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Abstract: In-memory systems with erasure coding (EC) enabled are widely used to achieve high performance and
data availability. However, as the scale of clusters grows, the server-level fail-slow problem is becoming increasingly
frequent, which can create long tail latency. The influence of long tail latency is further amplified in EC-based
systems due to the synchronous nature of multiple EC sub-operations. In this paper, we propose an EC-enabled
in-memory storage system called ShortTail, which can achieve consistent performance and low latency for both reads
and writes. First, ShortTail uses a lightweight request monitor to track the performance of each memory node and
identify any fail-slow node. Second, ShortTail selectively performs degraded reads and redirected writes to avoid
accessing fail-slow nodes. Finally, ShortTail posts an adaptive write strategy to reduce write amplification of small
writes. We implement ShortTail on top of Memcached and compare it with two baseline systems. The experimental
results show that ShortTail can reduce the P99 tail latency by up to 63.77%; it also brings significant improvements
in the median latency and average latency.
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1 Introduction

In-memory systems are widely adopted in a
number of areas such as in-memory databases
(Dragojević et al., 2015; Kalia et al., 2016) and in-
memory key-value (KV) stores (Dragojević et al.,
2014; Kalia et al., 2014). Compared with their on-
disk counterparts, these systems can provide high
bandwidth and low access latency. In addition, re-
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cently introduced non-volatile memory, such as In-
tel Optane Persistent Memory (Intel, 2015), can
provide memory-like access latency and high band-
width while guaranteeing durability, thus promising
its further integration into in-memory systems. How-
ever, despite optimization for high performance, data
durability and availability are also very important
for in-memory systems. For example, data in dy-
namic random access memory (DRAM) will be lost
when the power goes off unexpectedly. Even for non-
volatile memory (NVM) based systems, server-level
failures, such as node shutdown or network interface
card (NIC) failure, can still make the correspond-
ing data inaccessible. Therefore, fault tolerance is of
great importance in in-memory systems.
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There are two techniques that are widely used
to ensure fault tolerance: multi-replica technology
and erasure coding (EC). Compared with the multi-
replica technology, EC has the advantage of low re-
dundancy overhead with the same fault tolerance
level. In today’s distributed storage systems, there
are many kinds of erasure codes, among which the
most commonly used is Reed–Solomon code (RS
code) (Reed and Solomon, 1960). RS code calcu-
lates m parity blocks with k data blocks according
to certain rules, and forms an erasure-coded stripe
with data blocks and parity blocks. The k+m blocks
of each stripe are distributed in k+m different nodes
to tolerate the loss of at most m blocks at the same
time, saving a lot of storage overhead compared with
multi-replica technology.

However, deploying EC in an in-memory system
does not come without cost. The server-level fail-
slow can degrade system performance and increase
data access latency on the server. For example, a re-
cent work (Gunawi et al., 2018) systematically stud-
ied the fail-slow problem of hardware such as CPU,
memory, and network components, and pointed out
that lack of power, a loose dual inline memory mod-
ule (DIMM) connection, or NIC buffer corruption
might cause these problems. The fail-slow problem is
sometimes more difficult to address than a fail-stop
problem. Most fault-tolerant systems assume that
a component is either working or stopped, and ne-
glect severe performance degradation, even though
the system appears to be working normally, which
was categorized as gray failure in the previous work
(Huang P et al., 2017). It should be noted that even
though the hardware fail-slow problem is not as fre-
quent as in the past, it is becoming more and more
common as larger-scale systems are deployed along
with more hardware and more intricate operations.

This performance problem becomes more se-
vere in applications when a memory-access opera-
tion touches more than one single part: due to the
synchronous nature of multi-partition requests, the
whole request is deemed to be finished only after the
slowest request is done. In other words, it is the
tail latency of request completions that matters in
application performance and user experience, espe-
cially in a large distributed in-memory system. In
this study, therefore, we focus on addressing the tail
latency problem in EC-based in-memory systems.

Although there have been some previous works

targeting the tail latency problem in EC systems,
none of them can effectively cut the tail latency of
both read and write requests. For example, LLF (Hu
et al., 2017) can proactively perform degraded reads
to avoid forming read hotspots, and therefore reduce
the tail latency. However, this approach may trigger
extra loads due to unnecessary degraded reads. It
also does not perform optimization on write tail la-
tency. EC-Cache (Rashmi et al., 2016) cuts read tail
latency by sending read requests to multiple blocks
of an EC stripe. The drawback of this approach is
that the number of read requests often exceeds the
actual needs, which results in extra overheads. It also
does not optimize the latency of write requests. An-
other approach called EC-Store (Abebe et al., 2018)
assumes that tail latency comes only from load im-
balance, and balances the load with data migration.
This approach will create significant estimated cost
overhead for data access, especially under a high-
throughput workload. It is also difficult to balance
the profit and cost of data migration. LBM (Hu and
Niu, 2016) optimizes data placement to a target lay-
out by partially migrating blocks. LBM has lower
data migration costs than EC-Store, but the storage
overhead is pretty high to maintain the access infor-
mation for each block. In addition, LBM ignores the
fail-slow problem.

In this study, we propose ShortTail, an approach
that can effectively tame tail latency of read and
write requests for EC-enabled memory storage sys-
tems. ShortTail realizes this goal by detecting and
sidestepping fail-slow nodes and optimizing small
writes. First, ShortTail keeps track of request la-
tency on each node and marks those nodes with ab-
normally high latency as fail-slow nodes. Then, it
uses degraded reads and redirected writes to avoid
accessing fail-slow nodes. Second, ShortTail also
stores data, which are sent in replication with small
writes, to shorten the input/output (I/O) path of
write operations. Unlike previous approaches (Hu
et al., 2017; Abebe et al., 2018), ShortTail can re-
duce tail latency of both read and write requests.

We implement ShortTail by modifying ECWide-
H (Hu et al., 2021). We compare ShortTail with
ECWide-H, which has no extra tail latency reducing
optimization, and the LLF approach mentioned be-
fore. The experimental results show that compared
with ECWide-H and LLF, ShortTail reduces the P99
latency by up to 57.40% and 55.07% on average and
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the median latency by up to 78.69% and 76.04% on
average, respectively.

2 System overview

2.1 Architecture

Fig. 1 presents the ShortTail architecture.
ShortTail is an EC-enabled distributed in-memory
storage system that uses the memory of multiple
nodes to serve memory accesses from upper-level ap-
plications. Like previous works based on in-memory
systems, such as ECWide-H (Hu et al., 2021) and
EC-Cache (Rashmi et al., 2016), we use a centralized
architecture with one coordinator node and multiple
storage nodes. Each rack contains several memory
nodes. The data blocks and parity blocks of each EC
stripe are distributed on different memory nodes.

Coordinator

I/O scheduler Request monitor

Memcached server ...

...

Rack
Node

Memcached client

Memcached server

Node

Application I/O requests

Fig. 1 ShortTail architecture

The coordinator node is responsible for serving
application requests and monitoring memory nodes
to detect fail-slow nodes. Internally, these two pro-
cesses are done by an I/O scheduler and a request
monitor.

The I/O scheduler schedules requests to achieve
low tail latency. For each request, the I/O scheduler
evaluates the performance of its destinations with
the metadata on the coordinator node and sends re-
mote procedure calls (RPCs) to the target memory
nodes for data access. The I/O scheduler prevents re-
quests from accessing fail-slow nodes by performing
degraded reads and redirected writes. In addition,
the I/O scheduler stores small writes with the multi-
replica technology to reduce write amplification.

The request monitor, on the other hand, moni-
tors the state of memory nodes to detect any fail-slow
nodes. It maintains the average response time of re-
quests to each memory node in timeslice units, and
marks a memory node as fail-slow if its average re-
sponse time is too long. When a memory node is
judged to be slow, the request monitor will periodi-
cally probe it with small requests to inspect whether
it has returned to a normal state and is ready to
serve requests.

We explain how ShortTail works using only a
single coordinator node here. If a single coordina-
tor node becomes a performance bottleneck as clus-
ter scale increases, ShortTail divides the coordinator
tasks to multiple nodes. It also periodically merges
the degradation information of memory nodes among
the coordinator nodes to provide a precise perfor-
mance view of the memory nodes.

There is one Memcached client on each rack,
which receives requests from the coordinator and
transfers them to Memcached servers on the same
rack. Here, each Memcached server runs on a mem-
ory node. To distinguish between two types of re-
quests, the requests that the coordinator sent to the
Memcached client are called application requests,
while the requests that the Memcached client sent
to the memory nodes are called EC requests in the
rest of the paper. The memory nodes receive EC re-
quests and access the relevant range of local memory
according to the address, and then respond to the
read and write requests.

2.2 Request handling

When an application request arrives at the co-
ordinator node, the I/O scheduler will first extract
the target memory nodes and refer to node degrada-
tion counters to see if any one of the target memory
nodes is currently fail-slow. If none of the memory
nodes is fail-slow, this application request can safely
be split into multiple EC requests and sent to the
corresponding memory nodes. Otherwise, ShortTail
will trigger its optimization to avoid slow EC re-
quests. More specifically, ShortTail adopts different
strategies for read and write requests as follows:

1. For an EC read request that falls on a fail-
slow node, ShortTail will perform a degraded read,
which reads the rest of the data and parity blocks
within the same stripe and reconstructs the desired
data blocks.
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2. For an EC write request that touches a fail-
slow node, ShortTail can redirect it to a normal mem-
ory node in a load-balanced manner.

By not accessing fail-slow nodes, ShortTail can
effectively reduce the tail latency of I/O requests.

The write scheme in ShortTail is covered writ-
ing. If a write request targets a normal node, Short-
Tail writes data onto the original location and covers
the old data. If a write request is directed to a fail-
slow node, ShortTail reconstructs the old data in the
fail-slow node for parity generation and redirects the
write request to a replaced node.

ShortTail further optimizes small writes by
adaptively selecting the write strategy. According
to the write request length, ShortTail will decide to
store a request in either EC or replication format.
The latter can mitigate the write amplification prob-
lem of small EC writes.

In the ShortTail architecture, an EC stripe oc-
cupies some memory nodes in at least one rack. Dur-
ing encoding, each memory node sends data blocks
to a memory node that holds parity blocks, and the
latter performs data encoding. While decoding, the
memory node that will store the recovered data re-
ceives related data from other memory nodes, and
then reconstructs the lost data.

3 ShortTail approach

3.1 Identifying performance degradation

Because ShortTail relies on the degradation in-
formation of memory nodes to optimize EC request
access latency, we first design a lightweight perfor-
mance degradation identification algorithm to iden-
tify fail-slow nodes.

For each memory node, ShortTail divides the
physical time into timeslices with a fixed length t

and records the EC request latency information in
each timeslice. The timeslice to which an EC request
belongs is determined by its start time. When all EC
requests in a timeslice finish and the timeslice is gone,
ShortTail calculates the average request latency in
that timeslice and reclaims the statistics space of
the timeslice. The corresponding node is judged as
a fail-slow node when the average latency is higher
than a preset threshold x. Then this node is marked
fail-slow to avoid subsequent requests to access this
node.

We also maintain a thread in the coordinator
node that periodically sends probe requests to see
whether the fail-slow nodes have returned to a nor-
mal state and are ready to serve EC requests.

Fig. 2 presents an example of this detection
for a single node. Requests marked with the same
color denote that their start time falls in the same
timeslice. When all requests in timeslice 0 return,
their average latency av0 is calculated. Because av0

is smaller than threshold x, ShortTail thinks this
memory node is not under degradation currently.
When calculating the average latency in timeslice 1,
the result av1 is larger than threshold x. Accord-
ingly, ShortTail sets the flag as one, indicating that
this node is now fail-slow.

Fig. 2 Fail-slow node identification

References to color refer to the online version of this figure

Because the optimal values of t and x are
workload-dependent, they cannot be immediately
known when ShortTail performs a cold start. Short-
Tail first collects request latency information and cal-
culates t and x before turning on the function of per-
formance degradation detection. During runtime,
ShortTail also keeps track of application requests
and adjusts t and x if the workload characteristics
change.

A satisfactory timeslice length t should be as
small as possible, with the condition that there are
enough requests falling in each timeslice on average.
If t is too small, ShortTail can misjudge the degra-
dation information by a single straggler request.

Because memory nodes may suffer from perfor-
mance fluctuation, requests to a normal node can
also see increased latency, which may mislead the
judgment of fail-slow nodes. ShortTail avoids this
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by accommodating enough requests in each timeslice
and averaging their latency when deciding states of
the nodes. To choose threshold x, ShortTail first
calculates the average request latency of the normal
memory nodes within a timeslice, and then sets x at
about three times of the average request latency.

The main memory overhead of identifying fail-
slow nodes comes from two parts: request metadata
and node metadata. First, request metadata consist
of index, issue time, and return time of each request.
Because the judgment of fail-slow nodes is performed
in a timeslice, the memory space of request meta-
data related to previous timeslices can be reclaimed
dynamically. Second, node metadata include only
Boolean variables for each node to denote if it is a
fail-slow node. Therefore, the memory overhead of
ShortTail is limited.

When monitoring memory nodes, the coordi-
nator records the latency of each request without
additional network traffic. After a node has been
detected as a fail-slow node, the coordinator sends
extra probe requests to the fail-slow node periodi-
cally, but this will not incur much network traffic
because the probing frequency is low.

3.2 Sidestepping fail-slow nodes

ShortTail optimizes access latency of EC re-
quests by sidestepping fail-slow nodes. This is ac-
complished using two key techniques: degraded reads
and redirected writes. We show how ShortTail han-
dles read and write requests on fail-slow nodes below.

3.2.1 Read handling

ShortTail performs degraded reads for read re-
quests that fall on fail-slow nodes. When any EC
read requests fall on a fail-slow node, ShortTail will
try to collect other blocks of the corresponding stripe
by issuing additional requests to the relevant nodes.
After this, ShortTail can reproduce the desired data
block by EC reconstruction without accessing the
fail-slow node. This read handling strategy is feasi-
ble only when the number of fail-slow nodes that the
stripe touched is smaller than the number of parity
blocks m. If this condition is not satisfied, ShortTail
will still perform reads on fail-slow nodes because
data reconstruction cannot be finished by accessing
those normal nodes. However, this will not impair
the performance too much because the simultaneous

appearance of multiple fail-slow nodes is rather rare.
Fig. 3 presents an example of the read handling

process. Briefly, we assume that the stripe width is
five. Because the read request falls on node 2, which
has already been identified as fail-slow, ShortTail will
avoid accessing this node by reading the blocks in the
other four nodes and performing data reconstruction.

EC stripe

Read

Node 0 Node 3Node 2 Node 4Node 1

Read

EC stripe

Node 0 Node 3Node 2 Node 4Node 1

Slow

Slow

Fig. 3 Fail-slow node sidestepping for read requests

3.2.2 Write handling

Write handling in ShortTail is more compli-
cated because it modifies both data blocks and par-
ity blocks. When a write request is located on a
fail-slow memory node, ShortTail will redirect it to
a normal node and record this mapping in the co-
ordinator node. The relevant parity blocks are also
updated.

If ShortTail meets a fail-slow node when it writes
a parity block, ShortTail redirects it to another nor-
mal node. The target node of write redirection is
chosen according to two rules:

1. The fault tolerance rule. All the blocks of an
EC stripe fall on different memory nodes.

2. The load-balancing rule. The number of
blocks written to each node in the redirection mode
should be balanced across all memory nodes.

To abide the second rule, ShortTail maintains
a redirection count for each memory node to record
how many write requests have been redirected to
the corresponding node. It will choose the target
node of write redirection from the normal nodes with
the smallest redirection count. By following this
rule, ShortTail can avoid overloading certain mem-
ory nodes with many more redirected blocks than the
other nodes. Write redirection in ShortTail differs
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from those in many previous works (Wilkes et al.,
1996; Wu et al., 2016), in which small writes were
redirected to a memory buffer for I/O aggregation.
Moreover, they did not consider the problem of load
imbalance, which may cause latency increment.

Fig. 4 shows an example of write handling. As-
sume that there are eight memory nodes in the sys-
tem. An EC stripe with a width of five blocks scat-
ters its data and parity blocks on the first five nodes.
We suppose that an incoming write request arrives
in node 2, which is currently fail-slow. To avoid a
slow write while maintaining load balance, ShortTail
will redirect this request to node 5, because it has
the smallest redirection count. Then, the redirection
count of node 5 is increased by one.

3.3 Optimizing small writes

ShortTail creates further optimization on small
writes. This is motivated by the fact that a write
operation will be padded to a full stripe when its
size is obviously smaller than the EC stripe width,
which will incur severe write amplification and waste
both storage space and I/O bandwidth. ShortTail
optimizes this by selectively performing EC writes
according to the request size. If the request size
is larger than a given threshold s, the request will
be stored in EC form with possible padding of zero.
Otherwise, the request is regarded as a small write
and stored in replication to save space and to miti-
gate the write amplification problem. The optimiza-
tion also causes small writes involving fewer nodes,
which reduces the chance of accessing fail-slow nodes.

The most desirable threshold s can be deter-
mined by a simple calculation. As shown in Fig. 5,
we suppose that a write request contains c blocks.

Redirection count

Write

3 5 4

Node 5 Node 7Node 6

EC stripe

Node 0

Node 3

Node 2 Node 4

Node 1
Slow

Redirection count

Write

3+1 5 4

Node 5 Node 7Node 6

EC stripe

Node 0 Node 2 Node 4

Node 1
Slow

Node 3

Fig. 4 Fail-slow node sidestepping for write requests

If the data are stored in EC form, they will occupy
k data blocks and m parity blocks, with total space
overhead of k+m blocks. If they are stored in repli-
cation form, the space consumption will be p× c for
the p-replica strategy. When EC storage and multi-
replica storage have the same storage efficiency, we
have k+m = p× c. To obtain the same level of fault
tolerance between EC and multi-replica strategy, we
have p = m+ 1. So, we obtain c = k+m

m+1 . Therefore,
we set threshold s as �k+m

m+1 � in our deployment. If c
is larger than s, the write request should be stored
in EC form to save space. Otherwise, replicating c

blocks with p replicas is more desirable.

4 Performance evaluation

4.1 Evaluation methodology

We implement the ShortTail approach on the
Linux system by modifying the source code of
ECWide-H (a version of ECWide (Hu et al., 2021)),
with about 1200 lines of code added or modified.

ECWide-H is an in-memory storage system that
optimizes wide stripe EC. For each application re-
quest, the coordinator of ECWide-H splits the re-
quest into multiple EC requests and sends them to
the corresponding memory nodes. If an EC request
tries to read a failed node, the coordinator will per-
form a degraded read to reconstruct the data. For
write requests, ECWide-H performs in-place updates
for both data and parity blocks.

As in ECWide-H, ShortTail uses RS code to cal-
culate the global parities, and accelerates repairing
one-disk failure by maintaining local parities for part
of a stripe; this design is also a local recoverable
code (LRC). We modify mainly the coordinator in

Fig. 5 Optimization for small writes
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ECWide-H to implement ShortTail. First, we create
the request monitor by adding data structures and
functions to count the latency of each memory node
and determine if any node is under fail-slow. Sec-
ond, we change the request processing logic in the
coordinator and add redirected write and small write
optimization to reduce the latency of write requests.

Due to the limited number of machines avail-
able, we simulate each rack with a machine. Each
machine starts a number of processes, and each pro-
cess represents a memory node. Our testbed uses
six machines, with each machine running four pro-
cesses, thus forming a simulation of a 24-node EC
storage system. Because it is relatively rare that a
node becomes fail-slow in such a small-scale cluster,
we simulate it by randomly choosing a memory node
and adding additional operations to the requests tar-
geting this node.

To verify the effectiveness of our approach, we
compare ShortTail with two EC-enabled in-memory
storage systems under Yahoo! Cloud Serving Bench-
mark (YCSB) (Cooper et al., 2010) workload and
Usr_1 workload (Narayanan et al., 2008). The first
system that we compared is an ECWide-H system
(Hu et al., 2021), which is an EC storage system
with no optimization of tail latency. The second sys-
tem is an LLF-enabled system, which was proposed
by Hu et al. (2017). The main idea of LLF is to
proactively perform degraded reads to avoid forming
data hotspots. For each read request, LLF deter-
mines whether to perform normal reads or degraded
reads by inspecting the load on the relevant nodes.
If the destination nodes of normal reads suffer from
heavier loads than any of the destination nodes of
degraded reads, LLF will choose to use the degraded
read for more balanced loads and shorter response
time. We choose ECWide-H (Hu et al., 2021) be-
cause it is a new in-memory storage system based
on erasure code. Using this system for comparison,
we can evaluate the effectiveness of ShortTail in re-
ducing tail latency. LLF is significantly related to
ShortTail because it also targets tail latency reduc-
tion, but it does not optimize write requests, and
our experiments show that write optimization is also
very important.

4.2 Overall performance

We compare three evaluated approaches con-
cerning average latency, median latency, and P99 la-

tency. To make our results more convincing, we test
the results under the YCSB workload and Usr_1
workload, as shown in Figs. 6 and 7, respectively.
The results under both workloads show that Short-
Tail can reduce the P99 latency efficiently compared
with the ECWide-H approach, with around 51.03%
and 63.77% reduction on the YCSB and Usr_1 work-
loads, respectively. ShortTail reduces the P99 la-
tency by 57.40% on average on these two work-
loads. Even compared with LLF, which performs
optimization on request latency, ShortTail still re-
duces the P99 latency by 48.15% and 62.00% un-
der the YCSB and Usr_1 workloads, respectively.
ShortTail reduces the P99 latency by 55.07% on av-
erage on these two workloads. As for the median and
average latency results, ShortTail also outperforms
the ECWide-H and LLF significantly. Compared
to ECWide-H, ShortTail reduces the median latency
and the average latency by 78.69% and 76.59% on
average, respectively. Compared to LLF, ShortTail
reduces the median latency and the average latency
by 76.04% and 72.94% on average, respectively.

Fig. 6 Performance comparison under the YCSB
workload

Fig. 7 Performance comparison under the Usr_1
workload
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This is mainly because our design for perfor-
mance degradation detection can precisely identify
the fail-slow nodes, and we avoid the straggler read
requests by performing degraded reads. Our opti-
mization of write requests also contributes to this
positive result.

4.3 Effects of individual techniques

This subsection measures the impact of three
individual techniques proposed by this paper. We
implement three versions of ShortTail, each adding
an individual technique:

1. “+Read Tail Opt” adds the technique of
avoiding reading fail-slow nodes (read handling in
Section 3.2) to ECWide-H;

2. “+Write Tail Opt” adds the technique of
avoiding writing fail-slow nodes (write handling in
Section 3.2) to the “+Read Tail Opt” version;

3. “+Small Write Opt” adds the technique of
optimizing small writes (Section 3.3) to the “+Write
Tail Opt” version. In other words, the “+Small Write
Opt” version is a full version of ShortTail.

Fig. 8 shows the performance comparison of
these three versions of ShortTail and the two baseline
approaches under the YCSB workload. We can see
that detecting and sidestepping fail-slow nodes have
a significant effect on latency reduction. The read
tail optimization cuts the P99 latency by up to 8.45%
and 3.05% respectively, compared with ECWide-H
and LLF. Although LLF also targets read optimiza-
tion, we can see that ShortTail still achieves lower
latency than LLF because the radical fail-slow detec-
tion algorithm in LLF can incur many unnecessary
degraded reads, which will burden the network and
fill request handling queues in the memory nodes,
further increasing request latency.

This result also addresses the concern that the
reconstruction calculation may affect system perfor-
mance. The rationale behind this is that the calcu-
lation overhead is fairly low compared to other over-
head of a request. For a stripe of n data blocks that
are encoded with RS code, the decoding complex-
ity is O(n3). Because it is rare that multiple nodes
are simultaneously fail-slow, in ShortTail, most of
the degraded reads can be realized with local parity
blocks. We also use Intel Intelligent Storage Accel-
eration Library (ISA-L) to accelerate this process,
so the computational complexity can be further re-
duced. We have measured the computational time

Fig. 8 Performance contributions of individual
techniques

of reconstructing data using erasure codes. The ex-
perimental results show that the average latency of
degraded reads is 8.46 ms, while the computational
time is only about 0.01 ms. This shows that the com-
putational overhead is negligible in degraded reads.

When write tail optimization is added, Short-
Tail further reduces the P99 latency by up to 37.45%
and 39.66% compared with ECWide-H and LLF, re-
spectively. The results show that both read and write
requests should be considered when optimizing tail
latency in a distributed EC storage system.

Finally, the addition of small write optimiza-
tion can further decrease the P99 latency by 5.14%
and 5.44% compared with ECWide-H and LLF, re-
spectively. This is because our small write optimiza-
tion saves the storage bandwidth of small writes by
minimizing the accessed data volume; therefore, it
reduces the resource contention level and access la-
tency. It should be noted that the results regarding
the median and average latencies exhibit trends sim-
ilar to the analysis above.

4.4 Sensitivity to internal parameters

Finally, we study the impact of ShortTail’s key
parameters. ShortTail has two important system
parameters used in the process of detecting fail-slow
nodes: timeslice length t and threshold value x (Sec-
tion 3.1). Fig. 9 shows how the tail latency of Short-
Tail changes with different values of t and x under
the YCSB workload.

When the timeslice length t increases from 10 to
30 ms in a 5 ms step, the tail latency does not change
too much (no more than 20%). This is because a
10 ms timeslice length is already large enough to re-
sist an occasional straggler and accurately detect
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Fig. 9 Influence of changing parameters

fail-slow nodes in the system. A larger timeslice
length does not influence the detection results.

As for threshold x, when it increases from 20
to 90 ms, the tail latency rises accordingly. This is
because larger thresholds cause the fail-slow detec-
tion to be less sensitive, and leave the system in a
long period of degraded access before the fail-slow
nodes are detected. However, if x is smaller (e.g.,
10 ms in our experiments), the tail latency will rise.
This is because nodes can be frequently misjudged as
fail-slow nodes in this circumstance. If there are too
many fail-slow nodes, our sidestepping techniques
(i.e., degraded read and redirected write) will not
work, and in turn increase the tail latency.

5 Related works

In this section, we introduce some existing works
that target the most relevant fields of this paper, in-
cluding building EC systems, designing in-memory
storage systems, and optimizing storage system
latency.

5.1 Erasure coding in storage system

EC has been widely studied in distributed stor-
age systems (Plank and Huang, 2013; Balaji et al.,
2018) because it is efficient in achieving reliability
with low storage overhead. Among various kinds of
EC, RS codes (Reed and Solomon, 1960) have been
widely deployed today (Weil et al., 2006; Wilcox-
O’Hearn and Warner, 2008; Ford et al., 2010; Ovsian-
nikov et al., 2013; Li XL et al., 2019; Lin et al., 2021),
mainly for their deterministic coding to tolerate the
loss of any m parity blocks. Our work also employs
this property to provide data availability by building
EC-based storage systems.

EC-based distributed systems put significant
demands on a network, especially in the recovery pro-
cess. Some works design various kinds of minimum-
storage regenerating (MSR) codes (Dimakis et al.,
2010) to minimize the repair bandwidth and ac-
celerate the reconstruction process, like PM-RBT
codes (Rashmi et al., 2015), Butterfly (Pamies-
Juarez et al., 2016), and Clay (Vajha et al., 2018).
Unfortunately, MSR codes have low encoding speed.
In contrast, ShortTail targets the optimization data
services instead of the reconstruction process.

ShortTail uses RS code, and also uses locally
recoverable code by calculating local parities for part
of a stripe, but ShortTail still considers how to reduce
network traffic by performing only degraded reads if
necessary.

5.2 In-memory storage

In-memory storage has gained great popularity
in recent years due to its high bandwidth and low
latency compared with disks or solid state drives
(SSDs). For example, the Redis Memory Store
(https://redis.io/) has been widely used and can
store many kinds of data structures such as strings,
hashes, lists, sets, bitmaps, and streams. FaRM
(Dragojević et al., 2014) is a distributed in-memory
system that uses fast RDMA (Poke and Hoefler,
2015) to build distributed shared memory (DSM) on
top of multiple memory nodes and provides memory
access with transactional support. However, these
works all provide fault tolerance using replication,
which consumes more precious memory space.

ShortTail is implemented based on Memcached,
and uses EC to save storage overhead to guarantee
data reliability. In addition to ShortTail, some previ-
ous works optimize Memcached but target different
aspects. For instance, MemC3 (Fan et al., 2013)
improves the hash collision handling and solves the
concurrency issue in Memcached using concurrent
Cuckoo hashing (Pagh and Rodler, 2004) and op-
timistic locking. Nishtala et al. (2013) optimized
Memcached to enhance scalability and deployed it
in Facebook, but the multi-replica technology is still
used in this work to accelerate data reads.

5.3 Latency reduction

There are some works that target request la-
tency optimization. Some replication-based systems
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use hedging requests to reduce latency, in which re-
dundant requests are sent (Andersen et al., 2005;
Huang C et al., 2012; Stewart et al., 2013) to multiple
replicas, and pick up the one with the fastest re-
sponse. To prevent hedging request from adding too
many network loads, Shah et al. (2016) presented a
statistics model to capture the system features and
send redundant requests only when it deems that
the benefit justifies the cost. However, these works
are oriented to replication storage, which is different
from our EC-based strategies.

Other works target scenarios that are different
from ShortTail. For example, PANDO (Uluyol et al.,
2020) is a geo-distributed storage system (Li C et al.,
2012) that uses Paxos (Lamport, 1998) to ensure
data consistency. PANDO optimizes request latency
by selecting a proxy that is closer to the target data
centers and letting it access the data before the result
is sent back to the client side. This huge access
latency difference does not exist in our data center-
oriented scenario.

Reducing tail latency has gained more and more
attention with the increasing size of storage systems
and stricter requirements for application quality of
service (QoS). For example, C3 (Ganjam et al., 2015)
uses a cubic function to estimate the queue length on
each replica to guide low-latency access, but C3 still
targets multi-replica scenarios. LLF is an approach
that can proactively perform degraded reads to avoid
forming read hotspots, thereby reducing tail latency,
but it does not optimize the write requests. EC-
Cache (Rashmi et al., 2016) cuts read tail latency by
sending read requests to multiple blocks of an EC
stripe. When the number of returned requests is suf-
ficient to reconstruct the entire EC stripe, the read
is deemed to be completed. The drawback is that
EC-Cache is a black box approach that does not in-
spect the state of server nodes, so the number of read
requests often exceeds the actual needs, resulting in
extra overhead. It also does not optimize the latency
of write requests. EC-Store assumes that tail latency
comes only from load imbalance, and balances the
load with data migration. Unlike EC-Store, Short-
Tail assumes that tail latency is caused mainly by
fail-slow rather than load imbalance, and identifies
fail-slow nodes. LBM (Hu and Niu, 2016) is a min-
k-partition model that optimizes data placement in
a target layout, and achieves this by partially mi-
grating blocks. LBM has lower data migration costs

than EC-Store, but the storage overhead of LBM
is fairly high to maintain the access information for
each block. In addition, LBM considers only load
imbalance and ignores the fail-slow problem.

6 Conclusions

This paper proposes ShortTail, an EC-based
distributed in-memory storage system that can ef-
ficiently cope with the fail-slow problem of mem-
ory nodes and maintains low tail latency for applica-
tion requests. ShortTail uses a low-overhead request
monitor to detect fail-slow nodes, and uses two op-
timizations on read and write requests to avoid ac-
cessing fail-slow nodes. ShortTail also uses a small-
write optimization to reduce the write amplification.
Together, these techniques significantly reduce tail
latency compared with peer systems.

With ShortTail, applications can benefit from
fast distributed memory with high performance and
data availability. This is particularly promising for
future applications with large-scale deployments and
higher performance and QoS demands.
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