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Abstract:    The faults in switched reluctance motors (SRMs) were detected and diagnosed in real time with the Kohonen neural 
network. When a fault happens, both financial losses and undesired situations may occur. For these reasons, it is important to 
detect the incipient faults of SRMs and to diagnose which faults have occurred. In this study, a test rig was realized to determine the 
healthy and faulty conditions of SRMs. A data set for the Kohonen neural network was created with implemented measurements. A 
graphical user interface (GUI) was created in Matlab to test the performance of the Kohonen artificial neural network in real time. 
The data of the SRM was transferred to this software with a data acquisition card. The condition of the motor was monitored by 
marking the data measured in real time on the weight position graph of the Kohonen neural network. This test rig is capable of 
real-time monitoring of the condition of SRMs, which are used with intermittent or continuous operation, and is capable of de-
tecting and diagnosing the faults that may occur in the motor. The Kohonen neural network used for detection and diagnosis of 
faults of the SRM in real time with Matlab GUI was embedded in an STM32 processor. A prototype with the STM32 processor was 
developed to detect and diagnose the faults of SRMs independent of computers. 
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1  Introduction 
 

Electric motors convert electrical energy into 
mechanical energy. Although electric motors are well 
constructed and reliable, faults may occur while they 
are operating. Electrical or mechanical faults, or the 
combination of both, may occur in electric motors. 
Therefore, in practical applications, safety, reliability, 
efficiency, and performance of electric motors are the 
most interesting and specifically important (Vas, 1993; 
Finley and Burke, 1994; Bayir and Bay, 2007). 

Electric machine manufacturers and users take 
precautions to prevent faults. However, diagnosing 
the faults that occur inside the motor may take a long 

time. Electric motors are getting gradually compli-
cated and these motors are used in applications that 
have vital importance for people. Breakdown of these 
motors causes both huge financial losses and the re-
newal of the machine before its expiration, when the 
fault is diagnosed but the required precautions are not 
taken (Isemann, 1997; Nandi and Toliyat, 1999; Gao 
and Ovaska, 2001). Many methods are used in fault 
detection and diagnosis in electric motors (Liu et al., 
2000). One of these is artificial neural networks, 
which has been used successfully in the field of fault 
detection and diagnosis (Li et al., 2000; Gao and 
Ovaska, 2002; Samanta and Al-Balushi, 2003; Bayir 
and Bay, 2004; Yang et al., 2004). 

The Kohonen neural network has been used 
successfully in numerous engineering fields, includ-
ing process and system analysis, fault detection, voice 
recognition, robotics, and pattern recognition (Ko-
honen et al., 1996). The faults encountered in high 
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voltage energy transferring systems are determined 
and classified by the artificial neural networks. The 
voltage and current of high voltage lines are used as 
input data. The Kohonen network is 100% successful 
in diagnosing faults encountered in high voltage lines 
(Chowdhury and Wang, 1996). The Kohonen network 
is used for fault diagnosis and harmonic analysis of 
electric motors (Vas, 1999). 

A fault detection, diagnosis, and estimation sys-
tem which is embedded in the field-programmable gate 
array (FPGA) based platform, is realized using the 
Kohonen neural network to avoid the maintenance 
cost of the electrical valve (Gonçalves et al., 2011). 

By using Kohonen network spectral data, fault 
diagnosis of an induction motor was carried out, in 
which short circuit, unstable and broken rotor bar 
faults were diagnosed with 100% success (Murray 
and Penman, 1997). Synchronous generator stator and 
rotor currents were used to detect the faults using the 
Kohonen neural network (Jiang and Penman, 1993). 
Fault diagnosis was realized using the Kohonen 
neural network and an asynchronous motor vibration 
signal was processed by fast Fourier transform (FFT) 
analysis (Penman and Yin, 1994). Asynchronous 
motor bearing faults using the power source, leakage 
flux measurement, vibration spectral values, and 
asymmetry of vibration signals were diagnosed with 
the Kohonen neural network (Hoffman and van der 
Merwe, 2002; Kowalski and Orlowska-Kowalska, 
2003). 

The condition of the starter motor (serial-wound 
direct current motor) was monitored and fault diag-
nosis was realized with the Kohonen neural network. 
The current drawn by the starting motor and voltage 
across the motor were applied to the Kohonen neural 
network. With this developed fault diagnosis system, 
six faults that are seen in starter motors were diag-
nosed successfully. For fault diagnosis, the GUI 
software was developed in Visual Basic 6.0 (Bay and 
Bayir, 2005). 

Neural network based control and fault diagnosis 
were realized for a 6/4 switched reluctance motor. 
The controller that provides the artificial neural net-
work based optimum speed control was designed. In 
this controller, the fuzzy logic and traditional  
proportional-integral (PI) control, and their per-
formance are compared. Back propagation (BP) and 
self organizing map (SOM) neural networks are used 

in detecting the faults of the SRM. It was stated that 
the control and fault diagnosis program, which was 
advised for the switched reluctance motor as a result 
of simulation, showed high performance (Selvaga-
nesan et al., 2006). 

A comprehensive method for eccentricity fault 
diagnosis in the switched reluctance machines during 
off-line and standstill modes is presented. This sen-
sorless method is able to detect occurrence, location, 
direction, and severity of the eccentricity fault in the 
SRM (Torkaman and Afjei, 2013). Chen and Lu 
(2013) described four main fault types of the asym-
metric bridge power converter in the switched reluc-
tance motor drive in power transistors. Two on-line 
fault diagnosis methods were proposed for power 
transistors in the power converter. The principle of the 
proposed diagnosis methods is to detect the real-time 
current state from some particular positions, and then 
obtain the diagnosis result and the fault location by 
logical judgment. 

Torkaman et al. (2012) have presented a new 
method for noninvasive diagnosis of static, dynamic, 
and mixed eccentricity faults in switched reluctance 
motors. This method makes it possible to precisely 
determine the features of eccentricity faults. The 
proposed signature in this algorithm is based on the 
analysis of the produced current with a particular 
variation pattern. A novel view of the air-gap mag-
netic field analysis of a switched reluctance motor 
under mixed eccentricity was presented to provide a 
precise fault diagnosis based on a 3D finite element 
method (Torkaman and Afjei, 2011). 

The magnetic characteristics of a switched re-
luctance motor in healthy and faulty conditions are 
important in both performance prediction and motor 
verification. A novel view of air-gap magnetic field 
analysis of SRM under rotor misalignment was pre-
sented (Torkaman et al., 2011). Dorrell and Cossar 
(2008) have presented a condition monitoring strat-
egy for the detection of rotor eccentricity in switched 
reluctance machines. It uses vibration measurements 
and harmonic analysis to generate a Fourier series for 
the vibrations. 

A fuzzy-based control and fault detection system 
was used for a 6/4 switched reluctance motor (Sel-
vaganesan et al., 2007). The system is realized by 
primarily doing the simulation of the fuzzy-based 
fault diagnosis and control system. When a stator 
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fault occurs in two different SRMs, the fault toler-
ances of motors were compared (Ruba and Szabó, 
2009). 

In this study, faults in the SRM are detected and 
diagnosed in real time with the Kohonen neural net-
work. GUI is used for real-time fault detection and 
diagnosis in Matlab. To monitor the condition of the 
motor, the data of the SRM are marked on the weight 
position graph of the Kohonen neural network. At the 
same time, the real-time fault detection and diagnosis 
results are shown on a software screen. The technical 
specifications of the materials used in experimental 
study are given and the test rig developed to measure 
the faulty SRM data is introduced. Results of meas-
urements of SRM faults and details on how they are 
measured are given. The Kohonen neural network is 
introduced and the SRM faults are classified in Mat-
lab. The condition of the SRM is monitored with GUI 
software, which was prepared in Matlab for testing 
the real-time performance of the Kohonen neural 
network, and the results of fault diagnosis are given. 
The Kohonen neural network was embedded in an 
STM32 processor.  
 
 
2  Materials and method 

2.1  Materials 

A test rig was prepared for the real-time fault 
detection and diagnosis of the SRM using the Koho-
nen neural network. A block diagram of the test rig is 
shown in Fig. 1 and the picture of the realized system 
is shown in Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
In this experimental study, a motor with power 

of 1.34 kW which can be used in low-power industrial 
applications, was preferred. The technical specifica-
tions of the SRM (Rocky Mountain Tech. RA130L) 
are as follows: It is constructed with 8/6 poles; the 
maximum torque of the motor is 3.4 N·m and the 
maximum speed is 15 000 r/min; the supply voltage 
of the SRM is 96 V; one-phase winding resistance is  
Ra=110 mΩ; one-phase inductance when the rotor is 
at the aligned position is LAL=2.06 mH; one-phase 
inductance when the rotor is at the unaligned position 
is LUAL=0.45 mH. The performance graph of the SRM 
is given in Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
While the SRM is running at 6000 r/min, it is 

loaded. In Fig. 3, the motor is loaded with a load 
which can produce a moment up to 4 N·m. With the 
torque between 0.5 N·m and 4 N·m, the motor oper-
ates with 70% efficiency. The torque produced by the 
motor increases in proportion to the value of the 
current it draws. This performance graph is utilized 
for condition monitoring and fault diagnosis of the 
SRM. Fig. 1  Block diagram of the test rig 
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An asymmetric bridge converter is designed to 
drive the SRM in the experimental study. As the 
momentum in the SRM is produced with one-way 
current, this converter is preferred. Besides, it is the 
most preferred converter for driving SRMs (Fig. 4). 
The current for the windings of the asymmetric con-
verter is controlled independently of each other (Du-
ran, 2008). 

 
 
 
 
 
 
 
 
 
 
A torque transducer (ETH Messtechnic DRBK10) 

is used to measure the torque produced by the SRM. 
Since the SRM runs at a high speed and can create 
instantaneous torque changes, the torque sensor with 
an output response time of 1 ms is preferred. The 
sensor can measure a speed up to 22 000 r/min. The 
accuracy of the sensor is 99.5% for 0–10 N·m torque 
values. The sensor can operate within a 11.5–30 V 
voltage range. The analog output voltage of the sensor 
is ±5 V. 

To load the SRM with the desired torque, a 
synchronous alternator is used as a linear load. The 
alternator (Mako 55 A) generates 55 A current at 14 V 
and works with 50% efficiency. With this process, by 
controlling the excitation winding of the alternator, 
the SRM is made to work with the desired linear load.  

A programmable power supply of TDK-Lambda 
(100 V, 3.3 kW) is used to provide the operating 
voltage of the SRM driver, and to run the motor at the 
maximum power. The output voltage of the power 
supply can be adjusted within 0–100 V and the output 
current can be limited to 0–33 A. 

To measure the phase current and the total cur-
rent of the SRM, an LA-55p current transducer with a 
current conversion ratio of 1:1000 is used. The cur-
rent sensor has ±99.35% accuracy and <0.15% line-
arity value. The response time of the sensor is 1 μs. 

A PicoScope oscilloscope with four channels is 
used to measure the data of the healthy and faulty 
conditions of the SRM. The PicoScope is used in 

measurement of the duty cycle and the speed during 
the experimental study. This device has a 12-bit res-
olution and 20 MS/s sample rate. 

The speed of the SRM can be measured by a 
position sensor with a resolution of 48 pulses/ 
revolution. To measure the motor revolution more 
precisely, a quadratic encoder with a higher resolution 
is used. This encoder has a resolution of 1024 pulses/ 
revolution. 

To transfer the data into Matlab in real time, an 
Advantech PCI-1716 data acquisition card is used. 
This card has a maximum of 250 kS/s sample rate and 
16-bit resolution. 

In many industrial applications, SRMs are used 
within a speed range of 500–50 000 r/min and a power 
range of 100 W–300 kW. SRMs are generally manu-
factured with 12/8, 8/6, 6/4, 6/2, or 4/2 poles. The 
inductance of SRMs changes in accordance with the 
positions of the stator and rotor. When the rotor posi-
tion is aligned, the inductance reaches its highest 
value. When the poles are in unaligned positions, the 
inductance of that phase is at its lowest value.  

The basic equivalent circuit for the SRM is ob-
tained by neglecting the common inductance between 
phases. The voltage applied to one phase is equal to 
the sum of the voltage drop across the winding resis-
tance and the change in winding flux (Miller et al., 
1990). 

The voltage with respect to the one-phase 
equivalent circuit of the SRM (Fig. 5) obtained from 
induced electromagnetic force (EMF) expressions is 

 

s

d ( , )
,

d

i
v R i

t

 
                          (1) 

 
where Rs is the phase resistance and φ is the phase 
magnetic flux. 
 

( , ) .L i i                              (2) 

 
 
 
 
 
 
 
 
 
 

Fig. 4  Asymmetric bridge converter 
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In Eq. (2), L is the inductance which depends on 
the rotor position and phase current. One-phase 
voltage is given as 

 

s s

d{ ( , ) } d d d ( , )
( , ) ,

d d d d

L i i i L i
v R i R i L i i

t t t
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In Eq. (4), Rsi represents the ohmic voltage drop, 
d

( , )
d

i
L i

t
  represents the inductive voltage drop, and 
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 represents the induced EMF. Instanta-

neous input power Pi is calculated as  
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2 is the winding ohmic loss, 2d 1
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is the change rate of field energy, and 21 d ( , )
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 is 

the air-gap power (Pa). The torque of the motor is 
calculated as  

 

2
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L i
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                         (6) 

 
The total torque of the SRM is equal to the sum 

of the torque produced by each phase: 
 

Total ea eb ec edT T T T T .                   (7) 

 
The motor has four phases and in each phase 

there are two coils wound on reciprocal stator poles to 
support the fluxes of each other (Fig. 6). This con-
nection could be either in series or in parallel. When 
the voltage is applied to the coils, the stator pulls the 
rotor pole towards itself. When the voltage is supplied 
to the stator phases consecutively with certain inter-
vals, rotor rotational motion is realized (Duran, 2008). 

The inductance of the SRM depending on rotor 
position and current is calculated by Eq. (8). The 
expression of inductance is created by adding a  

 
 
 
 
 
 
 
 
 
 
 
 

Gaussian function dependent on the current and rotor 
position to the minimum inductance (Ustun, 2009). 
 

2
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1
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       (8) 

 
In Eq. (8), L is the phase inductance change, Lu is 

the minimum inductance, La+Lu is the maximum 
inductance, ipu is the current per unit, θpu is the rotor 
position per unit, n is the mean of the Gaussian func-
tion, and σ is the width of the Gaussian function. The 
inductance of a phase obtained depending on the rotor 
position and phase current is given in Fig. 7. 

 
 
 
 
 
 
 
 
 
 
 
 
 

2.2  Method 

2.2.1  Measurement of the SRM faults 

In SRMs, mechanical faults, electrical faults, or 
a combination of these two may occur. An open circuit 
of one or more phases and rotor locking are the most 
commonly encountered faults. When SRMs do not 
run under the maximum load, in the case of one- or 
two-motor-phase open circuit faults, the motor keeps 

Fig. 6  An 8/6-pole SRM intersection 
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Fig. 9  One-phase open circuit condition 

C
u

rr
e

n
t (

A
)

0 10 20 30 40 50 60
0
1
2
3
4
5
6
7
8
9

10
11
12

0
10
20
30
40
50
60
70
80
90
100

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0  Current    Duty cycle    Revolution

Time (s)

D
u

ty
 c

yc
le

R
e

vo
lu

tio
n

 (
1

0
3
 r

/m
in

)

Fig. 10  Two-phase open circuit condition 
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Fig. 8  Healthy condition 

running. Hence, before the complete motor break-
down, this situation should be detected and repaired. 
The output voltages of the sensors used in this study 
are between 0 and 2.5 V. A passive low-pass filter is 
used to suppress the switching frequency noise of the 
sensor outputs. Therefore, the outputs of the sensors 
are appropriate for the inputs of both the data acqui-
sition card and the STM32 processor. 

By running the SRM intermittently, measure-
ments are realized when the motor is in a healthy 
condition and when one- or two-motor-phase open 
circuit faults have occurred. These measurements are 
realized by loading 2 N·m torque when the motor is at 
1400 r/min under a healthy operating condition. The 
revolution, current, and duty cycle of the SRM are 
given in Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 
The measured revolution, current, and duty cy-

cle are given in Fig. 9 when a one-phase open circuit 
fault has occurred in the SRM. When the healthy 
operating condition and a one-phase open operating 
condition are compared, it is seen that the average of a 
motor’s stable load or motor current in revolution 
does not change much. In the SRM, when an open 
circuit fault of one phase (phase A) occurs, to produce 
the normal torque, the average torque produced by the 
other three phases (Teb, Tec, Ted) increases (Eq. (9)). 
Consequently, currents of these phases increase.  

 

Total eb ec ed0T T T T .                      (9)  

 
The torque produced by the SRM depends on the 

current drawn from the source. In this case, since the 
total current does not change much, the current drawn 
from each phase increases when a fault in motor 
phases occurs under a stable torque. By running the 
SRM at 1, 1.5, or 2 N·m torque at a reference speed of 

1400 r/min under the SRM’s healthy and faulty 
conditions, the current, duty cycle, and revolution 
parameters are measured using the PicoScope3424. 

 
 
 
 
 
 
 
 
 
 
 
With the SRM’s two-phase open circuit, if it is 

compared with a one-phase open circuit condition, it 
is seen that the average of the current drawn does not 
change. When the SRM runs in two phases, the cur-
rent drawn from the source is divided into two phases 
to produce the desired torque. Therefore, the value of 
the pulse width modulation (PWM) duty cycle is seen 
to have increased more (Fig. 10). In the SRM, when 
an open circuit fault of two phases (phases A and C) 
occurs, to produce the normal torque, the average 
torque produced by the other two phases (Teb, Ted) 
increases (Eq. (10)). Consequently, the current of 
these phases increases. 

 

Total ec ed0 0T T T .                     (10) 
 

 
 
 
 
 
 
 
 
 

 
In the SRM, when an open circuit fault of one 

phase or two phases occurs, since the average torque 
produced by the motor does not change, there will not 
be a large change in the total current drawn from the 
power source. 

The motor current is limited to 10 A when the 
motor runs in a locked rotor condition. Although the 
motor driver draws the maximum current from the 
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Fig. 11  Locked rotor condition 

source and the PWM duty cycle is at its maximum, 
the speed of the motor cannot reach the reference 
value (Fig. 11). 

 
 
 
 
 
 
 
 
 
 
 

2.2.2  Classification of SRM faults with the Kohonen 
neural network 

Artificial neural networks are commonly used in 
fault diagnosis of electric motors. The classification 
success rate of the Kohonen neural network is very 
high among artificial neural networks. Besides, 
compared with other neural networks, the Kohonen 
neural network requires fewer parameters but works 
faster. When the previous studies are analyzed, it can 
be seen that it is usually preferred in the classification 
of electric devices and driver faults. For this reason, 
the Kohonen neural network is preferred for real-time 
fault detection and diagnosis in SRMs. 

2.2.3  Kohonen neural network 

The Kohonen neural network is an SOM  
unsupervised-training network. This network struc-
ture was developed by Kohonen (2001). The Koho-
nen neural network has two layers, an input layer and 
an output layer. 

Neural neurons in the output layer are connected 
with each other and also with the neurons in the input 
layer. When the network runs, weights are randomly 
assigned. When the input data is applied, the network 
starts to carry out its function. It gains a neuron as a 
result of the training. Inside the border where the 
neighborhoods of this neuron are decided, neuron 
weights are changed. As a result, an area is marked 
which includes the neural network group (Fig. 12). 
The Kohonen network is divided into two, as one and 
two dimensional (Haykin, 1999). 

The Kohonen neural network algorithm is given 
below. Since the number of layers of the network is  

 
 
 
 
 
 
 
 
 
 
 
 
low and the network is easy to compute, the speed of 
the network is high. Before the network algorithm is 
processed, values must be assigned to the constants of 
neighborhood amount NEj and gain term η (learning 
speed). 

1. Determine the weights. Small random values 
are assigned for connections among N input nodes 
and M output nodes. 

2. The input is applied to the network.  
3. Distances among all nodes are calculated. 

Distance between the input and an output node (j), di, 
is calculated by 

 
1

2

0

( ( ) ( )) ,
N

i i ij
i

d x t t




                   (11) 

 
where xi(t) is the ith input node, t is the time, and ωij(t) 
is the weight at time t between the ith input node and 
jth output node.  

4. The output node that has the shortest distance 
is selected. The selected output node j* is the node that 
has the shortest distance, di. 

5. The weights of node j* and its neighbors are 
renewed. NEj(t) weights of node j* and its neighbor-
ing nodes are renewed: 

 
( 1) ( ) ( )( ( ) ( )),ij ij i ijt t t x t t               (12) 

jNEj(t), 0≤j≤N−1, 
 

where η(t) (0<η(t)<1) is the gain term which de-
creases with time. 

6. Go back to the second step and the process is 
repeated (Lippmann, 1987). 

The Kohonen network is generally used in clas-
sification. These networks’ ability to both classify the 

Fig. 12  Kohonen network structure 

Input nodes i
X1 X2 X3 X4 XN
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input vectors and learn the distribution of input vec-
tors is very high (Lippmann, 1987; Fausett, 1994; 
Haykin, 1999). The Kohonen network is easily de-
fined with the neural network toolbox in Matlab. By 
presenting sample data to the neural network, the 
training of the network is realized; by presenting test 
data to the trained network, the performance of the 
network is tested. Users can perform the coding re-
lated to the network themselves or they can prepare the 
network via GUI (with the neural network toolbox). 

In this study, we aim to realize fault detection 
and diagnosis of SRMs using a minimum number of 
input variables. By analyzing the healthy and faulty 
data sets, the SRM’s total current and PWM duty 
cycle are chosen as the input parameters for the Ko-
honen neural network. Current is the most used pa-
rameter in the detection of motor faults and is directly 
related to the torque and rotational speed in direct 
current motors (Chow, 1997). The PWM signal is 
continuously changed by a controller to provide  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

desired torque or rotational speed for the motor. A 
fault occurring in the motor or a change in the load of 
the motor causes changes in the current drawn by the 
motor and in the PWM duty cycle. Classification of 
those changes with the Kohonen neural network, fault 
detection, and diagnosis of the motor are realized. 

The SRM is operated at 1, 1.5, or 2 N·m torque 
in the condition of healthy, one-phase open circuit, 
two-phase open circuit, or locked rotor. The Kohonen 
neural network is defined by 10 000 data in a total of 
10 sample data sets in Matlab. Winning neural cells at 
the outputs of the identified neural network are given 
in Fig. 13, showing the winning cells of the Kohonen 
neural network and the number of samples of the 
winner cells under different fault conditions. Here, 
when the SRM is in the healthy condition, the winner 
output neural cells are the 8th, 11th, and 12th cells for 
3000 sample data. Table 1 shows winner output cells 
hit by the faults of the Kohonen neural network ac-
cording to the motor conditions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13  Active neurons hit under different motor conditions 
(a) Healthy condition; (b) One-phase open circuit; (c) Two-phase open circuit; (d) Locked rotor 
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This winner cell pointing out the corresponding 

error is shown in the PWM versus current graph  
(Fig. 14). Kohonen neural network faults are placed in 
200 iterations on the weight position graph. To clas-
sify the healthy and faulty situations, the Kohonen 
neural network output is chosen as 4×3 neurons. SOM 
weight positions obtained at the end of the training are 
given in Fig. 14. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Software in Matlab GUI is realized for real-time 

condition monitoring and fault detection in SRMs 
(Fig. 15). This software, by pressing the start button, 
takes data via the data acquisition card and determines 
the SRM’s operating condition. Real-time operation 
is stopped by pushing the stop button. The current 
taken via the data acquisition card and the PWM duty 
cycle are displayed at the left side of the screen. The 
working condition of SRM’s motor is displayed at the 
right side of the interface. 

In the software, the current and PWM duty cycle 
data acquired in real time from the data acquisition 
card are applied to the Kohonen neural network. The 
average of 5000 samples acquired per second through 
the analog input is applied to the neural network. The 

Kohonen neural network classifies the obtained data. 
As a result of the classification, the SRM’s condition 
is detected in real time. The data used in the classifi-
cation is marked in real time on the SOM weight 
position graph. The Kohonen neural network pro-
duces 46 results per minute in real time. Thus, the 
SRM’s condition is monitored in real time and in case 
of a fault, the fault type is monitored by the interface 
program. For instance, SOM weight positions and the 
current-PWM duty cycle graph in case of a two-phase 
open circuit fault are shown in Fig. 16. The Kohenen 
neural network prepared for the Matlab Simulink 
model is given in Fig. 17. In the model, an STM 32 
Discovery 32-bit ARM Cortex Processor prototype is 
embedded in the card (Fig. 18). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1  Active output cells of the Kohonen neural net-
work according to the motor condition 

No. Condition SOM winner neuron(s)
1 Healthy 8, 11, 12 
2 One-phase open circuit 1, 3, 4 
3 Two-phase open circuit 2, 5, 6, 7, 10 
4 Locked rotor 9 

 

Fig. 15  Matlab GUI real-time fault detection and diag-
nosis software window 

Fig. 14  SOM weight position 

Fig. 16  SOM weight positions and the current-PWM 
duty cycle graph for a two-phase open circuit fault 
* represents the current/PWM duty cycle condition point 
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Fig. 17  Matlab model of Kohonen neural network for fault detection and diagnosis prototype 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Matlab Real-Time Windows Target Library is 

used in the process of embedding the model into the 
STM32 Discovery card. With this prototype, repair, 
maintenance workshops, and SRM can be used in 
applications. 
 
 

3  Results 
 

The performance of the Kohonen neural network 
used in condition monitoring and fault detection  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
software was tested using training data, and a 100% 
success rate was achieved. Real-time performance of 
condition monitoring and fault diagnosis realized in 
GUI software is given in Table 2. The software was 
tested with a total of 335 samples (292 correct and 43 
faulty) for a motor’s four situations. It is seen that the 
software was able to detect the situation of the motor 
with a success ratio of 87%. The reason why the de-
tection ratio under a locked rotor condition is rela-
tively high is that it is away from the other faults in 
SOM weight positions. The reason why the detection 
ratio under a one-phase open circuit condition is 
relatively low is that SOM weight positions are 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2  Real-time fault detection and diagnosis software 
performance 

Measured sample number 
Motor 

situation 
Sample 
number Correct clas-

sification 
Wrong clas-

sification 

Success 
percentage 

Healthy 77 67 10 87% 
One-phase 
open circuit

92 76 16 82% 

Two-phase 
open circuit

81 70 11 86% 

Locked rotor 85 79 6 93% 

Total 335 292 43 87% 

 

Fig. 18  STM 32 Discovery 32-bit ARM Cortex Proc-
essor prototype module 
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between the two-phase open circuit and healthy con-
ditions and close to these conditions. 

The mode function was used in the application 
of the embedded system of the Kohonen neural net-
work to increase the success rate (87%). With the 
mode function, most of the faults produced by the 
Kohonen neural network per unit time were expressed 
as the fault of the SRM. In this way, a success rate of 
100% was achieved in the embedded system fault 
detection and diagnosis prototype realized by the 
STM32 processor. 

 
 

4  Conclusions 
 

In this study, the motor current and PWM duty 
cycle data was recorded under SRMs’ healthy and 
faulty operating conditions. Using this data, the Ko-
honen neural network training was realized. In Matlab 
GUI, a software GUI was prepared for the detection 
and diagnosis of faults in the SRM. This software 
applies the data obtained from the data acquisition 
card in real time to the Kohonen neural network. 
Using this software, the SRM’s condition is moni-
tored and the fault detection and diagnosis can be 
realized before the SRM becomes completely broken. 
The efficiency of the real-time fault detection and 
diagnosis of the software was 87%. This system can 
be a prototype using the STM32-Discovery board. It 
will be a low cost system for condition monitoring 
and fault diagnosis because of having fewer input 
variables and requiring only one current sensor. The 
prototype for detection and diagnosis of faults in 
SRMs developed in this study can be integrated into a 
motor driver. In this way, an intelligent motor driver is 
realized to observe the condition of the motor. 
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