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Phase synchronization and energy balance between neurons*
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Abstract: A functional neuron has been developed from a simple neural circuit by incorporating a phototube and a thermistor in 
different branch circuits. The physical field energy is controlled by the photocurrent across the phototube and the channel current 
across the thermistor. The firing mode of this neuron is controlled synchronously by external temperature and illumination. There 
is energy diversity when two functional neurons are exposed to different illumination and temperature conditions. As a result, 
synapse connections can be created and activated in an adaptive way when field energy is exchanged between neurons. We 
propose two kinds of criteria to discuss the enhancement of synapse connections to neurons. The energy diversity between 
neurons determines the increase of the coupling intensity and synaptic current for neurons, and the realization of synchronization 
is helpful in maintaining energy balance between neurons. The first criterion is similar to the saturation gain scheme in that the 
coupling intensity is increased with a constant step within a certain period until it reaches energy balance or complete 
synchronization. The second criterion is that the coupling intensity increases exponentially before reaching energy balance. 
When two neurons become non-identical, phase synchronization can be controlled during the activation of synapse connections 
to neurons. For two identical neurons, the second criterion for taming synaptic intensity is effective for reaching complete 
synchronization and energy balance, even in the presence of noise. This indicates that a synapse connection may prefer to 
enhance its coupling intensity exponentially. These results are helpful in discovering why synapses are awaken and synaptic 
current becomes time-varying when any neurons are excited by external stimuli. The potential biophysical mechanism is that 
energy balance is broken and then synapse connections are activated to maintain an adaptive energy balance between the 
neurons. These results provide guidance for designing and training intelligent neural networks by taming the coupling channels 
with gradient energy distribution.
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1 Introduction

Each functional region in the brain consists of a 

large number of neurons. Eighty percent of neurons 

in the nervous system are excitatory, while the rest 

are inhibitory. Biological neurons can be considered 

as complex charged bodies because of their abundant 

intracellular ions, and the distribution of field energy 

is affected by extracellular ions and adjacent neu‐

rons. When some neurons are excited, the energy bal‐

ance in the local region is disturbed due to the exter‐

nal energy injection. As a result, action potentials are 

induced and propagated for energy release, and the 

adjacent neurons are coupled by enhancing the syn‐

aptic connections for stabilizing the dynamic energy 

balance. For an isolated generic neuron and a specific 

neuron (Shilnikov and Cymbalyuk, 2005; Herz et al., 

2006; Rossant et al., 2011; Yang N et al., 2011; Lin 

et al., 2020; Liu Y et al., 2020) with special function, 
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the bifurcation parameter and external stimulus can 
be carefully changed to induce different firing patterns 
(Szűcs, 1998; Shinomoto et al., 2009; Song et al., 
2019; Zandi-Mehran et al., 2020). In particular, sto‐
chastic disturbances such as noisy driving will induce 
possible nonlinear resonance (Deng et al., 2009; Blan‐
kenburg et al., 2015; Uzuntarla et al., 2015; Andreev 
et al., 2017; Baysal et al., 2019; Guo et al., 2021) in 
the neural activities. The activation and release of 
biophysical functions rely on the cooperation of neu‐
rons via different kinds of synapse connections (Pereira 
et al., 2007; Miller et al., 2015; Liu ZL et al., 2019; 
Ujfalussy and Makara 2020). The biophysical proper‐
ties of the coupling channels and synaptic plasticity 
are important for enhancing the self-adaption of neu‐
rons. Appropriate firing modes can be regulated and 
maintained to maintain energy balance and a syn‐
chronous state among neurons. The collective behav‐
ior of neural activities has been investigated mainly 
by detecting the synchronization stability and forma‐
tion of spatial patterns in the network (Tang et al., 
2019;Yang XL et al., 2019; Yao et al., 2019; He et al., 
2021; Zhou Q and Wei, 2021), in which the coupling 
channels, local kinetics, and external noisy distur‐
bance can be controlled in a practical way. For more 
guidance and references about computational neuro‐
science and biophysical neurons, readers can refer to 
the studies described in reviews (McDonnell et al., 
2015; Wang ZH and Wang, 2019; Du et al., 2020; 
Lin et al., 2021;Yang CZ et al., 2021) and references 
therein.

For reliable artificial sensors, signal processors 
in networks, and neural networks composed of bio‐
logical neurons, the controllability in coupling chan‐
nels between nodes is critical, and thus the coupling 
intensity can be regulated adaptively. For example, 
the coupling intensity between chaotic oscillators and 
neural circuits can be increased with a constant step 
in each interval (Liu ZL et al., 2020; Ma et al., 2020) 
until reaching complete or phase synchronization. 
When a phototube is used to couple two neural cir‐
cuits, external illumination is applied to control the 
photocurrent across the coupling channel and the syn‐
chronization approach (Xie et al., 2021a, 2021b). When 
a thermistor is used to connect the output ends of two 
chaotic circuits, the channel current is controlled by 
the temperature and the synchronization stability is 

completely dependent on the external temperature 
(Zhang XF et al., 2020, 2021). When a Josephson 
junction is used to bridge a connection between two 
neural circuits, an external magnetic field has a dis‐
tinct impact on the current along the coupling chan‐
nel, and thus the synchronization approach becomes 
dependent on the external magnetic field (Zhang Y 
et al., 2020). From a dynamic viewpoint, the involve‐
ment of the Josephson junction activates effective 
phase coupling, and this nonlinear coupling is often 
used in coupled Kuramotor oscillators (Daniels et al., 
2003; Trees et al., 2005; Cumin and Unsworth, 2007; 
Breakspear et al., 2010; Ansariara et al., 2020; Wang 
XB et al., 2021). The abovementioned schemes for 
synchronization control in chaotic and neural circuits 
regulate synchronous behavior by injecting and con‐
suming certain energy, and thus the coupled channels 
become adjustable for maintaining the energy balance 
between nonlinear circuits. That is, physical schemes 
can be applied to control chaotic circuits and neural 
circuits with certain self-adaption. Similar mecha‐
nisms in neurons and neural networks can be explored 
by detecting energy pumping and propagation. Bio‐
logical neurons can be considered as charged bodies, 
each maintaining intrinsic electromagnetic field energy. 
On the other hand, each neuron is surrounded by and 
connected to adjacent neurons in the same functional 
region of the nervous system, and the field energy is 
controlled by the electromagnetic field contributed 
by other neurons. Any external stimulus will break the 
energy balance in the local area of the neural network, 
energy will be propagated to those neurons with lower 
field energy, and synaptic current will be activated 
and controlled until it reaches a dynamic energy bal‐
ance among the neurons.

In this study, a functional neural circuit (Xu Y 
et al., 2020) is developed by incorporating a photo‐
tube and thermistor, such that the output voltage be‐
comes sensitive to external temperature and illumina‐
tion. After scale transformation, a dimensionless neu‐
ron is obtained and its dynamics becomes dependent 
on light and temperature. The intrinsic Hamilton 
energy (An and Zhang, 2018; Leutcho et al., 2020; 
Zhou P et al., 2021; Xu L et al., 2022) for this func‐
tional neuron is obtained from its physical field energy. 
When two functional neurons are placed in the same 
region, the synaptic connection will be activated and 
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enhanced due to distinct diversity in energy. Two iso‐
lated spherical shells of different sizes are charged 
with different amounts of charge and they can keep 
balance in potential, while the field energy may dif‐
fer when a wireway is used to connect them. Further‐
more, energy flow will be resumed and propagated 
when the device is connected to a nonlinear circuit, 
and energy balance becomes prior to the voltage bal‐
ance. We propose two criteria for activation and en‐
hancement of synapse connections for maintaining 
energy balance between neurons. We confirm that the 
synaptic coupling intensity increases until the energy 
diversity between two neurons is reduced to a finite 
value. Thus, the two neurons are coupled to share the 
energy closely and then the coupling is terminated 
adaptively. These results can address the biophysical 
mechanism for activation and regulation of synapse 
connections to neurons and neural networks. They also 
provide guidance for designing artificial neural net‐
works for intelligent control.

2 Model and scheme 

For a simple resistor-inductor-capacitor (RLC) 
circuit composed of nonlinear electric components, 
the continuous exchange of magnetic field energy and 
electric field energy is critical to maintain oscillation. 
The involvement of an external stimulus is helpful in 
inducing a chaotic state by adjusting the frequency in 
the signal source carefully. A phototube can be acti‐
vated to excite the nonlinear circuit, and the photo‐
current across the phototube can be considered a 
stable signal source. Furthermore, this photocurrent-
controlled circuit can be tamed to reproduce firing 
modes similar to those of biological neurons, and used 
as an artificial eye to discuss the relevant dynamics 
of light-sensitive neurons. A thermistor can be incor‐
porated into one branch circuit such that the output 
voltage becomes dependent on the temperature. This 
neural circuit is suitable for describing the tempera‐
ture effect on excitability and firing modes of neu‐
rons. As a result, the biophysical function of the neural 
circuit can be further enhanced when both a thermis‐
tor and a phototube are incorporated into the RLC 
circuit, and this neuron model can be effective in esti‐
mating the dynamics of temperature and illumination 

synchronously. As presented in Fig. 1, a thermistor 
and a phototube are connected to different branch cir‐
cuits of the RLC circuit. The activated phototube can 
emit a continuous photocurrent and the output volt‐
age from the capacitor can show a variety of firing 
modes. RT denotes a thermistor and NR a nonlinear 
resistor. E is a constant voltage source used as reverse 
voltage for the ion channel. The linear resistor RS has 
finite resistance, and photocurrent from the photo‐
tube is activated to stimulate this neural circuit. The 
negative temperature coefficient (NTC) of the therm‐
istor is RT=R∞exp(B/T), where B=q/K, q is the activa‐
tion energy, T denotes the temperature, and K denotes 
the Boltzmann constant.

Generally, a capacitor is suitable for describing 
the capacitive property of a cell membrane, and an 
induction coil is suitable for describing the inductive 
property of a cell. The constant voltage E along the 
branch circuit connected to the induction coil is used 
to approach the reverse potential along the ion chan‐
nel. In addition, a nonlinear resistor in the neural cir‐
cuit is often used to represent the nonlinear relation 
of energy transmission and conversion between mag‐
netic and electric fields during the exchange and prop‐
agation of intracellular and extracellular ions. Based 
on Kirchhoff’s laws, equivalent circuits for Fig. 1 can 
be obtained by

ì

í

î

ïïïï

ï
ïï
ï

C
dV
dt

= iS - iL - iN,

L
diL

dt
= V + E - RiL,

(1)

where V and iL represent the output voltage and in‐
duction current across the capacitor and induction 

Fig. 1  Schematic of a neural circuit composed of a thermistor 
and a phototube
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coil, respectively. The current iNR across the nonlinear 
resistor NR and the photocurrent iS generated by the 
phototube in Fig. 1 are described by

iNR = -
1
ρ (V -

1
3

V 3

V 2
0 ) , iS =

2IH

π
arctan (VP - Va ), (2)

where ρ and V0 are normalized parameters for the 
nonlinear resistor, IH, VP, and Va represent the maxi‐
mum photocurrent (saturation current), output volt‐
age, and reverse cut-off voltage for the phototube, re‐
spectively. For further nonlinear analysis, the vari‐
ables and parameters for Eqs. (1) and (2) are updated 
using scale transformation as follows:

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

x =
V
V0

, y =
ρiL

V0

,  τ =
t
ρC

, a =
E
V0

, 

b =
RT

ρ
= b (T ′ ),  c =

ρ2C
L

, ξ =
ρ

RS

.

  (3)

The circuit equations for Fig. 1 can be mapped into a 
dimensionless functional neuron model as follows:

ì

í

î

ïïïï

ï
ïï
ï

dx
dτ

= x (1 - ξ ) -
1
3

x3 - y + I0 arctan ( x - va ),

dy
dτ

= c [ x + a - b (T ′ ) y ] ,
 (4)

where x and y denote the membrane potential and 
channel current in this temperature-sensitive neuron 
driven by photocurrent, respectively. The two variables 
are mapped from the output voltage of the capacitor 
and the induction current of the induction coil (Fig. 1). 
The parameter b(T′) is controlled by external temper‐
ature for the thermistor RT, and the firing modes can 
be adjusted by the channel current across the thermis‐
tor. The parameter ξ is controlled mainly by the lin‐
ear resistor RS, and the parameter a is relative to the 
constant voltage source E. The parameters are often 
selected as a=0.8, b(T′)=0.2, c=0.1, and ξ=0.175, and 
the external illumination can be adjusted to trigger a 
photocurrent for inducing mode transition and firing 
patterns. This neural circuit is driven by a photocur‐
rent when the phototube is completely activated, and 
the photocurrent IP=I0arctan(x − va), with saturation 
current I0 and inverse cut-off voltage for the photo‐
tube. For a two-variable autonomous system, chaos 

cannot be induced. The involvement of photocurrent 
can be considered an external stimulus, and the two 
intrinsic parameters can be adjusted to induce possi‐
ble occurrence of chaos in this functional neuron. The 
field energy W in this neural circuit can be described 
by the equivalent Hamilton energy H by applying 
scale transformation to these variables and physical 
parameters, as follows:

ì

í

î

ï
ïï
ï

ï
ïï
ï

W =
1
2

CV 2 +
1
2

Li2
L = CV 2

0 ( )1
2

x2 +
1
2c

y2 ,

H =
W

CV 2
0

=
1
2

x2 +
1
2c

y2.
(5)

When two identical neurons are excited by dif‐
ferent external stimuli and initial values, they will 
contain different Hamilton energy values. Therefore, 
the field energy will be shared between neurons, and 
propagated from one neuron to another until a stable 
energy balance is reached. During energy propaga‐
tion between neurons, the firing modes of two neu‐
rons are changed and their synapses are awakened 
for building connections with an adaptive increase in 
the coupling intensity k. That is, the biological neu‐
rons develop possible biophysical criteria for enhanc‐
ing synapse connections by increasing and regulating 
the coupling intensity in a self-adaptive way. Energy 
pumping and propagation will be activated when two 
neurons show distinct gradient energy (Fig. 2).

Due to the gradient distribution and diversity in 
the energy field, a synapse connection is activated and 
further enhanced by changing the coupling intensity 
until the energy diversity between neurons is reduced 

Fig. 2  Schematic for neural circuits controlled by energy 
diversity
The coupling channel will be switched on for enhancing a 
synaptic connection when field energy is propagated between 
two neurons
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to within a finite value. The two neurons are coupled 
adaptively as follows:

ì

í

î

ï
ïï
ï

ï
ïï
ï

ẋ = x (1 - ξ ) -
1
3

x3 - y + I0 arctan ( x - va )

       +k ( τ ) ( x′ - x ) ,

ẏ = c [ x + a - b (T ′ ) y ] ,

ì

í

î

ï
ïï
ï

ï
ïï
ï

ẋ′ = x′ (1 - ξ ) -
1
3

x′ 3 - y′ + I ′0 arctan ( x′ - va )

       +k ( τ ) ( x - x′ ),
ẏ′ = c [ x′ + a - b (T ′ ) y′ ] .

  (6)

The energy diversity is controlled within a tiny 
range ε when two neurons reach energy balance within 
a certain transient period. That is, the synapses are 
activated and the synaptic connection is further en‐
hanced to reach a certain saturation value until the 
energy diversity between the neurons is reduced to 
the tiny value ε.

ΔH = | H1 - H2 | =
|

|
|
||
| ( 1

2
x2 +

1
2c

y2 )
        -( 1

2
( x′ )2 +   

1
2c

( y′ )2 ) ||||||~ε. (7)

To explore the self-adaptive and synaptic plas‐
ticity, two kinds of criteria for synapse activation and 
enhancement are suggested, and the synaptic intensity 
is increased before reaching energy balance. The first 
criterion is similar to the saturation gain criterion, and 
the coupling intensity is increased with a constant step 
within the same period, defined by

k ( τ ) = k0 int ( τ/λ )ϑ (ΔH - ε ) ,

ϑ ( z ) = 1, z ⩾0, ϑ ( z ) = 0, z < 0,
(8)

where k0 represents the step value for increasing the 
coupling intensity, and λ represents the time interval 
(period). The operator int( ) calculates the integer value 

for time τ within each time interval, and the coupling 
intensity terminates its increase until reaching energy 
balance, controlled by the Heavside function ϑ ( ). 

The two neurons will contain the same Hamilton 
energy when they are coupled to reach complete syn‐
chronization; otherwise, energy pumping is continued 
when the coupling intensity stops to increase below 
the threshold. Synaptic coupling intensity can also be 

increased in an exponential way when a synapse con‐
nection is enhanced to maintain balance in the field 
energy. Therefore, the second criterion for synaptic 
enhancement can be described by

dk ( τ )
dτ

= σ ⋅ k ( τ ) ⋅ ϑ (ΔH - ε ). (9)

This is similar to the criterion shown in Eq. (8): 
the coupling intensity is fixed at a saturation value 
and energy balance is controlled completely. The gain 
σ denotes the increase in the ratio of the coupling 
intensity between connected neurons and the initial 
value for coupling intensity starting from zero. Accord‐
ing to Eq. (6), two neurons are coupled with time-
varying intensity until stable energy balance or com‐
plete synchronization is achieved. Before reaching 
energy balance, the coupling intensity is increased 
exponentially as k~exp(στ), and it can be approached 
by k~στ with a tiny value for the gain σ. For two iden‐
tical neurons, the error function is often estimated as 
follows:

θ (ex,ey ) = ( x - x′ )2 + ( y - y′ )2  . (10)

As presented in Eqs. (5) and (6), any diversity 
in the initial values, temperature, and photocurrents 
in the two neurons will induce distinct differences in 
Hamilton energy, parameter mismatch, and excitability 
in neurons. As a result, synapse connections will be 
awakened and enhanced in coupling intensity with time, 
to decrease the difference in energy. The energy pump‐
ing and propagation continues before complete syn‐
chronization is achieved. However, phase lock and 
phase synchronization can be stabilized for two or 
more non-identical neurons.

During the propagation of field energy, the spa‐
tial distribution of the electric field fluctuates, and ad‐
ditive noise is induced to further regulate the energy 
balance and synchronization between neurons. Some 
previous studies even confirmed that appropriate 
involvement of noise can enhance the synchronization 
approach. Therefore, the development and activation 
of synapse connections will change in the presence 
of noise. For simplicity, the additive Gaussian white 
noise with zero average is considered for two neu‐
rons. Its statistical properties are defined by
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< η ( τ ) >= 0, < η ( τ )η ( τ′ ) >= 2Dδ ( τ - τ′ ), (11)

where D denotes the noise intensity, and different 
values are applied to distinguish the activation of syn‐
apse connections from the energy balance between 
neurons.

3 Numerical results and discussion 

In this section, the fourth-order Runge-Kutta 
algorithm is applied to find numerical solutions for 
the coupled neuron models with time step h=0.01. The 
transient period for calculation is about 2000 time 
units. The photocurrent is dependent on two intrinsic 
parameters, and the changes in the photocurrent will 
adjust the excitability of the neurons. As a result, the 
firing modes will be regulated effectively. The Lyapu‐
nov exponent spectrum, formation of attractors, and 
firing patterns are calculated by changing the two 
parameters in the photocurrent (Fig. 3).

The neuron can be induced to present chaotic and/
or periodical firing patterns by taming the intensity 
of the photocurrent and the inverse cut-off voltage of 
the phototube. The two neurons become non-identical 
when they are driven by different photocurrents, such 
that one of the intrinsic parameters of the phototube 
shows a slight difference. According to the criterion 
presented in Eq. (8), the coupling intensity is further 

increased before reaching energy balance, and the 
synapse connection is further enhanced (Fig. 4).

It is confirmed that the energy diversity between 
two neurons is not compressed to the target range, 
and energy balance is not realized even when the 
coupling intensity is further increased with a certain 
step. As a result, complete synchronization becomes 
unachievable. For better representation of the synchro‐
nization stability, the phase series for the two neurons 
can be calculated by applying the Hilbert transforma‐
tion to the sampled time series for their membrane 
potentials. The evolution and phase error are presented 
in Fig. 5.

As confirmed in Fig. 5, the two neurons driven 
by different photocurrents can reach stable phase 
lock when the synapse connection is activated and 
increased with appropriate gain in the coupling inten‐
sity. The energy diversity between two neurons is 
also reduced to a finite value quickly, and energy bal‐
ance is reached when synaptic coupling is further 
enhanced. A similar case in the presence of noise is 
discussed, and the results are shown in Fig. 6.

The involvement of noise is helpful in maintain‐
ing perfect phase synchronization, and energy balance 
is controlled effectively even when the coupling inten‐
sity is increased with a smaller step value, e. g., k0=
0.0001. The reliability of the second criterion is defined 
in Eq. (9). The coupling intensity is controlled in an ex‐
ponential way before reaching energy balance (Fig. 7).

Fig. 3  Distribution of Lyapunov exponents, firing patterns, and attractors for an isolated neuron at a fixed temperature: 
(a) va=0.01; (b) I0=0.087; (c–d) chaotic neuron 1, va=0.01, I0=0.087; (e–f) periodic neuron 2, va=0.01, I '0 =0.092
The parameters are fixed as a=0.8, c=0.1, ξ=0.175, b(T′)=0.2, and the initial values for variables are selected as (0.2, 0.1)
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When the energy diversity is beyond the thresh‐

old ε=10−5, the synapse connection is further enhanced 

by increasing the coupling intensity with different gains 

for σ. The larger the gain applied for σ, the quicker 

the increase in the coupling intensity. The coupling 

intensity increases linearly because the gain σ for the 

coupling intensity is fixed as a tiny value (Fig. 7a). 

The evolution of energy diversity and the stability of 

phase synchronization are plotted in Fig. 8.

The sampled time series for the phase error and 

energy diversity confirm that the two neurons can 

reach a certain phase lock and complete synchroni‐

zation, and energy balance is controlled effectively. 

As a result, the synapse connection is enhanced and 

Fig. 5  Evolution of Hamilton energy (H), energy error (∆H), error function (θ), and phase error (∆ϕ) for coupled neurons: 
(a) k0=0.0001; (b) k0=0.001; (c) k0=0.005
The parameters are fixed as a=0.8, c=0.1, ξ=0.175, b(T′)=0.2, λ=5, ε=10−5, I0=0.087, and I '0=0.092. Saturation gain method is 
applied and the initial values are selected as (0.2, 0.1, 0.2, 0.1). The phase series (ϕ, ϕ′ ) are derived by applying the Hilbert 
transformation to the sampled time series for variables (x, x′), and the phase error is estimated by Δϕ=ϕ−ϕ′

Fig. 4  Evolution of the coupling intensity in synapse connections during energy propagation, with the coupling intensity 
being controlled by the saturation gain method and different gains and thresholds (ε, k0) being applied: (a) k0=0.1, ε=10−7; 
(b) k0=0.1, ε=10−5; (c) k0=0.1, ε=10−3; (d) k0=0.001, ε=10−5; (e) k0=0.01, ε=10−5; (f) k0=0.1, ε=10−5

The parameters are fixed as a=0.8, c=0.1, ξ=0.175, b(T′)=0.2, λ=5, I0=0.087, I '0=0.092, and the initial values are selected as (0.2, 
0.1, 0.2, 0.1)
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coupling intensity is increased when energy diversity 
is reduced with time. A similar case under noise is 
discussed, and the results are shown in Fig. 9.

When noisy driving is applied with different 
intensities, complete synchronization and energy bal‐
ance are corrupted intermittently by applying a smaller 
gain value for σ. Comparing the results in Fig. 9 with 
those in Fig. 6, a stronger noise intensity is effective 
in controlling the phase lock, and the synapse connec‐
tion is enhanced due to the continuous exchange and 
pumping of field energy between the neurons. Phase 
lock or phase synchronization, rather than complete 
synchronization, often occurs between non-identical 
neurons even when the coupling intensity is further 
increased. Except for the case shown in Fig. 8, it is 

important to confirm whether complete synchroniza‐
tion can be stabilized between two identical neurons 
driven by the same photocurrent even when different 
initial values are used. In Fig. 10, the saturation gain 
method is applied to predict the occurrence of com‐
plete synchronization between two identical neurons.

Comparing the results in Fig. 10 with those in 
Fig. 5, the approach of complete synchronization be‐
comes difficult even when phase lock can be realized 
for two identical neurons selected with the same intrin‐
sic parameters and photocurrent. External noise is 
also considered, and the results are shown in Fig. 11.

We find that the involvement of noise is helpful 
in enhancing the approach of complete synchroniza‐
tion when the synapse connection is controlled by the 

Fig. 7  Growth of the synapse connection and evolution of the coupling intensity: (a) σ=0.0001; (b) σ=0.001; (c) σ=0.004; 
(d) σ=0.008
The parameters are fixed as a=0.8, c=0.1, ξ=0.175, b(T′)=0.2, ε=10−5, I0=0.087, and I '0=0.092. The initial values for variables are 
selected as (0.2, 0.1, 0.2, 0.1, 10−5)

Fig. 6  Evolution of Hamilton energy (H), energy error (∆H), error function (θ), and phase error (∆ϕ) for coupled neurons 
in the presence of noise: (a) D=5; (b) D=10; (c) D=15
The parameters are fixed as a=0.8, c=0.1, ξ=0.175, b(T')=0.2, λ=5, k0=0.0001, ε=10−5, I0=0.087, and I '0=0.092. Saturation gain 
method is applied and the initial values are selected as (0.2, 0.1, 0.2, 0.1).The phase series (ϕ, ϕ′) are derived by applying Hilbert 
transformation to the sampled time series for variables (x, x′), and the phase error is estimated by Δϕ=ϕ−ϕ′
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Fig. 8  Evolution of Hamilton energy (H), energy error (∆H), and error function (θ) for coupled neurons: (a) σ=0.001; 
(b) σ=0.004; (c) σ=0.008
The parameters are fixed as a=0.8, c=0.1, ξ=0.175, b(T′)=0.2, ε=10−5, I0=0.087, and I '0=0.092. The initial values for variables are 
selected as (0.2, 0.1, 0.2, 0.1, 10−5)

Fig. 9  Evolution of Hamilton energy (H), energy error (∆H), error function (θ), and phase error (∆ϕ) for coupled neurons 
in the presence of noise: (a) D=5; (b) D=10; (c) D=15
The parameters are fixed as a=0.8, c=0.1, ξ=0.175, b(T′)=0.2, ε=10−5, σ=0.004, I0=0.087, and I '0=0.092. The initial values are 
selected as (0.2, 0.1, 0.2, 0.1, 10−5)

1415



Xie et al. / Front Inform Technol Electron Eng   2022 23(9):1407-1420

Fig. 10  Evolution of Hamilton energy (H), energy error (∆H), error function (θ), and phase error (∆ϕ) for coupled neurons: 
(a) k0=0.001; (b) k0=0.002; (c) k0=0.004
The parameters are fixed as a=0.8, c=0.1, ξ=0.175, b(T′)=0.2, λ=5, ε=10−5, and I0=I '0=0.087. Saturation gain method is applied 
and the initial values are selected as (0.2, 0.1, 0.02, 0.01). The phase series (ϕ, ϕ′) are derived by applying the Hilbert transforma‐
tion to the sampled time series for variables (x, x′), and the phase error is estimated by Δϕ=ϕ−ϕ′

Fig. 11  Evolution of Hamilton energy (H), energy error (∆H), and error function (θ) for coupled neurons in the presence 
of noise: (a) D=1; (b) D=3; (c) D=5
The parameters are fixed as a=0.8, c=0.1, ξ=0.175, b(T′)=0.2, λ=5, k0=0.001, ε=10−5, and I0=I '0=0.087. Saturation gain method is 
applied and the initial values are selected as (0.2, 0.1, 0.02, 0.01)
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saturation gain scheme. We discuss a case similar to 
Figs. 8 and 9 when two identical neurons are coupled 
with an exponential increase in coupling intensity. 
The results are plotted in Fig. 12.

The results are consistent with those in Fig. 8 
and complete synchronization can be stabilized only 
when the coupling intensity is increased with appro‐
priate gain. In addition, the two neurons are synchro‐
nized to present the same field energy. The effect of 
noise is also calculated (Fig. 13).

Our results confirm that the two identical neu‐
rons can reach complete synchronization, and energy 
balance is stabilized even when noise is considered. 
In particular, the synchronization stability remains re‐
silient to external noise when neurons with energy di‐
versity are coupled to regulate their synapse intensity 
in an exponential increase with appropriate gains. 
For the saturation gain scheme, the involvement of 

noise becomes helpful in stabilizing synchronization 
between neurons, and energy balance can be controlled 
completely.

Two different criteria are suggested to explore 
the activation of synapse connections and enhance‐
ment of synaptic coupling when field energy is prop‐
agated and shared between neurons. For two non-
identical neurons, phase lock and phase stability can 
be controlled even in the presence of noise. This is 
because the energy propagation enables the growth 
and connection of synapses, and the continuous in‐
crease of coupling intensity regulates the collective 
synchronous patterns for reaching energy balance. 
From a dynamic viewpoint, the coupling intensity is 
increased when two neurons show distinct energy 
diversity. As a result, appropriate coupling intensity is 
effective in stabilizing synchronization. Energy diver‐
sity will be enlarged when two neurons are exposed 

Fig. 12  Evolution of Hamilton energy (H), energy error (∆H), and error function (θ) for coupled neurons: (a) σ=0.001; 
(b) σ=0.004; (c) σ=0.008
The parameters are fixed as a=0.8, c=0.1, ξ=0.175, b(T′)=0.2, ε=10−5, and I0=I '0=0.087. The initial values are selected as (0.2, 0.1, 
0.02, 0.01, 10−5)
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to different temperature conditions. The parameter 
mismatch in the neurons will enhance the activation 

of synapses and their synaptic coupling because of 

the increased energy diversity. Extensive results con‐

firm that two identical neurons (with the same firing 

modes) can be controlled to reach complete synchro‐

nization even in the presence of noise by taming the 
coupling intensity carefully. The results explain how 

a synapse is activated and enhanced to regulate syn‐
chronous firing patterns. Phase lock, phase synchro‐

nization, and complete synchronization can then be 

controlled to reach a perfect energy balance between 

two or more neurons in neural networks. In addition, 

biological neurons can be connected with different 

types of synapses. Synchronous behaviors in the neu‐

ral networks are dependent on the firing modes and 

biophysical properties (Uzuntarla et al., 2019) in the 
coupling channels and synapse connections. The 

results from our study provide some new insights to 

reconsider the synaptic function and development of 

hybrid synapses in neural networks. Our discussions 

also suggest that external field energy can be used to 

guide and control the synapse function, and thus neu‐

rons can be tamed to present appropriate firing modes.

4 Conclusions 

In this study, two criteria for activating and en‐

hancing synapse connections to neurons with energy 

diversity are proposed. Each neuron contains certain 

field energy, and any external stimulus will change its 

firing mode and field energy. With more neurons, the 

field energy for each neuron is dependent on its intrin‐

sic biophysical property and also the electromagnetic 

field emitted from other neurons. All neurons are 

Fig. 13  Evolution of Hamilton energy (H), energy error (∆H), and error function (θ) for coupled neurons in the presence 
of noise: (a) D=1; (b) D=3; (c) D=5
The parameters are fixed as a=0.8, c=0.1, ξ=0.175, b(T′)=0.2, ε=10−5, σ=0.004, and I0=I '0=0.087. The initial values are selected as 
(0.2, 0.1, 0.02, 0.01, 10−5)
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kept in energy balance with their synapses being 
tamed under field coupling. Any stimulus will disturb 
the energy balance and the energy will be propagated 
and shared by those neurons with lower field energy 
without external stimuli. As a result, the synapse con‐
nections can be awakened and synaptic coupling is 
further increased with time until a dynamic energy bal‐
ance is achieved. Based on a simple functional neuron 
model, the two control schemes are used to discuss 
the energy propagation and synchronization approach 
between two different neurons. The results confirm that 
they can reach synchronization and phase lock even 
when considering the effect of additive noise on the 
membrane potential, and energy balance can be well 
regulated when synaptic coupling is further increased. 
These results provide new insights to understand the 
synaptic function and the biophysical mechanism for 
activating synapse connections to neurons. Injection 
of external energy can be used to regulate the col‐
lective behavior of neural networks effectively.
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