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Abstract: In the underwater medium, the speed of sound varies with water depth, temperature, and salinity. The
inhomogeneity of water leads to bending of sound rays, making the existing localization algorithms based on straight-
line propagation less precise. To realize high-precision node positioning in underwater acoustic sensor networks
(UASNs), a multi-layer isogradient sound speed profile (SSP) model is developed using the linear segmentation
approximation approach. Then, the sound ray tracking problem is converted into a polynomial root-searching
problem. Based on the derived gradient of the signal’s Doppler shift at the sensor node, a novel underwater node
localization algorithm is proposed using both the time difference of arrival (TDOA) and frequency difference of
arrival (FDOA). Simulations are implemented to illustrate the effectiveness of the proposed algorithm. Compared
with the traditional straight-line propagation method, the proposed algorithm can effectively handle the sound ray
bending phenomenon. Estimation accuracy with different SSP modeling errors is also investigated. Overall, accurate
and reliable node localization can be achieved.
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1 Introduction

The emergence of underwater acoustic sensor
networks (UASNs) has greatly improved the effi-
ciency of marine environmental monitoring (Kong
et al., 2005). In most UASN applications, precise
node localization is fundamental and important. The
node location information is the key to accomplishing
other underwater tasks (Pompili and Akyildiz, 2009;
Fan et al., 2011). In location-dependent data acqui-
sition tasks, the data is useful only when the location
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information is correct (Ferguson et al., 2005; Li et al.,
2018). Because the speed of sound underwater varies
with water depth, salinity, and temperature, acous-
tic localization methods based on the assumption of
straight-line sound propagation have inherent biases.
More accurate localization algorithms with realistic
sound speed profiles (SSPs) need to be developed.

Various methods have been proposed to solve
the underwater localization problem. Basically,
these methods can be divided into two major classes,
range-free and range-based methods (Erol-Kantarci
et al., 2011; Han et al., 2012). Range-free methods
localize the target node according to the connectiv-
ity and topology of UASN without the range and
bearing information (Chen et al., 2018). The ac-
curacy of the range-free localization methods is not
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high and is limited by the number of sensor nodes.
Range-based localization methods include time of ar-
rival (TOA) (Luo et al., 2018), time difference of
arrival (TDOA) (Liang et al., 2013), angle of ar-
rival (AOA) (Huang and Zheng, 2018), frequency
difference of arrival (FDOA) (Zhang et al., 2018),
and received signal strength indicator (RSSI) (Sun
et al., 2019). These methods first estimate the ranges
or angles between the target node and the sensor
nodes. Trilateration, triangulation, or multilatera-
tion methods are then used to localize the target
node. Beaudeau et al. (2015) proposed a new RSSI-
based multi-target tracking approach, and demon-
strated the effectiveness of the approach in tracking
a relatively large number of targets. However, the
RSSI method performs terribly for long-range local-
ization in an underwater environment. Huang and
Zheng (2018) proposed a new multi-hop localization
algorithm with AOA, which outperforms the con-
ventional algorithms, even if the AOA measurement
error is large.

However, accurate time synchronization is re-
quired between the sensors and the target, remain-
ing a challenging task in UASNs. Although the
TOA-based methods are simple to implement, a time
synchronization problem exists. For unsynchronized
UASNs, TDOA and FDOA are used commonly, es-
pecially for localization of moving sources (Ho et al.,
2007; Tan et al., 2011).

All the range-based methods that use the
straight-line propagation model ignore the sound-
ray bending phenomenon. To mitigate the influence
of the varying sound speed on localization, differ-
ent sound models have been proposed. The effective
sound velocity (ESV) model (Vincent and Hu, 1997)
was proposed to compensate for the error caused
by the bending of sound ray. However, ESV works
well only in the deep-sea environment. Ameer and
Jacob (2010) proposed that when the target depth
is known, the TOA between the target node and
each sensor node can be transformed into a constant
range surfaces using an SSP. The position of the tar-
get is then derived as the point whose sum of the
squared distances from all these surfaces is minimum.
Although this method has a high localization accu-
racy, the main drawback is the significant computa-
tional complexity. In the case of the isogradient SSP,
Ramezani et al. (2013) used geometric relationships
to establish path equations among the nodes. The

computational complexity is acceptable, because it
is analytic. However, this method cannot be applied
to more complex SSP scenarios.

In most applications of underwater localization
using the TDOA and FDOA methods, the localiza-
tion problem is nonlinear (Ho and Xu, 2004; Jiang
et al., 2020). Therefore, various nonlinear meth-
ods have been proposed to localize the target node.
Some of them are implemented iteratively based on
maximum likelihood methods (Vankayalapati et al.,
2014), such as the Gauss–Newton algorithm (GNA)
(Doǧançay and Hashemi-Sakhtsari, 2005). Ho et al.
(2007) introduced closed-form solutions that require
low computation capability. Linearization methods
can be implemented in localization. Ho and Xu
(2004) employed several weighted least-square mini-
mizations to transform the nonlinear problem into a
linear one. Furthermore, closed-form solutions of the
nonlinear measurement equations were constructed
step by step in Jia et al. (2019). However, consid-
ering the multi-layer isogradient SSP, the scenario
we discuss in this paper is relatively complicated,
and cannot be solved using linear methods or easily
transformed into a linear one.

In this study, we first propose an analytical
multi-layer isogradient SSP model for the sound ray
path between nodes. We then propose a method to
calculate the gradient of the frequency shift of the
arrival signals. On this basis, we propose an FDOA-
based node localization algorithm, and a location
and velocity joint estimation algorithm based on
TDOA and FDOA. The proposed algorithm tracks
the sound ray effectively. Results from the simu-
lations prove the effectiveness of the proposed al-
gorithms. More accurate and reliable node localiza-
tion can be attained, compared with the straight-line
propagation method.

2 Multi-layer isogradient sound speed
profile model and sound ray tracking

In this section, the mathematical multi-layer
isogradient SSP model is described in detail.

As shown in Fig. 1, the green line represents the
true SSP, and the red line represents the multi-layer
isogradient SSP. The multi-layer model segments the
true SSP into multiple layers with a piecewise linear
function of water depth. Each layer has a constant
gradient. There are a total of P segmented lines
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to approximate the true SSP (Fig. 1). Then, the
sound speed cp(z) in the pth sound ray layer can be
expressed as

cp(z) = apz + bp, z ∈ [zp−1, zp), (1)

where z is the water depth ranging from zp−1 to
zp, ap is the gradient, and bp is the horizontal-axis
intercept. Both ap and bp are determined by the
true SSP. As the number of layers becomes larger,
the difference between the true SSP and the multi-
layer SSP decreases.

st

Fig. 1 A true sound speed profile (SSP) and a multi-
layer isogradient SSP (References to color refer to the
online version of this figure)

According to Snell’s law (Shirley, 1951) and the
geometric relationship of the sound ray, the starting
point Sp = (xS

p, y
S
p , z

S
p )

T and the ending point Ep =

(xE
p , y

E
p , z

E
p )

T in a single layer are related as (Cai,
2019)
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√(
xE
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)2
+
(
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)2
, (2)

Lp =
0.5ap(z

E
p − zSp )

bp + 0.5ap(zEp + zSp )
, (3)

{
Xp = (zEp − zSp )/dp, (4)

Yp = Lp/Xp, when zEp �= zSp , (5)
{

αp = arctanYp, (6)

βp = arctanXp, (7){
θSp = βp + αp, (8)

θEp = βp − αp, (9)

tp =
−1

ap

[
ln

(
1 + sin θEp
cos θEp

)
− ln

(
1 + sin θSp
cos θSp

)]
,

(10)

where dp is the horizontal distance between the start-
ing and ending points of the sound ray, Lp is a
constant determined by the characteristics of SSP,
Xp and Yp are the defined auxiliary variables, αp is
the angle between the actual acoustic ray path and
the straight-line path, βp is the angle between the
straight-line path and the horizontal direction, and
θSp and θEp are the glancing angles at the starting and
ending points of the sound ray, respectively. The
angles αp, βp, θSp , and θEp are illustrated directly in
Fig. 2. The description of linetype is the same as in
Fig. 1. The traveling time from Sp to Ep is denoted
as tp.

E
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S
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Fig. 2 Glancing angles of θE
p and θS

p+1 (References to
color refer to the online version of this figure)

Regardless of the reflection of the seabed and
sea surface (Fig. 2), the glancing angles at the ending
point of the pth layer and the starting point of the
(p+ 1)th layer are related as

θEp = θSp+1, p = 1, 2, ..., P − 1. (11)

Using Eqs. (3)–(11) and the properties of
trigonometric functions, we can obtain

Xp+1 +
Lp+1

Xp+1

1− Lp+1
=

Xp − Lp

Xp

1 + Lp
. (12)

Eq. (12) is a high-order polynomial of Xp (or
dp). The calculated value of Xp is substituted into
Eqs. (5)–(9) to find the θSp and θEp of each layer,
thereby realizing sound ray tracking. Therefore,
with the multi-layer model, the sound ray tracking
is equivalent to determining the roots of the p − 1

polynomials.
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3 Moving target node localization

This section introduces two algorithms in de-
tail, i.e., the FDOA localization algorithm and the
joint estimation algorithm based on the TDOA (Cai,
2019), and FDOA for localization and velocity esti-
mation of a moving target node. To fulfill either of
the two algorithms, we need to know the gradient of
certain spatial positions first.

3.1 Frequency gradient calculation

Assume that the velocities of the target and
sensor nodes are not zero, and define the target
position as x = [x, y, z]T, the target velocity at
position x as vx = [vx, vy, vz]

T, the sensor posi-
tion as a = [xa, ya, za]T, and the sensor velocity
as va = [vax, v

a
y , v

a
z ]

T. With the multi-layer isogra-
dient SSP model, the analytical expression of the
frequency of arrival (FOA) from the transmitter to
the receiver is

f = f1 − fD, (13)

where f1 is the shifted signal frequency related to the
movement of the transmitter and fD is the Doppler
frequency shift produced by the movement of the
receiver (Bogushevich, 1999):

f1 = f0
cs

cs − v⊥s
, (14)

fD = f1
v⊥r

cr
, (15)

where f0 is the carrier frequency, cs and cr are the
speed of sound at the depths of the target and sensor
nodes, respectively, and v⊥s and v⊥r are the radial
velocities of the target and sensor nodes, respectively.
Moreover, v⊥s and v⊥r are given by
{
v⊥s=(vsx cosϕ+vsy sinϕ)cos θ

S
1+vsz sin θ

S
1 , (16)

v⊥r=(vrx cosϕ+vry sinϕ)cos θ
E
P +vrz sin θ

E
P . (17)

Denote AT ′ as the line that connects the target’s
projection T ′ and sensor A. ϕ is the angle between
AT ′ and the x-axis, and vs = [vsx, vsy , vsz]

T and vr =

[vrx, vry, vrz ]
T are the velocity of the transmitter and

receiver nodes, respectively (Fig. 3).
When the target is the transmitter, the partial

derivative of FOA to the target position can be ob-
tained from Eq. (13) as

∂f

∂x
=

∂f1
∂x

− ∂fD
∂x

, (18)
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Fig. 3 Decomposition of speed vs

∂f1
∂x

=
∂f1
∂θS1

∂θS1
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+
∂f1
∂ϕ

∂ϕ

∂x
, (19)

∂fD
∂x

=
∂fD
∂θEP

∂θEP
∂x

+
∂fD
∂ϕ

∂ϕ

∂x
, (20)

where the partial derivatives are

∂f1

∂θS1
=

f0cs

(cs − v⊥s)
2

(−vh sin θ
S
1 + vz cos θ

S
1

)
, (21)

∂f1
∂ϕ

=
f0cs

(cs − v⊥s)
2 (−vx sinϕ+ vy cosϕ) cos θ

S
1 ,

(22)
∂fD
∂θEP

=
f1
cr

(−vah sin θ
E
P + vaz cos θ

E
P

)
, (23)

∂fD
∂ϕ

=
f1
cr

(−vax sinϕ+ vay cosϕ
)
cos θEP , (24)

where vh = vx cosϕ + vy sinϕ, and vah = vax cosϕ +

vay sinϕ (a refers to the sensor node related param-
eters). Similarly, the partial derivatives of f with
respect to the target’s y- and z-axis coordinates can
be obtained.

The partial derivative of FOA to the target ve-
locity can also be obtained from Eq. (13) as

∂f

∂vx
=

(
1− v⊥r

cr

)
f0cs

(cs − v⊥s)
2 cosϕ cos θEP . (25)

Similarly, the partial derivatives of f with re-
spect to the target’s velocity components of the y-
and z-axis can be obtained.

3.2 Frequency difference of the arrival local-
ization algorithm

Consider a three-dimensional UASN with N

sensor nodes. The positions and velocities of all the
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sensor nodes are known based on the global position-
ing system (GPS). Meanwhile, the velocity of the
target node is assumed to be known for the FDOA
localization algorithm for four sensor nodes. Recall
that the position of the target node is x; FOAs of
the positioning signals received by the sensor node
can then be modeled as

ff = g(x) + n, (26)

where the actual signal arrival frequency g(·) =

[g1(·), g2(·), ..., gN (·)]T is a function of the target po-
sition x=[x, y, z]T represented by Eq. (13), ff =

[ff1 , ff2 , ..., ffN ]T is the measured FOAs between the
target and the individual sensors, andN -dimensional
column vector n is the measurement noise, obeying
the Gaussian distribution with a mean value of zero
and a variance of Σ =

[
σ2
f1
, σ2

f2
, ..., σ2

fN

]T
. The cor-

responding measurement noises of individual sensor
nodes are independent of each other.

Taking the first sensor node as the reference
node, and subtracting the arrival frequencies of the
reference node from the arrival frequencies of the
other N − 1 nodes, the FDOA measurement model
is

Δf = g′(x) + ζ, (27)

where Δf = [Δf21,Δf31, ...,ΔfN1]
T, g′(·) =

[g21
′(·), g31′(·), ..., gN1

′(·)]T, ζ = [ζ21, ζ31, ..., ζN1]
T,

and
Δfi1 = ffi − ff1 , (28)

gi1
′(·) = gi(·)− g1(·), (29)

ζi1 ∼ N (0, σ2
fi1 ), (30)

σ2
fi1 = σ2

fi + σ2
f1 , i = 2, 3, ..., N. (31)

The covariance matrix of the noise vector can
be obtained from Eq. (31) as

Rfξ = σ2
f11N−1 + diag(σ2

f2 , σ
2
f3 , ..., σ

2
fN ), (32)

where diag(σ2
f2
, σ2

f3
, ..., σ2

fN
) stands for a diagonal

matrix, whose diagonal values are σ2
f2
, σ2

f3
, ..., σ2

fN
.

Because it is assumed that the measurement
noise is Gaussian, the maximum likelihood estimate
of target position x can be derived as

x̂ = argmin
x

{
(g′(x)− Δf)

T
R−1

fξ (g′(x)− Δf)
}
.

(33)
Obviously, the solution represented by Eq. (33)

is nonlinear, and GNA (Cai, 2019) can be used to find

the solution. The GNA method uses Taylor series ap-
proximation to minimize Eq. (33), through multiple
iterations. The kth iteration can be expressed as

x(k+1) = x(k) −
(
Jf

TR−1
fξ Jf

)−1

Jf
TR−1

fξ rf , (34)

where Jf = ∇g′(x(k)), rf = g′(x(k))− Δf , and

∇g′(x(k)) =

[
∂g2

′

∂x
,
∂g3

′

∂x
, ...,

∂gN
′

∂x

]T
x=x(k)

, (35)

∂gi
′

∂x
=

∂gi
∂x

− ∂g1
∂x

, i = 2, 3, ..., N. (36)

According to Eq. (18) and the solution meth-
ods proposed by Cai (2019), it can be obtained that
∂gi
∂x =

[
∂gi
∂x ,

∂gi
∂y ,

∂gi
∂z

]T
(i = 2, 3, ..., N). The pseudo-

code of this algorithm is listed in Algorithm 1.

Algorithm 1 GNA-based FDOA localization
1: Input: Δf , FDOA; Rfξ, covariance matrix of the

noise vector
2: Output: target position estimate x̂ = [x̂, ŷ, ẑ]T

3: set the initial value x0

4: set the maximum number of iterations K and the
iteration error limit ε

5: set the iteration number k = 1, and assign a large value
to iteration error E

6: while k ≤ K and E ≥ ε do

7: x(k+1) = x(k) −
(
Jf

TR−1
fξ Jf

)−1
Jf

TR−1
fξ rf

8: E =
∥∥x(k+1) − x(k)

∥∥
9: k = k + 1

10: end while
11: Return x̂ = x(k)

Note that the target velocity is assumed to be
known in the scenario of four sensor nodes for the
FDOA localization algorithm. This assumption is
actually not necessary if more (at least seven) sen-
sor nodes are available, because both position and
velocity information can be estimated from FDOAs.
In other words, the considered four-sensor-node sce-
nario cannot provide velocity information. Instead
of using more sensor nodes, we propose a joint FDOA
and TDOA method to estimate both the position and
velocity information in the following subsections.

3.3 Joint estimation using both TDOA and
FDOA

When the TDOA and FDOA measurements
are combined to estimate the position and veloc-
ity of the moving target, the estimation can be
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achieved by increasing the dimension of the matri-
ces mentioned above. The variable to be estimated
is Φ=[x, y, z, vx, vy, vz ]

T, and GNA is again used to
solve the problem. First, the TOAs of the positioning
signals received by the sensor node can be modeled
as

t = h(Φ) + nt, (37)

where the actual signal arrival time h(·) =

[h1(·), h2(·), ..., hN(·)]T is a function of Φ, t =

[t1, t2, ..., tN ]T is the measured TOAs between the
target and the individual sensors, andN -dimensional
column vector nt is the measurement noise, obeying
the Gaussian distribution with a mean value of zero
and a variance of Σt =

[
σ2
t1 , σ

2
t2 , ..., σ

2
tN

]T. The cor-
responding measurement noises of individual sensor
nodes are independent of each other. Each item of
h(·) can be described in detail as

hi(·) =
P∑

p=1

−1

ap

[
ln

(
1+sin θEp
cos θEp

)
−ln

(
1+sin θSp
cos θSp

)]
,

(38)
where P is the number of the total layers through
which the sound ray travels.

Taking the first sensor node as the reference
node, and subtracting the arrival times of the ref-
erence node from other N − 1 nodes, the TDOA
measurement model is

Δt = h′(Φ) + ρ, (39)

where Δt = [Δt21,Δt31, ...,ΔtN1]
T, h′(·) =

[h21
′(·), h31

′(·), ..., hN1
′(·)]T, ρ = [ρ21, ρ31, ..., ρN1]

T,
and

Δti1 = ti − t1, (40)

hi1
′(·) = hi(·)− h1(·), (41)

ρi1 ∼ N (0, σ2
ti1), (42)

σ2
ti1 = σ2

ti + σ2
t1 , i = 2, 3, ..., N. (43)

The covariance matrix of the noise vector can
be obtained from Eq. (43) as

Rtξ = σ2
t11N−1 + diag(σ2

t2 , σ
2
t3 , ..., σ

2
tN ). (44)

Following the same procedure as mentioned in
the FDOA localization algorithm, the maximum like-
lihood estimate of Φ can be derived as

Φ̂ = argmin
Φ

{
rTR−1

ξ r
}
, (45)

and the kth iteration of the GNA method can be
expressed as

Φ(k+1) = Φ(k) − (
JTRξ

−1J
)−1

JTRξ
−1r, (46)

where

J =

( ∇g′(Φ(k))

∇h′(Φ(k))

)
, (47)

Rξ =

(
Rfξ

0

0

Rtξ

)
, (48)

r =

(
g′(Φ(k))

h′(Φ(k))

)
−
(

Δf

Δt

)
. (49)

∇h′(Φ(k)) can be expressed as

∇h′(Φ(k)) =

[
∂h2

′

∂Φ
,
∂h3

′

∂Φ
, ...,

∂hN
′

∂Φ

]T

Φ=Φ(k)

, (50)

and
∂hi

′

∂Φ
=

∂hi

∂Φ
− ∂h1

∂Φ
, i = 2, 3, ..., N. (51)

According to Eq. (38), hi is irrelevant to
[vx, vy, vz]

T, and thus

∂hi

∂Φ
=

[
∂hi

∂x
,
∂hi

∂y
,
∂hi

∂z
, 0, 0, 0

]T
. (52)

It is obvious that the analytical expressions of
∇h′(Φ(k)), Rtξ, h′(Φ(k)), and Δt are similar to those
of ∇g′(Φ(k)), Rfξ, g′(Φ(k)), and Δf . The GNA-
based joint estimation algorithm is shown in Algo-
rithm 2.

For TDOA, FDOA, and joint estimation algo-
rithms, the localization results might not be unique
(Cheng et al., 2008). The reason is that all the three
algorithms are based on triangulation. It is difficult
for triangulation to have a unique and global opti-
mal solution. In most cases, it is possible to tell
which result is correct using physical constraints. To
overcome the uniqueness and optimality issues, ex-
tra sensor nodes could be introduced, for example,
using five sensor nodes instead of four in the case of
the FDOA algorithm.

4 Simulations and discussions

This section presents two sets of simulations.
The first set verifies the localization performance of
the proposed joint estimation algorithm. Two error
surfaces of position and velocity estimation are given.
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Algorithm 2 GNA-based joint estimation
1: Input: Δf , FDOA; Δt, TDOA; Rξ, covariance matrix

of the noise vector
2: Output: target position and velocity estimation

Φ̂ = [x̂, ŷ, ẑ, v̂x, v̂y , v̂z ]
T

3: set the initial value Φ0

4: set the maximum number K of iterations and the
iteration error limit ε

5: set the iteration number k = 1, and assign a large value
to the iteration error E

6: while k ≤ K and E ≥ ε do
7: Φ(k+1) = Φ(k) − (

JTRξ
−1J

)−1
JTRξ

−1r

8: E =
∥∥Φ(k+1) −Φ(k)

∥∥
9: k = k + 1

10: end while
11: Return Φ̂ = Φ(k)

Root-mean-square errors (RMSEs) were used to eval-
uate the accuracy of the proposed joint estimation al-
gorithm. The second set compares the position and
velocity RMSEs of the three algorithms, i.e., FDOA,
TDOA (Cai, 2019), and joint estimation, separately.
All simulations were performed with both the multi-
layer isogradient SSP and straight-line propagation
models.

4.1 Descriptions of the simulation environ-
ment

The configuration of the sensor nodes is shown
in Table 1. In the simulations, four sensors were set
up in a parallelogram topology with the same side
length of 2 km. The target was set at the depth of
800 m. The sensor nodes were located at the depth
of 10.2 m from the sea surface. The true velocity of
the target node was vx = [−2.0, 1.5, 4.0]T m/s. All
signals were transmitted from the target node to the
sensor nodes. The true SSP used in the simulations
is shown in Fig. 4. The sound speed at the sea surface
was 1500 m/s, and the sound speed at the depth of
1000 m was 1490 m/s. This SSP is expressed as

c(z) = 1500− (z/10)1/2. (53)

Table 1 Positions and velocities of the sensor nodes

Sensor Position (m) Velocity (m/s)

index i xi yi zi vxi vyi vzi

1 0 0 10.2 0.3 −2.0 0.2
2 2000 0 10.2 −1.0 0.1 0.5
3 1000 1732.05 10.2 0.9 −0.3 1.0
4 3000 1732.05 10.2 1.0 2.0 0.6

1480 1490 1500 1510 1520

Fig. 4 True sound speed profile

Then the true SSP was divided into nine even
layers. The gradient of each layer can be described
as

ap =
cp(zs)− cp(zd)

DL
, (54)

where cp(zs) and cp(zd) are the sound speeds at the
shallowest and deepest depths of the pth layer, re-
spectively, and DL is the thickness of the layer. The
sensor nodes were assumed to be synchronized, while
the time it took for sound to travel between the tar-
get and the sensor nodes was not synchronized. The
carrier frequency of the signals sent by the target to
the sensors was 1000 Hz.

For the GNA-based algorithms, K and ε, which
control the number of iterations, were set as K = 20

and ε = 1.

4.2 Verification of the proposed joint estima-
tion algorithm

This subsection verifies the accuracy of the
proposed joint estimation algorithm using RMSE.
RMSE was used to measure the differences between
x̂(k) predicted by a model or an estimator and the
true value x(k). By observing K times, RMSE can
be obtained by

RMSE =

(
1

K

K∑
k=1

(
x̂(k) − x(k)

)2
)1/2

. (55)

All the TDOA and FDOA measurements in the
following simulations were generated by adding noise
to true values, which were generated through the
multi-layer isogradient SSP model. In sea trials, the
TDOA and FDOA values can be estimated from the
received signals using the ambiguity function (Zhan
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et al., 2014), which can be expressed as

AF(τ, f) =

∫ ∞

−∞
sr(t)s

∗
1(t− τ) exp(j2πft)dt, (56)

where AF(τ, f) stands for the ambiguity function,
sr(t) is the complex baseband form of the received
signal that contains noise, s1(t) is the reference sig-
nal, ∗ denotes the complex conjugate, and j is the
imaginary unit. When AF(τ, f) reaches its peak with
τ = τ0 and f = f0, τ0 and f0 are the TDOA and
FDOA, respectively.

In Figs. 5 and 6, the standard deviation of the
time-delay measurement noise was σ2

t = 1×10−8 s2,
and the standard deviation of the frequency mea-
surement noise was σ2

f = 1 × 10−9 Hz2. These two
noises were independent. The estimation error sur-
faces were given by the statistical average of 1000
Monte Carlo simulations, and the length of the grid
was 100 m.

Figs. 5 and 6 show the estimation error surfaces
of the position and velocity in the area enclosed by
the four sensor nodes, respectively. The straight-line
propagation model and multi-layer model localiza-

Straight-line propagation model
Multi-layer model

Fig. 5 Positioning error surfaces of the two models

Straight-line propagation model
Multi-layer model

Fig. 6 Velocity error surfaces of the two models

tion accuracies are illustrated in the same graph.
From the estimation error surfaces in Figs. 5 and
6, we can see that the error was the largest at the
two acute angles of the parallelogram. The closer
to the center point of the parallelogram, the smaller
the error value was. In both position and velocity es-
timation error graphs, the straight-line propagation
model error was at least 20 dB larger than that of
the multi-layer model.

Fig. 7 illustrates the convergence of the loca-
tion estimation using the GNA-based FDOA local-
ization algorithm. The true position of the target
node was [1000, 800, 800]T m. The initial position
value [1006, 815, 775]T m was calculated using the
straight-line propagation model. The × mark was
used to represent the initial position of the GNA
iteration, and the star mark was used to represent
the true value. The entire convergence process was
enlarged for easy viewing. It can be seen that af-
ter two iterations, the position estimation was close
to the true position along with the iteration path
of GNA. In fact, the convergence tended to be fast
throughout the localization process. This is because
the initial values derived from the straight-line prop-
agation model were close to the true position values.
Moreover, GNA had a good convergence property
and always converged quickly. It often took only a
few iterations to converge to a value that was close
to the true value with the GNA-based FDOA local-
ization algorithm.

We used RMSE to test the performance of the
three algorithms with the multi-layer model, in-
cluding the individual localization performance of
the TDOA and FDOA algorithms and the joint

(m)

(m)
(m)

(m)

(m
)

(m
)

Fig. 7 Convergence of the location estimation using
the Gauss–Newton algorithm (GNA) based frequency
difference of arrival (FDOA) localization algorithm
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estimation algorithm. The results are shown in
Figs. 8 and 9. The time delay measurement noise is
an important factor that affects the algorithm accu-
racy. In the simulations, the time delay measurement
noise ranged from 1 × 10−8 s2 to 1 × 10−4 s2. The
frequency measurement noise was set to be 1/10 of
the time delay measurement noise, and ranged from
1× 10−9 Hz2 to 1× 10−5 Hz2. The time delay mea-
surement noise was not related to the Doppler shift
measurement noise. The start position of the target
was x = [1000, 800, 800]T m. Error curves were given
by the statistical average of 10 000 Monte Carlo sim-
ulations. From the simulation results (Figs. 8 and
9), we can see that as the measurement accuracy in-
creased, while other conditions remained unchanged,
the algorithm error decreased.

As can be seen from the TDOA positioning re-
sults (Fig. 8), when there was little measurement
noise, the performance of the straight-line propaga-
tion model was significantly inferior to that of the
multi-layer model. When there was significant mea-
surement noise, the accuracies of the two models
were almost the same, because by then, the main fac-
tor affecting the position accuracy was the measure-
ment noise instead of the modeling error. The results
of the FDOA positioning in Fig. 8 showed that when
there was little measurement noise, the error of the
straight-line propagation model was caused mainly
by the inaccurate glancing angle of the sound ray.
The effect of the measurement error was relatively
small, and the performance of the straight-line prop-
agation model was obviously inferior to that of the

//

Fig. 8 Positioning errors of the FDOA (a) and TDOA (b) algorithms (RMSE: root-mean-square error; GNA:
Gauss–Newton algorithm)

//

Fig. 9 Positioning (a) and velocity (b) errors of the joint estimation algorithm (RMSE: root-mean-square
error; GNA: Gauss–Newton algorithm)
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multi-layer model. When the measurement noise was
significant enough, the accuracies of the two models
tended to be the same.

It is obvious from the results of the joint esti-
mation (Fig. 9) that as the measurement noise in-
creased, the position accuracy decreased. In this
case, the position accuracy tended to be influenced
by the measurement accuracy instead of the model-
ing accuracy.

However, by comparing the results in Figs. 8
and 9, we can see that the multi-layer model can
more accurately and reliably determine the target
node position and estimate velocity in underwater
scenarios with curved sound rays. Because the over-
all gradient of the selected SSP in the simulations

was quite small, the influence of the modeling error
on the estimation results was also small, especially
when the measurement noise was significant.

4.3 Comparison with different sound speed
profile layers

Simulation results in Figs. 10 and 11 showed the
estimation accuracy under different SSP modeling
errors. In addition to the nine-layer SSP model de-
scribed above, evenly segmented two- and five-layer
models were introduced to represent different mod-
eling errors. It is clear that with more layers, the
proposed multi-layer SSP was closer to the true SSP.
Therefore, the modeling errors of the two- and five-

two layers
five layers
nine layers

two layers
five layers
nine layers

//

Fig. 10 Positioning errors of the FDOA (a) and TDOA (b) algorithms with two, five, and nine layers (RMSE:
root-mean-square error; GNA: Gauss–Newton algorithm)

two layers
five layers
nine layers

two layers
five layers
nine layers

/ /

Fig. 11 Positioning (a) and velocity (b) errors of the joint estimation algorithm with two, five, and nine layers
(RMSE: root-mean-square error; GNA: Gauss–Newton algorithm)
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layer models were greater than those of the nine-layer
model. With the same simulation settings as men-
tioned in Section 4.2, all the curves in Figs. 10 and
11 were given by the statistical average of 10 000
Monte Carlo simulations. The results (Figs. 10 and
11) showed that smaller modeling errors led to higher
estimation accuracy, for both velocity and position
estimations. Therefore, the nine-layer model had the
highest estimation accuracy in all the cases, and the
two-layer model was the worst.

Overall, simulation results showed that localiza-
tion algorithms based on the multi-layer model can
effectively track the sound ray, correct the estimation
error caused by sound ray bending, and give a more
reliable and accurate node position and velocity esti-
mation, compared with the traditional straight-line
propagation model. Higher SSP modeling accuracy
led to higher localization and velocity accuracy.

5 Conclusions

The curvature of sound ray in the underwater
medium has a non-negligible effect on localization
performance. Aiming to mitigate this effect, we dis-
cuss the moving target localization and velocity esti-
mation methods. The algorithms proposed are based
on the multi-layer isogradient SSP. Through the seg-
mentation of SSP, the analytical expression of SSP
is established. On this basis, we propose the gradi-
ent calculation method of the Doppler shift between
the target and the sensor nodes to improve target
localization. Based on GNA, we solve the problem
of target node localization. Simulation results show
that the algorithms based on the multi-layer model
can effectively track the sound ray and mitigate the
errors created by the single-layer straight-line SSP,
thus giving more reliable and accurate estimations of
the position and velocity of the moving target.
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