(t), …, xp+1(t+1)=xp(t), e2(t+1)=e1(t), e3(t+1)= 
e2(t), …, eq(t+1)=eq−1(t). Eq. (6) can be described as 
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From Eqs. (2), (4), (5), (6), and (7), the obser-
vation equation can be written as follows: 
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The ARIMA–Kalman prediction algorithm uses 

the state and observation equations to express the 
Kalman filter equations as Eqs. (7) and (8). Combined 
with the iterator, the Kalman filter can be updated. 
The specified equations can be described as follows: 

 
 P(t+1|t)=A·P(t|t)′+R1+R2+…+Rq, (9) 
 Kg(t+1)=P(t+1|t)·B′/(B·P(t+1|t)·B′+Q), (10) 
 X(t+1|t+1)=X(t+1|t)+Kg(t+1)·(Z(t+1)−B·X(t|t)), (11) 
 P(t+1|t+1)=(I−Kg(t+1)·B)·P(t+1|t),  (12) 
 
where X(t+1|t) is the road traffic prediction value at 
moment t+1 based on that at moment t,  
P(t+1|t) is covariance matrix corresponding to 
X(t+1|t), (R1, R2, …, Rq) is the covariance matrix 
corresponding to (e1, e2, …, eq), Q is the covariance 
matrix of the observation noise equation, B is the 
observation matrix, Kg is the error gain, and Z is the 
observed vector. Through the aforementioned equa-
tions, the prediction results can be described as  
 
 Y(t+1)=BX(t+1|t+1),  (13) 
 
where Y(t+1) is the road traffic value at moment t+1, 
and X(t+1|t+1) is the optimal estimation vector of the 
road traffic data at moment t+1. 

2.4  Prediction of real-time road traffic state based 
on the proposed algorithm 

Historical data are preprocessed to establish the 
ARIMA model. ACF and PACF are calculated to 
preliminarily determine the scope of the model 
structure parameters (p, q). Then, the best (p, q) val-
ues are determined using the AIC criterion. In the 
process of determining model construction, we con-
duct a Kwiatkowski–Phillips–Schmidt–Shin (KPSS) 
test on the initial time series. The value of p is 0.010. 
Thus, we could argue that the time series is not sta-
tionary. Then, one difference in the value of p of the 
time series of the augmented Dickey–Fuller (ADF) 
test is less than 0.001. Thus, we could determine that 
the value of d is 1. 
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According to the AIC criterion, we can find the 
optimal (p, q). The ARIMA model structure of the 
road traffic time series xt is eventually identified as  
(1, 1, 1). The parameter estimation also varies be-
cause of the different amount of historical data used 
for modeling. Therefore, the model can be generally 
described as follows: 

 
 x(t)=φ1(t)x(t−1)+φ2(t)x(t−2)+e(t)−θ1(t)e(t−1). (14) 

 

Then, Eq. (14) can be described as follows: 
 

 x(t+1)=φ1(t+1)x(t)+φ2(t+1)x(t−1) 
   +e(t+1)−θ1(t+1)e(t). (15) 

 
From the Kalman filter prediction algorithm 

formula and Eq. (6), Eq. (13) can be described as 
follows: 
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The state variables in the experiments are  

the historical road traffic volume and speed at the  
current moment, and the observed measurements are 
the predicted volume and speed data at the next mo-
ment. 

 
 

3  Parameter determination 
 
The following parameters are used in the process 

of road traffic data prediction based on ARIMA– 
Kalman: The ARIMA model parameters are φ1(t),  
φ2(t), θ1(t), which can be determined by the model 
construction parameters (p, d, q) and the number N of 
the historical data used for modeling. The Kalman 
filter parameters include the dimension state transi-
tion matrix A, observation matrix B, state noise vector 
Wt, and observed noise vector Vk, which are deter-
mined by the model construction (p, d, q). The initial 
state X(0) and covariance matrix P(0|0) can be de-
termined by experience. With regard to the historical 
road traffic data at different moments, different road 
traffic data models corresponding to various road 

traffic state parameters (p, d, q, N) can be obtained. 
Parameter setting is concerned only with the analysis 
of the effect of the road traffic state prediction algo-
rithm based on ARIMA–Kalman. Separately analyz-
ing the effect of each parameter on the accuracy of the 
algorithm does not guarantee the optimal algorithm, 
because these parameters have different influences on 
the accuracy of the algorithm. All the parameters in 
the road traffic state prediction results should be 
considered when conducting the algorithm analysis. 

The mean absolute relative error (marerr) of 
prediction data is introduced to measure the effects of 
parameters on the algorithm accuracy: 
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where xpred and xreal are the predicted and real road 
traffic states, respectively. 

For different (p, d, q, N)’s, there are corre-
sponding values of marerr, which means that there is a 
distribution relationship w between (p, d, q, N) and 
marerr. Thus, the following formula can be obtained: 

 
 marerr=w(p, d, q, N). (18) 

 
The process of finding the minimum marerr 

corresponding to (p, d, q, N) involves training optimal 
parameters. Thus, we obtain the following model: 

 
 min ω(p, d, q, N), (19) 
 
which is subject to Eq. (17). 

Finally, the values of (p, d, q, N) can be deter-
mined by statistical analysis of road traffic state pre-
diction results. 

 
 

4  Experiments 

4.1  Data acquisition 

Four sets of road speed and volume data were 
adopted in this study (Table 1). To achieve a better 
performance, the road traffic state data under the  
same running mode were extracted for training  
and prediction. The road traffic speed and volume 
data captured on June 15, 16, 18, and 19, 2011 were 
extracted as historical road traffic state data to  
train optimal parameters. The road traffic speed and 
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volume data captured on June 22, 23, 25, and 26, 2011 
were extracted to make a road traffic state prediction. 
June 15 and 22 were Wednesday, June 16 and 23 were 
Thursday, June 18 and 25 were Saturday, and June 19 
and 26 were Sunday. Therefore, we used the training 
parameters based on the data of June 15, 16, 18, and 
19, to predict in real time the road traffic speed and 
volume values of June 22, 23, 25, and 26, respectively. 
The traffic speed and volume data collection interval 
was 2 min. 

 
 
 
 
 
 
 
 
 
The proposed algorithm was compared with a 

pure ARIMA model and a Kalman filter method to 
ensure an appropriate comparison. The pure ARIMA 
model and Kalman filter method employed in the 
study used the fixed and nearest-neighbor road traffic 
speed and volume data numbers (which is 15 here) to 
design the ARIMA model and Kalman filter method 
for real-time road traffic speed and volume prediction. 
The road traffic speed and volume data on June 22, 23, 
25, and 26 were used for real-time prediction with the 
proposed method, the pure ARIMA model, and the 
Kalman filter method. The study was conducted for a 
20-min interval prediction. The x-axis indicates time, 
and y-axis indicates the speed and volume values. The 
road traffic state data we used were limited. From the 
time series diagram, we found that the road traffic 
state did not show obvious seasonal characteristics. 
Thus, we took no account of seasonal components in 
the modeling. 

Long memory fractionally differenced ARIMA 
(ARFIMA) models have been used in various fields. 
Thus, the ARFIMA process was considered in our 
study. We estimated the fractional difference, and 
then estimated p and q. The estimation method we 
used was the maximum likelihood method. Consid-
ering the road traffic state data, d was 4.583013×10−5, 
which proved that the long memory is not obvious. 
We also chose an AIC of (1, 1, 1). All the AICs are 
described in Table 2. 

From Table 2, we find that (1, 1, 1) is the optimal 

model construction. Thus, we used (1, 1, 1) as the best 
model construction.  

 
 

 
 
 
 
 
 
 
 

4.2  Results 

The speed prediction results for the four road 
segments are illustrated in Figs. 2–5, in each of which 
the results for June 22, 23, 25, and 26 are presented as 
(a), (b), (c), and (d), respectively. The volume pre-
diction results for the four road segments are shown in 
Figs. 6–9, in each of which the results for June 22, 23, 
25, and 26 are presented as (a), (b), (c), and (d),  
respectively. 

To present a clear comparison, the statistical 
results from particle filtering and the expectation- 
maximization are included. The statistical results of 
the predicted speed and volume on June 22, 23, 25, 
and 26, 2011 are listed in Tables 3–14. marerr, mxarer, 
and rmrerr represent the mean absolute relative error, 
the maximum absolute relative error, and the mean 
relative error sum of squares, respectively. The av-
erage is the mean value of the three indicators of the 
four segments. marerr is described in Eq. (17). mxarer 
and rmrerr can be described as follows: 

 

 pred real

real

( ) ( )
mxarer max ,

( )
x t x t

x t
−

=  (20) 

 
2

pred real

real

( ) ( )1 .rmrerr
( )

x t x t
N x t

− 
=  

 
 (21) 

 
Let maAK, maA, maKF, maPF, and maEM denote 

the marerr of ARIMA–Kalman, ARIMA model, 
Kalman filter, particle filter, and expectation maxi-
mization, respectively. Let mxAK, mxA, mxKF, mxPF, 
and mxEM denote the mxarer of ARIMA–Kalman, 
ARIMA model, Kalman filter, particle filter, and 
expectation maximization, respectively. Let rmAK, 
rmA, rmKF, rmPF, and rmEM denote the rmrerr  

Table 1  Road segment information 

ID Road segment  
HI7000d Xiaojie Bridge East to Dongzhimen Bridge 
HI2075a Central Conservatory of Music to Xibianmen 

Bridge 
HI7008a White Bridge to Guangqumen Road 
HI3002b Deshengmen Bridge to Jishuitan Bridge 

 

Table 2  Statistical results of AIC 

(p, d, q) AIC 
(1, 4.583013×10−5, 1) 5687.44 
(1, 4.583013×10−5, 2) 5689.31 
(2, 4.583013×10−5, 1) 5689.28 
(2, 4.583013×10−5, 2) 5688.96 

(1, 1, 1) 5675.85 

AIC: Akaike information criterion 
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of ARIMA–Kalman, ARIMA model, Kalman  
filter, particle filter, and expectation maximization,  
respectively. 

4.3  Statistical test 

Given the same theoretical background of 
ARIMA–Kalman and ARIMA models, the statistical 
significance of the measurements could be assessed. 
We used a statistical test proposed by Diebold and 
Mariano (1995). Based on their suggestion, the as-
ymptotic test (S1) was used in this study, described as 
follows: 

 
 1 2π (0) / .dS d f n=  (22) 

 
{di} is the loss-differential series of ARIMA–Kalman 
and ARIMA models, defined as 
 
 2 2

AK A , .id e e i= − ∈  (23) 
 

The weighted sum of the available sample auto- 
covariances is 

 

 2

1

12π (0) ( ) ,
n

d i
i

f d d
n =

= −∑  (24) 

 
where n is the sample size. 

If the absolute value of S1 is smaller than 1, the 
two models would have the same ability of meas-
urement. If the value of S1 is greater than 1, the 
loss–differential function of the ARIMA–Kalman 
model would be markedly greater than that of the 
ARIMA model. This result would indicate that the 
ARIMA model is better able to measure the road 
traffic. If the value of S1 is smaller than −1, the 
loss–differential function of the ARIMA–Kalman 
model would be significantly smaller than that of the 
ARIMA model. This result would imply that the 
ARIMA–Kalman model is better able to measure 
road traffic. 

The experimental results on different links were 
used for the statistical test. The statistical significance 
results are shown in Table 15, from which we can see 
that the ARIMA–Kalman model is generally better 
able to predict speed and volume. 

4.4  Analysis of experimental results 

From Figs. 2–9 and Tables 3–14, we see that: 
1. The road traffic state (speed and volume) 

predictions based on the ARIMA–Kalman model  
are superior to those according to other four  
algorithms. 

From Figs. 2–9, the accuracy and stability of 
speed and volume predicted based on the ARIMA– 
Kalman model are superior to those based on the 
other four algorithms for all the segments. 

We find that for all experiment road segments, 
the accuracy and stability of speed and volume pre-
dicted based on the ARIMA–Kalman model are su-
perior to those based on the pure ARIMA model, 
Kalman filter, and particle filter. The stability of 
speed and volume predicted based on the ARIMA– 
Kalman model is inferior to that from expectation 
maximization. 

Tables 15 shows that the ARIMA–Kalman 
model is strikingly superior to the pure ARIMA 
model. 

2. The accuracy of speed prediction is higher 
than that of volume prediction. 

The regularity of the change in volume is de-
termined mainly by the regularity of people’s travel 
origin-destination (OD). However, for different dates, 
people’s travel OD changes randomly. So, the regu-
larity of change in volume has a certain random 
property. The regularity of change in speed is affected 
not only by the regularity of people’s OD travel but 
also by the running status of road infrastructure. Thus, 
the change in speed shows high regularity. The ac-
curacy of speed is consequently higher than that of 
volume when they are estimated on the basis of the 
regularity of road traffic. 

3. There are still some errors in predicting road 
traffic states using this algorithm. 

There are two main reasons for these errors: (1) 
Obtaining the corresponding road traffic states with a 
perfect match based on the ARIMA–Kalman model is 
difficult, because of the limitations of the road traffic 
running characteristics. (2) The parameters exhibit a 
certain deviation. Determining the optimal parame-
ters is irregular, because they vary for different road 
traffic state data sets. The selected optimal parameters 
are determined based on historical road traffic state 
data. Therefore, the current optimal parameters may 
be different from the historical optimal parameters. 
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Fig. 2  Speed prediction results of HI2075a on June 22 (a), 23 (b), 25 (c), and 26 (d), 2011 
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Fig. 3  Speed prediction results of HI3002b on June 22 (a), 23 (b), 25 (c), and 26 (d), 2011 
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Fig. 5  Speed prediction results of HI7008a on June 22 (a), 23 (b), 25 (c), and 26 (d), 2011 
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Fig. 4  Speed prediction results of HI7000d on June 22 (a), 23 (b), 25 (c), and 26 (d), 2011 
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Fig. 6  Volume prediction results of HI2075a on June 22 (a), 23 (b), 25 (c), and 26 (d), 2011 
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Fig. 7  Volume prediction results of HI3002b on June 22 (a), 23 (b), 25 (c), and 26 (d), 2011 
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Fig. 8  Volume prediction results of HI7000d on June 22 (a), 23 (b), 25 (c), and 26 (d), 2011 
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Fig. 9  Volume prediction results of HI7008a on June 22 (a), 23 (b), 25 (c), and 26 (d), 2011 
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Table 3  Mean absolute relative error of speed on June 22 and 23, 2011 

Segment 
Mean absolute relative error (%) 

June 22, 2011 June 23, 2011 
maAK maA maKF maPF maEM maAK maA maKF maPF maEM 

HI2075a 12.41 14.13 27.66 21.08 26.13 10.63 17.98 25.85 18.29 22.82 
HI3002b 10.61 14.96 32.00 12.67 14.33 9.39 21.10 25.45 11.64 16.62 
HI7000d 9.59 17.24 25.98 18.67 22.07 9.77 19.30 26.81 20.45 23.70 
HI7008a 9.19 19.42 23.97 18.36 22.81 17.11 31.13 35.12 31.29 21.24 
Average 10.45 16.44 27.40 17.70 21.34 11.73 22.38 28.31 20.42 21.10 

 

Table 4  Mean absolute relative error of volume on June 22 and 23, 2011 

Segment 
Mean absolute relative error (%) 

June 22, 2011 June 23, 2011 
maAK maA maKF maPF maEM maAK maA maKF maPF maEM 

HI2075a 13.37 20.95 29.67 67.17 14.69 14.5 26.98 34.53 52.39 19.01 
HI3002b 15.43 28.11 32.82 66.71 19.16 13.71 27.69 30.59 46.68 18.38 
HI7000d 17.18 31.18 31.21 48.21 16.66 25.3 49.06 47.61 69.27 41.83 
HI7008a 21.46 45.25 35.75 64.23 30.12 25.88 54.55 40.84 77.95 26.02 
Average 16.86 31.37 32.36 61.58 20.16 19.85 39.57 38.39 61.57 26.31 

 

Table 7  Mean relative error sum of squares of speed on June 22 and 23, 2011 

Segment 
Mean relative error sum of squares (%) 

June 22, 2011 June 23, 2011 
rmAK rmA rmKF rmPF rmEM rmAK rmA rmKF rmPF rmEM 

HI2075a 0.54 1.08 10.91 12.02 9.27 0.20 2.44 9.51 9.21 7.69 
HI3002b 1.25 1.99 17.50 5.90 3.91 0.47 1.54 8.77 3.57 3.90 
HI7000d 0.23 0.59 10.06 7.97 6.49 0.27 1.99 10.69 12.78 9.68 
HI7008a 0.23 6.24 7.52 9.03 7.76 3.91 12.74 21.64 31.87 7.77 
Average 0.56 2.48 11.50 8.73 6.86 1.21 4.68 12.65 14.36 7.26 

 

Table 6  Maximum absolute relative error of volume on June 22 and 23, 2011 

Segment 
Maximum absolute relative error (%) 

June 22, 2011 June 23, 2011 
mxAK mxA mxKF mxPF mxEM mxAK mxA mxKF mxPF mxEM 

HI2075a 85.96 100.25 142.90 174.90 75.60 222.16 161.20 230.66 220.91 133.09 
HI3002b 237.10 416.34 364.61 250.41 203.21 212.46 208.69 178.88 127.25 74.24 
HI7000d 80.05 149.08 142.46 157.17 68.73 323.05 1111.94 603.71 187.65 865.45 
HI7008a 118.62 371.77 188.25 274.03 130.47 276.37 534.32 264.54 427.29 173.52 
Average 130.43 259.36 209.56 214.13 119.50 258.51 504.04 319.45 240.78 311.58 

 

Table 5  Maximum absolute relative error of speed on June 22 and 23, 2011 

Segment 
Maximum absolute relative error (%) 

June 22, 2011 June 23, 2011 
mxAK mxA mxKF mxPF mxEM mxAK mxA mxKF mxPF mxEM 

HI2075a 73.53 103.96 79.54 138.20 67.06 117.14 156.24 91.50 108.82 62.32 
HI3002b 111.74 141.18 195.11 110.88 90.23 154.20 124.10 75.43 72.52 63.57 
HI7000d 47.71 76.75 100.38 122.36 61.39 106.68 141.10 123.44 204.75 136.35 
HI7008a 48.33 249.74 73.86 99.14 65.69 164.45 356.87 142.36 282.89 76.77 
Average 70.33 142.91 112.22 117.65 71.09 135.62 194.58 108.18 167.24 84.75 
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Table 12  Maximum absolute relative error of volume on June 25 and 26, 2011 

Segment 
Maximum absolute relative error (%) 

June 25, 2011 June 26, 2011 
mxAK mxA mxKF mxPF mxEM mxAK mxA mxKF mxPF mxEM 

HI2075a 66.40 108.89 73.08 118.45 54.25 63.30 138.31 140.75 183.59 50.86 
HI3002b 50.62 90.30 92.85 59.54 63.92 61.25 166.87 104.06 86.23 63.64 
HI7000d 95.36 139.28 144.27 103.43 76.09 89.98 72.20 134.19 100.15 58.68 
HI7008a 94.15 265.61 126.62 81.03 52.03 337.14 262.68 316.12 490.36 242.86 
Average 76.63 151.02 109.21 90.61 61.57 137.92 160.02 173.78 215.08 104.01 

 

Table 11  Maximum absolute relative error of speed on June 25 and 26, 2011 

Segment 
Maximum absolute relative error (%) 

June 25, 2011 June 26, 2011 
mxAK mxA mxKF mxPF mxEM mxAK mxA mxKF mxPF mxEM 

HI2075a 59.24 118.19 108.88 92.51 68.57 35.86 55.33 84.47 128.07 73.86 
HI3002b 49.18 74.01 66.18 18.88 23.57 52.42 148.09 102.52 73.17 44.49 
HI7000d 36.82 41.46 53.14 35.10 50.86 54.96 126.42 85.99 54.52 50.57 
HI7008a 46.21 109.40 51.44 84.41 68.68 68.68 103.27 185.83 210.58 146.58 
Average 47.86 85.77 69.91 57.73 52.92 52.98 108.28 114.70 116.59 78.88 

 

Table 10  Mean absolute relative error of volume on June 25 and 26, 2011 

Segment 
Mean absolute relative error (%) 

June 25, 2011 June 26, 2011 
maAK maA maKF maPF maEM maAK maA maKF maPF maEM 

HI2075a 12.94 20.41 12.09 19.38 12.92 11.42 22.37 16.42 22.74 15.13 
HI3002b 10.88 20.24 27.13 11.50 14.65 12.42 26.76 27.40 14.09 16.63 
HI7000d 11.58 21.03 27.91 11.67 13.65 15.52 18.35 35.17 16.62 15.41 
HI7008a 17.30 40.35 32.47 16.26 14.06 23.31 34.68 39.39 30.16 25.90 
Average 13.18 25.51 24.90 14.70 13.82 15.67 25.54 29.60 20.90 18.27 

 

Table 9  Mean absolute relative error of speed on June 25 and 26, 2011 

Segment 
Mean absolute relative error (%) 

June 25, 2011 June 26, 2011 
maAK maA maKF maPF maEM maAK maA maKF maPF maEM 

HI2075a 10.35 16.19 26.71 12.15 21.18 7.63 9.69 23.85 10.18 18.91 
HI3002b 5.64 8.60 25.94 3.82 11.49 8.11 12.42 23.44 5.88 12.69 
HI7000d 7.53 7.92 20.46 7.71 18.87 13.27 13.43 25.70 7.28 6.81 
HI7008a 6.74 14.72 23.87 13.15 17.60 12.08 18.53 30.11 16.37 17.78 
Average 7.57 11.86 24.25 9.21 17.29 10.25 13.52 25.78 9.93 14.05 

 

Table 8  Mean relative error sum of squares of volume on June 22 and 23, 2011 

Segment 
Mean relative error sum of squares (%) 

June 22, 2011 June 23, 2011 
rmAK rmA rmKF rmPF rmEM rmAK rmA rmKF rmPF rmEM 

HI2075a 0.74 1.00 14.16 51.53 4.87 2.63 2.60 22.95 40.64 7.67 
HI3002b 5.62 17.33 32.97 56.19 11.18 2.13 4.36 17.55 29.43 6.09 
HI7000d 0.64 2.22 18.52 30.97 5.01 17.90 124.09 111.07 556.71 207.92 
HI7008a 1.41 13.82 26.76 71.68 14.67 3.92 28.55 35.03 118.52 15.59 
Average 2.10 8.59 23.10 52.59 8.93 6.65 39.90 46.65 186.33 59.32 
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5  Conclusions 
 
Three conclusions can be drawn by comparing 

the real-time prediction analysis results of the  
ARIMA–Kalman model with those from the pure 
ARIMA model, the Kalman filter, particle filter, and 
expectation maximization algorithm: 

1. The mean absolute relative prediction error of 
speed data based on the proposed algorithm is lower 
than those of the pure ARIMA model, the Kalman 
filter, and the particle filter mentioned above, indi-
cating that the proposed algorithm has a higher  
accuracy. 

2. According to the maximum absolute relative 
error of the prediction, traffic state prediction based 
on the ARIMA–Kalman model performs admirably in 
tracking trends in the variation of the traffic state. The 
mean relative error sum of squares signifies that the 
proposed algorithm is more stable than the pure 
ARIMA model and Kalman filter. 

3. The proposed algorithm is easy to implement 
on a computer, and is suitable for online prediction of 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
the road traffic state, because it has fewer variable 
types and dynamic cumulative values compared with 
pure ARIMA–Kalman methods. 

Considering the remarkable performance of the 
proposed algorithm, we will explore traffic state  
prediction based on spatial–temporal correlations in 
our next study. 
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