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Abstract:    This paper presents a control algorithm for push recovery, which particularly focuses on the hip strategy when an 
external disturbance is applied on the body of a standing under-actuated biped. By analyzing a simplified dynamic model of a 
bipedal robot in the stance phase, it is found that horizontal stability can be maintained with a suitably controlled torque applied at 
the hip. However, errors in the angle or angular velocity of body posture may appear, due to the dynamic coupling of the transla-
tional and rotational motions. To solve this problem, different hip strategies are discussed for two cases when (1) external dis-
turbance is applied on the center of mass (CoM) and (2) external torque is acting around the CoM, and a universal hip strategy is 
derived for most disturbances. Moreover, three torque primitives for the hip, depending on the type of disturbance, are designed to 
achieve translational and rotational balance recovery simultaneously. Compared with closed-loop control, the advantage of the 
open-loop methods of torque primitives lies in rapid response and reasonable performance. Finally, simulation studies of the push 
recovery of a bipedal robot are presented to demonstrate the effectiveness of the proposed methods.  
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1  Introduction 
 
The push recovery capability of a bipedal robot 

under unexpected external disturbance during stand-
ing is essential for real-world applications in the hu-
man environment. Originally designed tasks, such as 
standing or walking, would inevitably be affected by 
some unexpected perturbations, such as collisions 
with obstacles or interaction with people. To avoid 
falling and achieve better walking performance, a 
class of controllers must be developed to maintain 
balance and recover upright posture for bipedal robots. 

Humans often use two strategies to maintain 

balance during standing, depending on the amount of 
external force applied to the body (Horak and Nash-
ner, 1986; Runge et al., 1999; Azevedo et al., 2007). 
One is the ankle strategy, where all the joints above 
the ankle are fixed and thus all the links are consid-
ered as one rigid body, and the ankle torque is used to 
counteract small perturbations. The other is the hip 
strategy, where hip torque is used to rotate the body 
and control the center of mass (CoM) for large per-
turbations. The above two strategies can work to-
gether to maintain balance. For large and rapid per-
turbations of a certain size and speed, a stepping 
strategy must be adopted since a biped physically 
could not withstand the disturbance (Horak and 
Nashner, 1986; Azevedo et al., 2007). 

For bipedal robots, the same ankle and hip 
strategies have been employed for standing balance 
control (Pratt et al., 2006; Stephens, 2007a; 2007b). 
However, balance control is often at the expense of 
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posture errors due to the coupling effects in the 
translational and rotational dynamics of the body. The 
optimal solution would be one where push recovery 
does not affect the original upright posture. Therefore, 
we aim at a push recovery that can achieve rotational 
and translational balance simultaneously, since most 
of the external disturbances would influence both 
attitude and position of the body. 

The algorithms proposed in this paper attempt to 
achieve both CoM position control and upper body 
attitude control during push recovery for bipedal 
robots during standing using only the hip strategy. In 
other words, we seek a hip strategy that achieves 
balance recovery of the CoM position of body orien-
tation with no involvement of the ankle, i.e., point feet. 
If this can be done with this algorithm, then an even 
better performance can be achieved by adding feet to 
introduce ankle torque as an additional control. First, 
we point out that the goal of balance control is to 
make the horizontal position of the CoM converge 
back to a stable orbit based on the motion analysis of 
the bipedal robot in a standing phase. External dis-
turbances are classified into three cases according to 
their influence, and we examine three corresponding 
control methods which are named symmetrical bang- 
bang-bang (STB), asymmetrical bang-bang-bang 
(ATB), and universal bang-bang-bang (UTB) control. 
STB control can restore the balance in horizontal 
motion without affecting the initial upright posture. 
ATB control can recover an upright posture or redi-
rect the body to any orientation without degrading its 
balance. UTB control can regulate CoM position 
control and body orientation control simultaneously. 

Compared with closed-loop control, the above 
open-loop methods of torque primitives serve more 
like a reflex control, being fast and rapid. However, in 
practice, due to the errors in modeling, the balance of 
the bipedal robot controlled only by the open-loop 
methods will be eventually lost, and thus a closed- 
loop control would also be required to generate fine 
modulation after open-loop control. Hence, the pro-
posed torque primitives can be regarded as a torque 
reflex control to achieve a fast reaction to the unex-
pected impulsive perturbation, while closed-loop 
control may be involved in a later stage. Logically, an 
optimal solution should combine the merits of the 
open-loop torque primitive and closed-loop control 
into one framework. Usually some simple closed- 

loop control, e.g., linear quadratic regulator (LQR) 
control, for push recovery can be easily achieved. 
Thus, this paper focuses on open-loop methods of 
torque primitives. 

 
 

2  Related work 
 
For bipedal robots, Pratt et al. (2006) demon-

strated a simple and effective bang-bang profile for 
hip torque, which can be used to restore the horizontal 
equilibrium into stable regions, but at the expense of a 
body posture error. Stephens (2007a) solved this 
problem using optimal control for the linearized sys-
tem where torques of hip and ankle are both control 
variables, and LQRs were designed for simultaneous 
balance control and posture recovery during standing. 
Later, he presented integral control, by which smooth 
torque references were generated by decoupling the 
dynamics of horizontal motion and body posture, 
allowing a bipedal robot to recover balance from large 
disturbances and at the same time maintain an upright 
posture (Stephens, 2007b). Stephens and Atkeson 
(2010) further presented a dynamic balance force 
control method for determining full body joint tor-
ques based on the desired CoM motion and contact 
forces for compliant humanoid robots. Whitman et al. 
(2012) presented a modification for a broad class of 
controllers based on linear inverted pendulum model 
(LIPM) dynamics. Instead of controlling the CoM, an 
‘augmented center of mass’, which was unaffected by 
angular accelerations of upper body, was controlled. 
An improved robustness to external pushes with this 
control method was demonstrated through simula-
tions and experiments on a force-controlled humanoid 
robot. Liu and Atkeson (2009) employed a library of 
optimal trajectories and the neighboring optimal 
control method to generate local approximations to 
the optimal control for standing balance control. 
Wang (2012) addressed the problem of dynamic sta-
bilization and push recovery for humanoid robots 
using robust control through convex optimization. Li 
et al. (2012) employed three compliance controllers 
in the transversal plane, body attitude, and potential 
energy shaping respectively, for standing mainte-
nance. The experiments conducted on the compliant 
humanoid robot COMAN showed that the robot can 
recover from external impacts and adapt to slopes and 
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uneven grounds. Wang et al. (2014) designed a con-
troller with variable gains based on a virtual model to 
generate the desired recovery forces and an admit-
tance controller for a position-controlled robot to 
achieve the compliant control for the standing 
maintenance under unknown disturbances. 

Some researchers have attempted to maintain 
standing balance by controlling the ground reaction 
forces or using the momentum-based controller. 
Hyon et al. (2007) presented a balance controller that 
transforms the required ground reaction force into the 
full-body joint torques, which enable the compliant 
humanoid robot to stand stably under disturbance 
from unknown external forces. Lee and Goswami 
(2010) presented a momentum-based method for 
maintaining balance of bipedal robots by controlling 
the desired ground reaction forces and center of 
pressure at each support foot. Orin et al. (2013) 
studied the properties, structure, and computation 
schemes for the centroidal momentum matrix (CMM) 
and introduced a concept of ‘average spatial velocity’ 
of the humanoid that encompasses both linear and 
angular components and provides a novel decompo-
sition of the kinetic energy. A momentum-based 
balance controller that directly employs the CMM can 
significantly reduce unnecessary trunk bending dur-
ing balance maintenance against external disturbance. 

The aforementioned methods for balance control 
and push recovery require coordination between hip 
and ankle joints, instead of controlling only the hip 
joint. However, for some bipeds and one-legged ro-
bots without feet, these methods are no longer valid, 
or are significantly downgraded due to the lack of an 
ankle joint. Some past studies have addressed the 
same issue by controlling only the hip. The balance 
control using only the hip strategy for a bipedal robot 
is similar to the stability control for a two-link acrobot, 
where the hip torque is controlled and the ankle is 
unactuated (Spong, 1995). The acrobot uses the hip 
torque to generate the horizontal ground forces which 
keep the CoM above the foot. The acrobot system has 
been proved stable and can maintain balance. Refer-
ring to balance control of the acrobot, Ahmed et al. 
(2013) presented a nonlinear control for the stabili-
zation of standing posture for a bipedal robot using 
only the hip joint. The robot is modeled as an acrobot 
and the model parameters are estimated through an 
adaptive algorithm. The evaluation in the Webots 

simulator and experiments on a physical humanoid 
robot, NUSBIP-III ASLAN, verify the effectiveness 
of the proposed method. 

We focus on the hip strategy and intend to 
achieve the same control performance for both the 
CoM and the body attitude using only the hip torque. 
This paper begins with a biped model with point feet 
and thus no ankle joint. By analyzing only the stance 
phase and the dynamic characteristics of the model, 
we find that the hip torque can be used to recover the 
balance of the robot. Mathematically, we attempt to 
use the one degree of freedom (DoF) at the hip to 
control two target variables, the CoM state and the 
body attitude. However, due to the dynamic coupling 
of the translational and rotational movements, the 
body attitude error will inevitably occur if only the 
control of CoM in the horizontal plane is applied. To 
solve this problem, we classify the external disturb-
ances acting on the robot into three cases, and there-
fore three different hip torque primitives are designed, 
depending on the case of disturbances. 

 
 

3 Modeling of an under-actuated bipedal  
robot 

3.1 Dynamic equations of a bipedal robot in the 
stance phase 

In this study, we use a simplified biped model as 
shown in Fig.1a. The simplified biped is a rigid body 
that represents the mass and inertia of the whole robot, 
and has a two-link leg which consists of two segments 
concatenated by a knee joint. The hip joint is located 
at the center of the body. Since there is no ankle joint, 
balance control can be achieved only by a controller 
supplying hip torque. The contact point between the 
shank and ground can be considered as an imaginary 
ankle joint which is under-actuated (zero torque) for 
the convenience of the following analysis and dis-
cussion. This bipedal model will also be used in the 
following simulation study. 

To simplify the dynamic analysis of the bipedal 
robot as shown in Fig. 1a, we provide an equivalent 
linear inverted pendulum plus flywheel model 
(LIPFM) as shown in Fig. 1b. The motion of the body 
depends on three equivalent forces/torques applied on 
the rigid body. Equivalent joint torques of the stance 
leg can be obtained using the force Jacobian matrix: 
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where Fx, Fz, and τb are virtual horizontal force, ver-
tical force, and torque imposed on the CoM by the 
virtual leg, respectively. τa, τk, and τh are equivalent 
joint torques of the ankle, knee, and hip, respectively. 
x and z are the horizontal and vertical positions of the 
CoM, respectively. θa and θk are the angles of the 
ankle and knee, respectively. l2 is the length of the 
upper leg. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Because the imaginary ankle joint is under- 

actuated, the torque of ankle remains zero. Substi-
tuting the constraint τa=0 into the first line of  
Eq. (1), we can obtain the internal constraint of the 
three virtual forces/torques: 

 

h .x z

x
F F

z z


                            (2) 

 

Assuming the vertical motion of the CoM is 
constrained on a horizontal plane, the vertical accel-
eration is zero. Hence, we have Fz=mg, where m is the 
mass of the body and g the gravitational acceleration. 

According to the last line of Eq. (1), i.e., τb=τh, 
and substituting Fz and τh into Eq. (2), we obtain the 
horizontal motion equation of the body: 
 

2 h ,x x
zm


                           (3) 

 

where / .g z   Meanwhile, the rotation motion 

equation of the body imposed by hip torque is 
 

h
b ,

J


                                  (4) 

 
where J is the inertia tensor of the body around the 
CoM. 

Define the control target of simultaneous bal-
ance and posture control as follows: 

1. Horizontal position and velocity are both 0 
(x=0, 0),x   which is also called ‘rest state’. 

2. Angle and angular velocity of the body are 

both 0 (θb=0, b 0),   which is also called ‘upright 

posture’. 

3.2  Stable orbit of balance control 

By setting τh=0, the LIPFM is equal to the LIPM. 
We introduce a quantity called ‘LIPM orbital energy’ 
(Kajita and Tani, 1991), which is conserved if no 
external energy is injected into the system: 

 

2 2
LIPM

1 1
( ) .

2 2
E x x                    (5) 

 
The body would slow down and finally stop at 

the rest state only when ELIPM=0. There are two dif-
ferent eigenvectors, i.e., ,x x   and x x   is 

the only stable eigenvector (Pratt et al., 2006). Then 
define a variable named ‘stable offset’ to determine 
whether or not the horizontal motion is stable: 

 

.S x x                                (6) 
 

When S=0, the horizontal motion is stable; oth-
erwise, it is unstable. The phase portrait x is estab-
lished to describe the state of the horizontal motion 
with x and x  as its abscissa and ordinate, respectively. 
In the phase portrait, we find that all the states which 
satisfy S=0 form a line, defined as the ‘stable orbit’ in 
this study. All states in the stable orbit are defined as 
stable states. If the state is not on the stable orbit, the 
robots will pass over or cannot reach the rest state, 
and |x| and | |x  will diverge to infinity. Due to the 

  

 

 

 

 

Fz 

Fx

Virtual leg 

x 

z 

θb 

τb 

θh 

τh 

θk 

τk 

θa 
l1 

l2 

(a) (b) 
Fig. 1  The simplified model of a bipedal robot (a) and 
the equivalent linear inverted pendulum plus flywheel 
model (LIPFM) (b) 
In (a), the hip and knee joints are located at the body center 
(also the CoM of the body) and between the leg segments, 
respectively; In (b), three equivalent forces/torques applied 
by the virtual leg are imposed on the CoM 
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limits of the friction cone or the joint angle, the robot 
will eventually fall. 

Based on the above analysis, we can obtain 
equivalent control targets: 

 

b

b
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                               (7) 

 
According to Eq. (3), ELIPM can be influenced by 

the hip torque. In other words, there exists a solution 
of desired hip torque to control the horizontal motion 
of the robot. 

3.3  Theoretically allowed stability threshold 

A bipedal robot in the rest state will lose balance 
if an external force is pushing on its CoM. Assuming 
the horizontal position and velocity of the CoM after 

disturbance being x0 and 0x , respectively, substitut-

ing x0 and 0x  into Eq. (6) yields the initial stable 

offset caused by the disturbance: 
 

0 0 0.S x x                            (8) 

 
Regardless of the limits of the angle and angular 

velocity of the hip joint, we impose a maximum hip 
torque on the CoM to verify whether or not the hori-
zontal motion can return to the stable orbit. The hip 
torque primitive is defined as follows: 

 
τM(t)=sgn(S0)·τmax[1(t)−1(t−T)],           (9) 

 
where τmax is the maximum torque that the hip joint 
can apply, 1(t−T*) is the unit step function starting at 
T*, T is the duration of τM(t), and sgn() is the sign 
function. 

Substituting τM(t) into Eq. (3) and solving the 
differential equations, we can obtain the horizontal 
position and velocity of the CoM at T: 
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where Φ=τmax/(mz0ω), with z0 being the height of the 
CoM. 

Substituting xM(T) and M ( )x T  into Eq. (6), we 

obtain the stable offset at T: 
 

M 0 0 0( ) [ sgn( ) ]e sgn( )TS T S S Φ S Φ.       (11) 

Taking the derivative of Eq. (11), we have 

M 0 0( ) [ sgn( ) ] e .TS T S S Φ           (12) 
 

When S0>Φ, we have SM(0)=S0>0 in Eq. (11) and 

M 0 0( ) ( ) e ( ) 0TS T S Φ S Φ       in Eq. (12) 

(due to ωT>0); SM(T) is always greater than 0 no 
matter what the value of T is. When S0≤−Φ, we have 

SM(0)<0 in Eq. (11) and M 0( ) ( ) e TS T S Φ     

0( ) 0S Φ    in Eq. (12); SM(T) is always less than 0. 

In these two cases, the balance of the bipedal robot 
can never be recovered. Regardless of the limits of the 
angle and angular velocity of the body, the theoreti-
cally allowed stability threshold is Φ, and thus all the 
allowable stable offsets should satisfy 

 

|S0|<Φ.                             (13) 
 

Ideally, as long as the stable offset satisfies  
inequality (13), the balance can be recovered (proved 
in Section 4.1). However, in reality, due to the limits 
of the angle and angular velocity of the body, and the 
friction cone, the stability threshold becomes much 
smaller than Φ. As for the case in which the stable 
offset is greater than Φ, the stepping strategy should 
be adopted, which is beyond the scope of this study. 

In fact, according to Eqs. (3) and (4), the hip 
torque not only changes the horizontal motion, but 
also affects the rotational motion of the body. 
Therefore, coupling errors may appear in the angular 
position and velocity of the body when balance con-
trol is being applied. So, a correct hip torque primitive 
should be designed to restore balance and upright 
posture at the same time. 

 
 

4  Simultaneous balance control and posture 
recovery 

 
In this section, we will introduce a novel strategy 

to control the hip torque which can restore the bipedal 
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robot standing balance and upright posture simulta-
neously. To begin with, we first discuss two special 
cases categorized by the way the external force/torque 
acts on the robot during standing: (1) The external 
force passes through the CoM which changes only the 
horizontal motion, without affecting the body posture 
(Fig. 2a); (2) The external torque applies on the CoM 
which changes only the body posture, without af-
fecting the horizontal motion (Fig. 2b). Two effective 
torque primitives for the hip are designed particularly 
for each case. Based on this discussion, at the end of 
this section, we introduce a novel hip torque primitive 
for more universal cases, such as the case where the 
external force misaligns with the CoM and thus 
changes both horizontal motion and body posture  
(Fig. 2c). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.1  External force passing through the CoM 

When an external force passes through the CoM, 
only the initial rest state of the robot will be disturbed 
while the posture remains upright. In this case, the 
final state of balance control should recover to the 
stable orbit and restore the initial upright posture, as 
described in Eq. (7). For this purpose, we propose an 
STB primitive for the hip torque. The STB torque 
primitive is designed as follows: 
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where T is the duration of STB control, the sign of the 
initial torque depends on the sign of initial stable 
offset S0 after the disturbances, and the sign of hip 
torque switches at T/4, 3T/4, and T. 

To demonstrate that STB control can restore the 
initial upright posture, taking S0>0 as an example, we 
substitute Eq. (14) into Eq. (4) and then integrate the 
result to obtain the angle and angular velocity of the 
body from 0 to T, that is, 
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(15) 
 

where σ=τmax/J, which is also the maximum angular 
acceleration of the hip joint. 

Replacing t in Eq. (15) with duration of STB 
control T, we find that the angle and angular velocity 
of the body at T are both 0, which means that the body 
posture is upright at time T. Based on the definition of 
the control targets in Eq. (7), if a proper value of T 
satisfies SSTB(T)=0, then STB control is effective. 

According to Eq. (3), the horizontal position and 
velocity of the CoM under STB control at T are 

  

  

 Push 
 

Push 

Push 

       (a) 

       (b) 

       (c) 

Fig. 2  Three different types of external force/torque 
disturbances 
(a) External force passes through the CoM; (b) External 
torque is applied on the CoM; (c) External force misaligns 
with the CoM 
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Substituting Eq. (16) into Eq. (6), the stable offset at T 
is 

3 3

4 4
STB 0( ) e e 2e 2e 1 .

T T
T TS T S Φ

 
  

     
 

  (17) 

 
Since SSTB(0)·SSTB(+∞)<0 and SSTB(T) is a con-

tinuous function of variable T, the solution of 
SSTB(T)=0 (T(0, +∞)) must exist. We define the 
solution as TSTB. Using a numerical method, we can 
obtain the value of TSTB within an acceptable time. 
Replacing T in Eq. (14) with TSTB, the hip torque 
output is determined. STB control can achieve the 
control targets described in Eq. (7) for all conditions 
in the case where the disturbance passes through the 
CoM with the initial stable offset subject to inequality 
(13) theoretically. 

Fig. 3 shows the trajectories of horizontal motion 
in the phase portrait using STB control, with different 
T from the initial horizontal motion state (x=0 m, 

0 0.15x    m/s) after an impulsive disturbance passes 

through the CoM. The line formed by the final hori-
zontal motion states intersects with the stable orbit at 
T=0.496 s. The red curve is the expected trajectory of 
balance control. Fig. 4 shows five trajectories of 
balance control using STB control from five different 
initial horizontal states to their final states in the phase 
portrait. 

4.2  External torque applied to the CoM 

When a bipedal robot is standing upright in the 
rest state, the angle and angular velocity of the body 

will change in the same direction (θ0 and 0  are both 

increasing or decreasing from 0) after an external 
torque disturbance is applied, but the initial stable 
state of the horizontal motion remains unchanged. In 
this case, a different torque primitive is required for 

the hip to recover the upright posture without affect-
ing the stable state of the horizontal motion. For this 
purpose, we propose an ATB primitive for the hip 
torque. ATB control can also achieve posture recov-

ery when θ0≠0, 0 0.   In other words, any attitude 

with zero velocity can be recovered. 
The ATB torque primitive for the hip is defined 

as follows: 
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Fig. 4  Five trajectories of the horizontal motion in 
balance control using STB control from five different 
initial horizontal motion states (pentagrams) to their 
final states (rectangles) in the phase portrait 

Fig. 3  Trajectories (blue dot curves) of the horizontal 
motion in the phase portrait with stable orbit (red dot 
curve) using STB control with different T (0.36–0.56 s) from 
the initial state of x0=0 m,  0 0.15 m / sx  (pentagram) 

The blue coarse dot curve represents the corresponding final 
states. The red curve is the expected trajectory with 
T=0.496 s, whose final state is exactly on the stable orbit 
(m=10 kg, g=9.8 m/s2, z=0.4 m, τmax=20 N·m). References to 
color refer to the online version of this figure 
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where T is the duration of ATB control, and the  
value of the torque switches at aT, bT, and T. The sign 
of the starting torque depends on the sign of the initial 
angle. 

Taking the case of θ0>0 and 0 0   as an ex-

ample, given the hip torque of Eq. (18), the angle and 
angular velocity of the body at T are 
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2 2

d 0
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(19) 
 

where θd and d  are the desired angle and angular 

velocity of the body, respectively. They are both 0 in 
the particular case of keeping an upright posture. 

Substituting θd and d  into Eq. (19), a and b are 

written as 
 

1,
2 2

1,
2 2

N M
a

M
N M

b
M

    

    


                  (20) 

 

where 01

2 2
M

T




 


 and 0 0
2

1
.

2

T
N

T

 



 


 Given 

the constraint a≥0, there is 
 

1 0.
2 2

N M

M
                     (21) 

 
Substituting M and N into inequality (21) yields 

 
2 2

0 0 0
2

4 2
.T

  
 

  
  

 

 
              (22) 

 
Since the minimum time for the initial angular ve-

locity 0  to reduce to 0 is 0 / ,   the duration T must 

satisfy 0 / .T     Solving inequality (22), we obtain 

the inequality constraint of T as 
 

2
0 0 04 2

.T
  


 


  

                   (23) 

The minimum value of T is  

2
0 0 0

min

4 2
,T

  


 

  

                    (24) 

and the values of a and b corresponding to Tmin are 

0,

,

a

b 


 
                               (25) 

where  

2
0 0 0

2
0 0 0

4 2
.

2 4 2

  


  

 


 

 

 
                (26) 

 
In fact, the ATB primitive is actually a 

bang-bang profile when T=Tmin. 

As for the case of θ0<0 and 0 0,   we also obtain 

 
2

0 0 0
min

4 2
.T

  


   


 
            (27) 

 
The values of a and b corresponding to Tmin in  

Eq. (27) also satisfy Eq. (25). 
Observing Eqs. (24) and (27), in either case, we 

have 
 

2
0 0 0

min

4 2
.T

   



 

 

           (28) 

 

From Eq. (20), we draw the conclusion that the 
difference between the total duration of the positive 
torque and that of the negative torque, Ddiff=(aT+ 

     1 2 2 1) 2T bT bT aT T a b T M          

0 /(2 ),   is dependent only on 0 ,  which means Ddiff 

is determined by the initial angular velocity of body in 

ATB control. In the case of 0 0,   we have Ddiff=0. 

So, the total duration of the positive torque is equal to 
that of the negative value, as described in Section 4.1. 
In more generic cases, at a certain duration of ATB 
control T, the parameters of ATB control, a and b,  
can be uniquely identified by the requirement of θd 

and d .  Based on the definition of the control targets 

in Eq. (7), if a proper duration of ATB control 
T[Tmin, +∞) satisfies SATB(T)=0, then ATB control is 
effective. 

Under the ATB control in Eq. (18), the hori-
zontal position and velocity of the CoM at T are 
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ATB

ATB

( )

( )

cosh( ) 2cosh((1 ) ) 2cosh((1 ) ) 1
.

sinh( ) 2 sinh((1 ) ) 2 sinh((1 ) )

x T

x T

T a T b TΦ

k T k a T k b T

  
  

 
 

 
     

     


      

(29) 

Substituting Eq. (29) into Eq. (6), the stable offset at T 
is 

 

(1 ) (1 )
ATB ( ) [e 2e 2e 1].T a T b TS T Φ           (30) 

 

According to Eqs. (25) and (30), the stable offset at 
Tmin is 

min min(1 )
ATB min( ) [e 1 2e ].T TS T Φ             (31) 

 
From Eq. (31), given 1−λ<0.5, SATB(Tmin)>0. In 

addition, SATB(+∞)<0. Since SATB(T) is a continuous 
function of variable T, the solution of SATB(T)=0 
(T[Tmin, +∞)) exists. We name it TATB. The value of 
TATB can be calculated via the numerical approach. 

Fig. 5a shows the trajectories of ATB control 

from the initial posture (θ0=0 rad, 0 =1 rad/s) with 

different T in the phase portrait. The line formed by 
final states (blue coarse dot curve) intersects with the 
stable orbit (red dot curve) at T=0.658 s. The red 
curve is the expected trajectory of the upright posture  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

recovery. Fig. 5b shows the curves of the ATB hip 
torque primitive (top), angular velocity (middle), and 
angle (bottom) of the body. The error in the angle of 
the body can be compensated by ATB control without 
affecting balance. 

4.3  External force misaligning with the CoM 

In most cases, external forces applied on the 
body rarely pass through the CoM or solely produce a 
torque around the CoM. Such disturbances will 
change the horizontal motion and body posture at the 
same time. It is more realistic to deal with such real-
istic external disturbances, simultaneously restoring 
the balance and posture using the hip strategy. 

According to the applied position of external 
forces and the initial horizontal motion and body 
posture after the perturbations, external perturbations 
are divided into eight types (Table 1). Based on the 
discussions in Sections 4.1 and 4.2, STB and ATB 
control can be formulated using a sign function to 
determine the initial polarity of output and thus an 
adaptive bang-bang-bang function. To deal with all 
types of external disturbances, a specialized sign 
function, decided by not only the initial posture but 
also the relationship between initial horizontal motion 
and initial posture, is designed to determine the initial 
sign of the torque. We propose a UTB control for the 
hip torque, similar to Eq. (18), which can recover  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5  Trajectories (blue dot curves) of the horizontal motion in the phase portrait with stable orbit (red dot curve) 
using ATB control with different duration T (0.650–0.675 s) from the initial state of x0=0 m, 0x =0 m/s and posture of 

θ0=0 rad, 0
 =1 rad/s (a) and the curves of the ATB torque primitive for the hip with T =0.658 s (top), the angular 

velocity (middle), and angle (bottom) of the body (b) 
In (a), the blue coarse dot curve represents the corresponding final states and the red curve is the expected trajectory with 
T=0.658 s, whose final state is exactly on the stable orbit. Pentagrams represent each initial value and rectangles represent 
each final value (J=0.8 kg·m2). References to color refer to the online version of this figure 
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balance and posture in all cases. The UTB torque 
primitive for the hip is defined as follows:  

 




UTB max( ) sgn 1( ) 2 1( )

2 1( ) 1( ) , 0 1,

t t t aT

t bT t T a b

     

       
  (32) 

 
where the value of sgn can be found in Table 1. 

Recalling the calculation of the minimum value 
of T in Section 4.2, the minimum duration of UTB 
control of the constraint a≥0 still satisfies Eq. (28), 
whether or not the external disturbance is any of the 
cases in Table 1. Note that the values of a and b cor-
responding to Tmin do not satisfy Eq. (25), but their 
particular values can be retrieved from the last col-
umn in Table 1. 

When the external perturbation is case 3 (Table 1), 
we have sgn=1. Under the UTB control in Eq. (32), 
the horizontal position and velocity of the CoM at T 
are 
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(33) 

Substituting Eq. (33) into Eq. (6), the stable offset at T 
is 

(1 ) (1 )
UTB 0( ) e [e 2e 2e 1].T T a T b TS T S Φ          

(34) 

Setting T=Tmin, we have 

min min min(1 )
UTB min 0( ) e [e 1 2e ].T T TS T S Φ        (35) 

 

In this case, SUTB(Tmin)≥0 is definite given 
min min

0 (1 2e e ).T TS Φ        Meanwhile, SUTB(+∞)= 

Table 1  Eight cases of external force perturbations 

Case 
Acting 
position 

Initial horizontal 
motion 

Initial body 
posture 

sgn 
a and b corre-

sponding to Tmin

1  
0

0

0

0

x

x


  

 
0

0

0

0








 
+1 

0a

b 


 
 

2  
0

0

0

0

x

x


  

 
0

0

0

0
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0a
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3 

 
0

0

0

0

x

x


  

 
0

0

0

0








 

+1: S0≥−Φ[1−2exp(−ωλTmin)+exp(−ωTmin)] 
0a

b 


 
 

4 −1: S0<−Φ[1−2exp(−ωλTmin)+exp(−ωTmin)] 1

a

b


 

 

5 
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0

0

x

x


  

 
0

0

0
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+1: S0>Φ[1−2exp(−ωλTmin)+exp(−ωTmin)] 1

a
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6 −1: S0≤Φ[1−2exp(−ωλTmin)+exp(−ωTmin)] 
0a
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x
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(S0−Φ)e+ω∞<0 when T=+∞. Because SUTB(T) is a 
continuous function of variable T, a proper value of T 
must exist to satisfy SUTB(T)=0, and thus UTB control 
is effective. 

When the external perturbation is case 4, we 
have sgn=−1. Under UTB control in Eq. (32), the 
horizontal position and velocity of the CoM at T are 

 

UTB 0

UTB 0

sinh( )
( ) cosh( )

( )
sinh( ) cosh( )

[cosh( ) 2cosh((1 ) ) 2cosh((1 ) ) 1]
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T
x T xT

x T x
T T

Φ T a T b T

Φ T a T b T




  

  


  

              
     

 
 

     

 
 

(36) 
 
Substituting Eq. (36) into Eq. (6), the stable offset at T 
is 
 

(1 ) (1 )
UTB 0( ) e [e 2e 2e 1].T T a T b TS T S Φ          

(37) 

When T=Tmin, we have  

min min min(1 )
UTB min 0 .( ) e [e 2e 1]T T TS T S          (38) 

 

Given min min
0 (1 2e e ),T TS Φ        we obtain 

SUTB(Tmin)<0. Meanwhile, SUTB(+∞)= (S0+Φ)e+ω∞>0 
when T=+∞. A suitable value of T must exist to  
satisfy SUTB(T)=0. 

When the external perturbation is case 1, 6, or 8, 
UTB control can be proved effective by referring to 
case 3. Then it is also applicable for case 5 by refer-
ring to case 4. Cases 2 and 7 can be referred to the 
STB control in Section 4.1. In summary, UTB control 
can achieve balance control and posture recovery 
simultaneously, regardless of the type of external 
force. 

Fig. 6a shows the six trajectories of balance 
control and posture recovery using UTB control 
starting from six different initial states to the final 
states in the phase portrait. Fig. 6b shows the corre-
sponding six datasets of the UTB hip torque primitive 
(top), angular velocity (middle), and angle (bottom) 
of the body. The errors in the angular position and 
velocity of the body can be reduced to zero by UTB 
control. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5  Simulation results 

 
Simulations have been conducted on a bipedal 

robot with four degrees of freedom. The body of the 
robot is located at the hip joint with mass of m=20 kg 
and inertia of J=1.6 kg·m2. The mass of each leg is  
0.9 kg and the maximum hip torque is τmax=20 N·m. 
To avoid lateral movement, the single support phase 
is set up by standing with the two legs side by side at 
the same horizontal position. The weight of the robot 
is equally distributed on each leg. The desired height 
of the CoM is 0.4 m in the simulation. 

Fig. 6  Six trajectories of the horizontal motion in bal-
ance control using UTB control from six different initial 
horizontal motion states (pentagrams) to their final 
states (rectangles) respectively in the phase portrait (a) 
and the six corresponding data of the UTB torque 
primitive for the hip (top), angular velocity (middle), 
and angle (bottom) of the body (b) 

Six different initial states (x0, 0x , θ0, 0θ
 ) are (0.01, 0.12, 

0.01, 0.5), (0.01, 0.12, −0.01, −0.5), (0.01, 0.12, −0.02, 
−1.5), (−0.005, −0.15, 0.02, 1.5), (−0.005, −0.15, 0.01, 
0.5), (−0.005, −0.15, −0.01, −0.5), respectively 
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5.1  Simulation of STB control 

Fig. 7 shows a sequence of time-elapsed images 
of the bipedal robot using STB control after an im-
pulsive disturbance which changes the horizontal 
position from 0 to 0.005 m and the velocity from 0 to 
0.2 m/s. Fig. 8a shows the trajectory of the corre-
sponding horizontal motion in the phase portrait.  
Fig. 8b shows the corresponding torque primitive for 
the hip, and the angular velocity and angle of the body. 
Note that the control of the upper body posture is 
included in the STB method, which can be seen by the 
convergence of the body posture back to the initial 
upright posture. The standing balance is successfully 
achieved by STB control with the regulation of the 
upright posture at the same time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2  Simulation of ATB control 

Fig. 9 shows the time-elapsed snapshots of the 
biped using ATB control to recover the body posture 
from 0.75 to 0 rad without affecting the balance in 
horizontal motion.  

Fig. 10a shows the trajectory of the corresponding 
horizontal motion in the phase portrait. Fig. 10b 
shows the corresponding torque primitive for the hip, 
and the angular velocity and angle of the body. The 
posture recovery is achieved with the initial body pitch 
of 0.75 rad without affecting the standing balance. 

5.3  Simulation of UTB control 

Fig. 11 shows the time-elapsed snapshots of the 
simulated biped using UTB control after an  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8  The phase portrait of the horizontal motion, corresponding to Fig. 7, showing the responses under STB control 
(a) and simulation data corresponding to Fig. 7 (b) 
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Fig. 7  Time-elapsed snapshots from dynamic simulation where the simulated biped recovers from an impulsive dis-
turbance using STB control (snapshots are sequenced from left to right at a 0.08 s interval) 

Push 

Fig. 9  Time-elapsed snapshots which show that the simulated biped recovers posture from 0.75 to 0 rad using ATB 
control (snapshots are sequenced from left to right at a 0.05 s interval) 
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impulsive disturbance which perturbs the horizontal 
position from 0 to 0.005 m, the velocity from 0 to  
0.2 m/s, and the angular velocity of the body from 0 to 
0.5 rad/s.  

Fig. 12a shows the trajectory of the corre-
sponding horizontal motion in the phase portrait.  
Fig. 12b shows the corresponding torque primitive for 
the hip, the angular velocity, and the angle of the body. 
Balance control and posture recovery are both com-
pleted using UTB control. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.4  Simulation of LQR control 

To prove that the advantage of the open-loop 
methods of torque primitives lies in rapid response 
and reasonable performance, a comparison simulation 
has been made using LQR control with the same 
initial conditions. According to Eqs. (3) and (4), and 

setting x, ,x , θb, and b  as the state variables and τh 

the only control variable, the state equation of the 
body is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 12  The trajectory of the horizontal motion in the phase portrait, corresponding to Fig. 11, showing the responses 
under UTB control (a) and simulation data corresponding to Fig. 11 (b) 
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Fig. 11  Time-elapsed snapshots showing that the simulated robot recovers from an impulsive disturbance by UTB 
control (snapshots are sequenced from left to right at a 0.08 s interval) 

Fig. 10  The phase portrait of the horizontal motion, corresponding to Fig. 9, showing the responses under ATB control 
(the initial and final states are both in the stable orbit) (a) and simulation data corresponding to Fig. 9 (b) 
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  (39) 

 
The standing under-actuated biped is a time- 

invariant continuous system. From Eq. (39), the LQR 
method is suitable when the initial stable offset is less 
than Φ and the kinematics and friction angle con-
straints are also satisfied. Then a comparison simula-
tion using LQR control with optimized parameters is 
conducted. Fig. 13a shows the trajectory of the hori-
zontal motion under LQR control in the phase portrait. 
Fig. 13b shows the corresponding hip torque, the 
angular velocity, and the angle of the body. Com-
paring Figs. 12 and 13, we find that the open-loop 
methods of torque primitives can recover both bal-
ance and body posture faster. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6  Conclusions and future work 
 
In this paper, three different hip strategies were 

proposed for simultaneously controlling the standing 
balance and body posture under different impulsive 
force disturbances on bipedal robots. The proposed 
STB control can achieve balance control without 
changing the initial upright posture of the body, and 
ATB control was proposed for modifying the posture 
error without losing balance in the horizontal motion. 
Finally, UTB control was designed for simultane-
ously recovering the balance and regulating the body 
orientation. The simulation study of a simplified bi-
pedal robot has been carried out to demonstrate the 
effectiveness of our proposed controllers. In addition, 
more types of torque primitives (e.g., cosine and cu-
bic spline) have been tested to complete both balance 
control and posture recovery. However, the bang- 
bang-bang control is still the fastest. 

The ongoing work involves taking into account 
the limits of the angle and angular velocity of the 
body, and the condition of slipping, and designing a 
more general torque primitive for the hip to achieve 
balance control and posture recovery at more com-
plicated initial states of the horizontal motion and 
body posture after an impulsive disturbance as well as 
with a continuous disturbance. 

Moreover, a small trial research and investiga-
tion in push recovery for the biped with the hip joint 
being not located at the CoM, has been carried out. 
Our method has a certain effect in cases where the hip 
joint and the CoM are close, but is not very effective 
when they are relatively far from each other. In the 
latter situation, the knee joints regularly come close to 
or even reach the singular position when the body has 
a large pitch angle. The most important reason is that 
the CoM height must be retained due to the LIPM 
being adopted. For those cases, standing push recov-
ery based on the double inverted pendulum or some 
other models should be a better solution. However, 
the method in this paper would be effective for the 
planar bipedal robots with hip joints both located 
close to the CoM, which are currently being devel-
oped in our laboratory. 

As for future work, a series of real experiments 
will be carried out on the planar bipedal robot with the 
series elastic actuator (SEA) joints. The SEA joints 
will provide the torque control capability which  

Fig. 13  The trajectory of the horizontal motion in the 
phase portrait, showing the responses from LQR con-
trol (a) and the corresponding simulation data (b) 
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allows us to validate our proposed hip strategies using 
the torque primitives. 
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