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Abstract: Inadequate geometric accuracy of cameras is the main constraint to improving the precision of infrared
horizon sensors with a large field of view (FOV). An enormous FOV with a blind area in the center greatly limits
the accuracy and feasibility of traditional geometric calibration methods. A novel camera calibration method for
infrared horizon sensors is presented and validated in this paper. Three infrared targets are used as control points.
The camera is mounted on a rotary table. As the table rotates, these control points will be evenly distributed in
the entire FOV. Compared with traditional methods that combine a collimator and a rotary table which cannot
effectively cover a large FOV and require harsh experimental equipment, this method is easier to implement at a
low cost. A corresponding three-step parameter estimation algorithm is proposed to avoid precisely measuring the
positions of the camera and the control points. Experiments are implemented with 10 infrared horizon sensors to
verify the effectiveness of the calibration method. The results show that the proposed method is highly stable, and
that the calibration accuracy is at least 30% higher than those of existing methods.
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1 Introduction

The infrared horizon sensor provides almost un-
interrupted fine attitude knowledge at a relatively
low cost (Mazzini, 2016; Nguyen et al., 2018; Mod-
enini et al., 2020), and it is therefore widely used
in various space missions (Deng et al., 2017; Gou
and Cheng, 2018). To capture the full Earth in low
orbit, an infrared horizon sensor equipped with an
infrared panoramic annular lens (PAL) camera was
designed and has been validated in orbit (Wang H
et al., 2021). The PAL camera has a maximum field
of view (FOV) of 180◦ and a ±30◦ circular blind area
in the center (Niu et al., 2007). Its imaging diagram,
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when it is facing the Earth at an orbital altitude of
500 km, is shown in Fig. 1. Edge points of the Earth
are extracted and reprojected to the camera frame to
calculate the Earth center’s direction. Apparently,
the reprojection process depends on the geometric
calibration accuracy of the infrared PAL camera, so
a highly accurate camera calibration of the infrared
horizon sensor is essential.

Cameras with a super large FOV, including
the PAL camera, are also called ultra-field cam-
eras (Zhang S et al., 2020b). The most widely
used calibration method for ultra-field infrared cam-
eras is the infrared plane calibration board (IPCB),
which uses IPCB pictures with different attitudes
and positions to resolve the camera distortion pa-
rameters (Kannala and Brandt, 2006; Scaramuzza
et al., 2006). Due to the specific detection range of
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infrared cameras, many types of IPCBs have been
designed to provide higher-contrast infrared charac-
teristics and achieve more accurate control point po-
sitioning (Sheng et al., 2010; Vidas et al., 2012; Dias
et al., 2013; Zhang Y et al., 2013; Shibata et al.,
2017; Usamentiaga et al., 2017; Li XY et al., 2019).
Generally, the IPCB method is good to use when
calibrating ultra-field infrared cameras (Chen et al.,
2019; Wang ZA et al., 2020; Zhang S et al., 2020a),
but there are still several challenges when it is ap-
plied to the camera calibration of infrared horizon
sensors.

Image 
 plane

Blind
area

Earth
edge

Sensor
 plane

Fig. 1 Imaging diagram of the horizon sensor

Normally, an IPCB with huge size chessboard
squares is needed to deal with an ultra-field in-
frared camera with low resolution (Chen et al., 2019).
The IPCB needs to surround the center area of the
ultra-field infrared camera, so the control points can
cover the camera’s entire FOV. However, as shown in
Fig. 1, the large blind area of the infrared PAL cam-
era causes the discontinuity in the FOV, which leads
to difficulties in placing the IPCB. In particular, it
is almost impossible to place conventional IPCBs in
the narrow area above and below the circular blind
area. In this case, the distortion parameters will fit
only the image area covered by the control points
but not the entire FOV, which is unacceptable in
our application.

Another standard calibration method for high-
precision cameras is using a rotary table and a colli-
mator, which is widely used in star tracker calibra-
tion tasks (Liebe, 2002; Sun et al., 2013; Zhang H
et al., 2017; Fan et al., 2020). Star trackers, which
are the most accurate attitude measurement devices
in satellites, are equipped with a narrow-field visible
light camera. Wei et al. (2014) proposed a calibra-
tion method based on integrated modeling of intrin-

sic and extrinsic parameters to calibrate star track-
ers. This method is insensitive to the errors incurred
in installation and alignment, and it is appealing for
use in calibrating infrared horizon sensors. However,
there are several problems in applying this method
to infrared horizon sensors.

The camera should be covered by parallel light
when the collimator method is applied. However,
this is difficult to accomplish in calibrating cameras
with a large FOV, because a small misalignment of
the camera and the center of the rotary table may
cause the camera not to be covered in parallel light.
Thus, the camera should be placed exactly in the
center of the rotary table, or the infrared collima-
tor should have a large enough aperture. Further-
more, the frame of the rotary table should not block
the camera’s FOV. These requirements are too strict
to be practical. Therefore, in our work, instead of
the traditional collimator method, we use multiple
infrared targets. Because it is only necessary to en-
sure that the infrared targets are within the camera’s
FOV, the additional requirements for the experimen-
tal equipment no longer exist. The targets can easily
cover the infrared horizon sensor’s super-large FOV
at a low cost. In addition, by using multiple targets,
we are able to obtain enough data in less experimen-
tal time, which means that higher accuracy can be
achieved efficiently.

A complete model of the camera’s imaging pro-
cess during the rotation is established to obtain the
required camera parameters. By considering the dis-
tance between the camera and the center of the ro-
tary table, the proposed model can describe the ef-
fect of the camera motion on the imaging process
when rotating. The positions of the camera and the
infrared targets should be known parameters in our
method, so they should be precisely measured be-
forehand. Normally, because the measurement of
these parameters is always troublesome, a param-
eter estimation algorithm could help in simplifying
this operation.

There are many existing algorithms for solving
similar parameter estimation problems in the star
tracker calibration task (Li YT et al., 2014; Wei
et al., 2014; Zhang CF et al., 2018; Ye et al., 2019).
These algorithms rely on the close connection be-
tween the ideal model and the distorted model of
the star tracker’s camera. However, the ideal model
for ultra-field cameras varies according to their
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design, and the widely used distorted model (Scara-
muzza et al., 2006) is not directly related to the
ideal model, which greatly limits the universality of
these algorithms. They should be adapted for use in
camera calibration of infrared horizon sensors. In-
spired by the existing two-step algorithm (Wei et al.,
2014), which is the most widely used algorithm by
far, a three-step parameter estimation algorithm is
proposed to deal with unknown parameters. The
ideal imaging model and distorted imaging model of
the ultra-field camera are developed for preliminary
parameter estimation and optimal parameter estima-
tion, respectively. The connection between the ideal
imaging model and the distorted imaging model is
established using polynomial fitting. As a result,
the required parameters can be estimated with high
accuracy and robustness.

Compared with traditional camera calibration
methods, the proposed method has fewer require-
ments for experimental equipment, wider applica-
tion, and higher accuracy. It effectively solves the
problem of camera calibration of infrared Earth sen-
sors with a large FOV. Experimental results validate
the excellent robustness, accuracy, and stability of
the proposed method.

2 Calibration method

2.1 Platform setup

The infrared camera calibration system consists
of a two-axis rotary table with a position accuracy of
±3′′, a computer, infrared cameras to be calibrated,
and infrared targets. The setup of the calibration
system is shown in Fig. 2. The infrared targets and
the two-axis rotary table are placed on a stable plat-
form that is isolated from vibration. The infrared

Infrared targets 

Vibration isolation platform 

X Y 

Z O 

Infrared  
camera 

Two-axis 
rotary table  

Fig. 2 Setup of the infrared camera calibration system

camera is mounted on the two-axis rotary table and
points at the infrared targets. The two-axis rotary
table drives the infrared camera to rotate to differ-
ent angles, and the camera takes pictures of infrared
targets at each pose. The proposed method has no
additional requirements on the structure of the ro-
tary table, the camera can be mounted anywhere on
the rotary table, and the targets can easily cover the
large FOV of the camera as the rotary table rotates.

2.2 Comparison of calibration methods using
a collimator and infrared targets

Comparison of calibration methods using a col-
limator and infrared targets is shown in Fig. 3, re-
vealing the superiority of the infrared target method.
As shown in Fig. 2, the internal frame of the rotary
table (P ) is established with the rotation center (O)
of the rotary table as the origin, the inner axis of the
rotary table as the Z axis (Z), and the outer axis as
the X axis (X). The Y axis (Y ) of frame P is normal
to the X–Z plane. Assume that the camera’s optical
center Oc is on the Z axis, and that the camera’s
optical axis is parallel to the Z axis. Let the rotary
table rotate around the X axis at an angle of W1. To
ensure that the FOV of the ultra-field infrared cam-
era is not blocked by the rotary table itself, there may
be a large distance between the optical center of the
camera and the rotating center of the rotary table.
Thus, as shown in Fig. 3, the position of Oc changes
from Oc1 to Oc2 when the rotary table rotates.

In the collimator method, the angle change W2

measured by the camera is equal to the rotation an-
gle W1 of the rotary table. As shown in Fig. 3, the
aperture of the collimator should be large enough,
and Oc and O should coincide as much as possible;
otherwise, the camera will leave the parallel light
coverage. This leads to high demands on experimen-
tal equipment and greatly limits the versatility of the
collimator method. However, in the infrared target
method, the angle change W3 of the infrared target
measured by the camera is equal to W1+W4, which
is affected by the position change of Oc. Therefore,
the infrared target method can use camera motion
to achieve easier coverage of the camera’s full FOV,
rather than being disturbed by the motion as in the
collimator method. In summary, the infrared tar-
get solution is less demanding on the experimental
equipment, more widely adaptable, and particularly
suitable for calibration of ultra-field cameras.
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Fig. 3 Comparison of calibration methods using a
collimator (top) and infrared targets (bottom)

2.3 Data acquisition

The specific experimental procedure is as fol-
lows: First, the rotary table and infrared targets are
adjusted so that the infrared targets are directly in
front of the camera. Then the rotary table rotates
90◦ around the X axis at 5◦ intervals; at each rota-
tion interval of the X axis, the rotary table rotates
360◦ around the Z axis at 10◦ intervals. The infrared
camera takes pictures of the infrared targets at each
pose. This process produces a large amount of ex-
perimental data, and a computer is responsible for
controlling the rotary table and collecting infrared
camera data in sequence so that automatic calibra-
tion is realized. The workflow of the calibration sys-
tem is shown in Fig. 4, which can greatly promote the
calibration efficiency. The final effective calibration
data include about 260 images.

2.4 Infrared targets

The actual image and the obtained infrared im-
age of infrared targets are shown in Fig. 5. The in-
frared targets consist of three circular ceramic heat-
ing plates with a diameter of 9 mm, which are low-
cost shelf commodities. More data can be obtained
in a shorter time by using multiple infrared targets.
The heating plates are energized and hung in the
air using their own power supply metal wire dur-
ing calibration. They are placed on a vibration-free
platform in enclosed rooms to avoid vibration and in-
terference, so the position accuracy of the target dur-
ing the rotation of the table can be ensured. After

Two-axis
rotary table

Rotary table
control panel

Infrared targets

Data acquisition

Data processing

Infrared camera Computer

Rotation
instruction

Rotation
control

Rotation
driving

Fig. 4 Workflow of the infrared camera calibration
system

the plates reach thermal equilibrium, their surface
temperature is maintained at 200–500 ◦C based on
power consumption and remains steady for several
hours. The heating plates are made of multilayer
alumina ceramics, which have a small thermal ex-
pansion coefficient and high sintering temperature,
so they do not deform and keep their shape during
the operation.

2.5 Positioning of control points

The grayscale images of the 9-mm three-target
combination taken by an infrared PAL camera at a
distance of about 1 m are shown in Fig. 5b. Con-
sidering the symmetry of the circular heating sheet,
its energy distribution will also be symmetrical. The
high contrast of the infrared targets ensures a high
signal-to-noise ratio, and the energy distribution can
be easily measured in the form of gray pixel values.
Therefore, it is a good approach to achieve control
point positioning based on energy distribution. The
specific steps of the control point positioning algo-
rithm are as follows:

1. Separate infrared targets and background in
the image based on grayscale threshold T . Here, the
average value of the entire image plus 3.5 times the
standard deviation of the whole image is taken as T .
Then the threshold grayscale image is obtained as
follows:

F (u, v) =

{
f(u, v), f(u, v) ≥ T,

0, f(u, v) < T,
(1)

where (u, v) denotes the coordinates of the pixel,
f(u, v) denotes the original grayscale of the pixel,
and F (u, v) denotes the threshold grayscale of the
pixel.
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Fig. 5 Combination of three infrared targets with a diameter of 9 mm: (a) actual image; (b) infrared image

2. Divide the image into four connected compo-
nents according to the threshold grayscale. Then the
infrared target areas are identified according to the
size and grayscale of the connected components, and
the images that do not contain the infrared targets
are excluded.

3. The weighted centroid positioning algorithm
is applied to complete the control point positioning
(Stone, 1989):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uc =

m∑
u=1

n∑
v=1

F (u, v)u

m∑
u=1

n∑
v=1

F (u, v)

,

vc =

m∑
u=1

n∑
v=1

F (u, v)v

m∑
u=1

n∑
v=1

F (u, v)
,

(2)

where m denotes the number of rows, n denotes the
number of columns, and (uc, vc) denotes the control
point position.

4. Match actual targets and image spots accord-
ing to the relative position features. For the limi-
tation of the ultra-field camera, the tangential fea-
tures distort noticeably in different regions of the
image. Therefore, the radial features, which are less
prone to distortion, are chosen to be constructed
here. As shown in Figs. 2 and 5, the infrared tar-
gets are placed at different distances in the radial
direction of the camera with a margin. The position
of the infrared targets and the rotation angles of the
rotary table are deliberately planned to ensure that
targets do not cross the central area during rotation.
Once the control points are positioned, the radial

distance between the control points and the image
center is calculated. The control point identification
and matching are completed according to the radial
distance.

3 Parameter estimation

3.1 Integrated modeling

Camera calibration aims to obtain the intrinsic
parameters of the camera. Before estimating param-
eters, an accurate integrated model is needed to de-
scribe the whole imaging process. The imaging pro-
cess of the infrared target method is different from
that of the collimator method (Wei et al., 2014), be-
cause the motion of the camera has an impact on the
imaging process. As coordinate transformation er-
rors from different frames accumulate, their effect on
the result will be great. Thus, a novel and more ac-
curate calibration model is proposed. The distance
between the camera and the center of the rotary ta-
ble is considered to describe the effect of the camera’s
motion on the imaging process when rotating. The
infrared camera calibration system and the frames
used in the following integrated modeling are shown
in Fig. 6. The frames used are defined as follows:

Frame P (defined in Section 2.2) rotates with
the rotary table. When the rotary table is at its
initial position, frame P is defined as the inertial
coordinate frame (B). The origin of the camera co-
ordinate frame (C) is the optical center of the camera
(Oc). The X axis (Xc) of frame C is the row’s di-
rection of the imaging sensor, and the Y axis (Yc)
of frame C is the column’s direction of the imaging
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sensor. The Z axis (Zc) of frame C is normal to the
Xc–Yc plane. The image coordinate frame takes the
imaging center of the image sensor (Os) as the ori-
gin, and the pixel coordinate frame takes the upper
left corner of the image sensor as the origin. In both
cases, the row and column of the image sensor are
taken as the X axis and Y axis respectively, and the
unit is pixel.

The installation position deviation and angle de-
viation between frame C and frame P are taken as
one set of extrinsic parameters. The positions of the
infrared targets in frame B are taken as another set
of extrinsic parameters. The principal point and dis-
tortion coefficient of the ultra-field camera are taken
as intrinsic parameters. The integrated calibration
model is established in Sections 3.1.1 and 3.1.2.

X

Y

Z

O
D1 D2

D3

Infrared
targets

Infrared
camera

Two-axis
rotary table

Yc

Xc

ZcOc

Fig. 6 The infrared camera calibration system

3.1.1 Extrinsic parameter model

When the rotary table rotates at the ith

set of angles, assume that CXDij=
[
CXDij ,

CYDij ,
CZDij

]T is the position of the jth infrared target Dj

in frame C. The expression is as follows:

CXDij = RP
CR

B
Pi

BXDj − PXC , (3)

where BXDj=
[
BXDj ,

BYDj ,
BZDj

]T is the po-
sition of the jth infrared target in frame B.
PXC=

[
PXC ,

PYC ,
PZC

]T is the position of the cam-
era’s optical center Oc in frame P . RB

Pi
represents

the rotation matrix from frame B to frame P under
the ith set of rotation angles. The rotation of the
rotary table applied in this study can be described
by two sets of independent parameters ωxi and ωzi ,

and its expression is as follows:

RB
Pi

= R (X,ωxi) ·R (Z, ωzi) ,

R (X,ωxi) =

⎡
⎣ 1 0 0

0 cosωxi sinωxi

0 − sinωxi cosωxi

⎤
⎦ ,

R (Z, ωzi) =

⎡
⎣ cosωzi sinωzi 0

− sinωzi cosωzi 0

0 0 1

⎤
⎦ ,

(4)

where R represents the rotation matrix correspond-
ing to the Euler angles. RP

C represents the rotation
matrix from frame P to frame C, which can be de-
scribed by three independent groups of parameters
α, β, ϕ, and its expression is as follows:

RP
C = R (Y, β) ·R (X,α) ·R (Z,ϕ) ,

R (X,α) =

⎡
⎣ 1 0 0

0 cosα sinα

0 − sinα cosα

⎤
⎦ ,

R (Y, β) =

⎡
⎣ cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ

⎤
⎦ ,

R (Z,ϕ) =

⎡
⎣ cosϕ sinϕ 0

− sinϕ cosϕ 0

0 0 1

⎤
⎦ .

(5)

3.1.2 Intrinsic parameter model

Assume that an infrared target CXD=[
CXD,CYD,CZD

]T is projected as a point p′=
[u′, v′]T on the image coordinate frame according to
the imaging relationship, which can be expressed as

λ
[
CXD, CYD, CZD

]T
= g (u′, v′) , (6)

where λ represents the scaling factor of the infrared
target from frame C to the image coordinate frame,
and g represents the imaging function that describes
the imaging relationship.

To simplify parameter calculation, an ideal
imaging model and a distorted imaging model are
established here, respectively, for initial estimation
and later refinement.

1. Ideal imaging model
To obtain a large FOV, the PAL camera obeys

the equidistance projection relationship (Niu et al.,
2007), which can be expressed as

ρ =
√
(u′)2 + (v′)2 = fθ, (7)

where f is the focal length, θ is the field angle of the
target, and ρ is the image height. Considering the
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distortion in the lens design and processing process,
the camera generally does not deviate too much from
the imaging principle, so Eq. (7) roughly fits the
imaging function g.

Regardless of the imaging principle, the incident
vector can be expressed as the following unit vector:

λ1

[
CXD, CYD, CZD

]T
= [cosφ sin θ, sinφ sin θ, cos θ]

T
,

(8)

where λ1 represents the scaling factor and φ repre-
sents the azimuth of the target. The relationship
between the coordinates and azimuth is as follows:

cosφ=
u′

ρ
, sinφ=

v′

ρ
. (9)

In addition, the deviation of the principal point needs
to be considered. The point p′ on the image coordi-
nate frame is transformed into p=[u, v]T on the pixel
coordinate frame after affine transformation. The ro-
tation matrix in the affine transformation is treated
as an identity matrix here, so the affine transforma-
tion can be described as

[u, v]
T
= [u′, v′]T + [u0, v0]

T
, (10)

where [u0, v0]
T is the position of the imaging center

Os in the pixel coordinate frame. The length unit
of both frames is one pixel, so there is no scaling
relationship.

2. Distorted imaging model
To describe the distortion of the ultra-field cam-

era more accurately, the polynomial distorted model
proposed by Scaramuzza et al. (2006) is used, and the
imaging function g is well-fitted by the polynomial:

λ2

[
CXD, CYD, CZD

]T
=
[
u′, v′, a0 + a2ρ

2 + . . .+ aNρN
]T

, (11)

where λ2 is the scaling factor, and a0, a2, . . . , aN are
the coefficients of each order. According to Chen
et al. (2019), Wang ZA et al. (2020), and Zhang S
et al. (2020a), when N is set to 4, a good calibra-
tion effect can be obtained for an ultra-field lens.
Subsequent experiments also verified this. In addi-
tion, considering the image sensor’s imaging process,
the inconsistency of the pixel length and width di-
rections, and the tilt deviation of the two axes of
the pixel (Forsyth and Ponce, 2011), the transforma-
tion from image coordinate frame to pixel coordinate

frame can be described as[
u

v

]
=

[
k s

0 1

] [
u′

v′

]
+

[
u0

v0

]
, (12)

where k represents the pixel aspect ratio and s rep-
resents the tilt coefficient of the pixel axes.

3.2 Parameter estimation algorithm

A three-step calibration algorithm is proposed
to deal with unknown parameters, which are too
many to be estimated directly. The summary of the
three-step calibration algorithm is shown in Fig. 7.
The position of the control points obtained from the
images and the corresponding rotation angles are
used as input data. Assuming that the camera fol-
lows the lens’s optical design, the first step is to pro-
vide a reasonable estimate for most parameters with
the ideal imaging model. The parameters in the ideal
imaging model are transformed into the parameters
in the distorted imaging model by polynomial fitting
in the second step. In the third step, the distorted
imaging model is used to estimate the camera’s dis-
tortion coefficient and thus optimize the estimation
of all parameters. The three steps are presented in
detail in Sections 3.2.1, 3.2.2, and 3.2.3.

Rotation angles Positions of
control points

Preliminary
estimation

Ideal imaging
model

Distorted imaging
model

Extrinsic
parameter model

Optimal
estimation

Parameter
transformation

Camera parameters

Intrinsic parameter
model

Fig. 7 Summary of the estimation algorithm

3.2.1 First step: preliminary estimation of a part of
parameters

When the rotary table rotates at the ith set of
angles, the position of the jth infrared target Dj

in the pixel coordinate frame is measured by the
infrared camera. The estimated value of the target
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position CX̂Dij in the camera coordinate system is
obtained from the extrinsic parameter model, which
can be expressed as

CX̂Dij

=E
(
ωxi, ωzi ,

BXDj ,
BYDj ,

BZDj ,
PXC ,

PYC ,
PZC

)
,

(13)
where E represents the coordinate transformation
relationship described by Eq. (3).

Then the estimated value of the target image
position (ûij , v̂ij)

T on the image coordinate frame is
obtained from the ideal imaging model, which can
be expressed as

(ûij , v̂ij)
T
= F

(
CX̂Dij , u0, v0, f

)
, (14)

where F represents the inverse process of the ideal
imaging relationship described by Eqs. (7), (8), and
(10). Due to the simplicity of the functional relation-
ship, this inverse process is not difficult to express
analytically.

A nonlinear least-squares estimation problem is
established, and the optimization objective is the
minimization of the following cost function:

J =

L∑
j=1

K∑
i=1

∥∥∥(ũij , ṽij)
T − (ûij , v̂ij)

T
∥∥∥2, (15)

where (ũij , ṽij) represents the measured value, J is
the cost function, K is the number of targets, and
L is the number of rotation angle groups. Note that
there are two observations in the x and y directions
for every control point. Errors in the x and y direc-
tions are listed separately so the mistakes are derived
separately during the iteration. Then the iterative
search will be even and reasonable.

The variables to be estimated in the first step
are

Pr =
(
BXDj ,

BYDj ,
BZDj , α, β, ϕ,

PXC ,
PYC ,

PZC , u0, v0, f
)
,

(16)

where j = 1, 2, . . . ,K. The positions here are rel-
ative values, so we assume BZD1 = 10 according to
actual situations. The Levenberg–Marquardt algo-
rithm is used to solve the nonlinear optimal estima-
tion problem. Ignoring the installation errors, the
initial guesses of α, β, and ϕ are given according to
the corresponding relations of the coordinate frames.
The initial guess of (u0, v0) locates at the center of
the image coordinates, while f ’s initial guess is the
lens design value. The initial guesses of BXDj , BYDj ,

BZDj , PXC , PYC , and PZC are set roughly accord-
ing to the site conditions.

3.2.2 Second step: transformation of parameters in
two imaging models

The parameters in the ideal imaging model and
distorted imaging model do not correspond to each
other directly. The conversion process is essential
to use the results of the preliminary parameter es-
timation to the fullest. A simple solution is as fol-
lows: When 0<θ<π/2, the following approximation
is available according to Eqs. (8), (9), and (11):

ρ

tan θ
=a0 + a2ρ

2 + a3ρ
3 + a4ρ

4. (17)

For the f obtained in the first step, a set of discrete
θ’s are used as the input to Eq. (7), and a corre-
sponding set of ρ’s are obtained. Then, a set of
approximate solutions of a0, a2, a3, a4 are obtained
by polynomial fitting according to Eq. (17). These
approximate solutions will be used as initial guesses
in the following step.

3.2.3 Third step: optimal estimation of all parame-
ters

Adopting the distorted imaging model based on
the first step, the estimated value of (ûij , v̂ij)

T is
obtained. It can be expressed as

(ûij , v̂ij)
T

=G
(
CX̂Dij , u0, v0, k, s, a0, a2, a3, a4

)
,

(18)

where G represents the inverse process of the dis-
torted imaging relationship described by Eqs. (11)
and (12). However, this inverse process is difficult
to express analytically. The difficulty comes mainly
from finding a suitable root of the polynomials in
Eq. (11). The distorted imaging model implies that
the reprojection process from the point in the pixel
coordinate to the vector in the camera coordinate
is convenient, whereas the projection process from
the vector in the camera coordinate to the point in
the pixel coordinate is complex and nonlinear. The
opposite situation exists in other kinds of models
(Kannala and Brandt, 2006). The computational
complexity is unavoidable due to the extensive use
of high-order polynomials in the distorted model,
but leaving the computational convenience in the re-
projection process will be more practical. This will
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help achieve better real-time performance in mea-
surement applications (Wang H et al., 2021).

The same nonlinear least-squares estimation
problem as in Eq. (15) is used. The variables to
be estimated in the third step are

Pf =
(
BXDj ,

BYDj ,
BZDj , α, β, ϕ,

P
XC ,

PYC ,
PZC , u0, v0, k, s, a0, a2, a3, a4

)
,

(19)

where j = 1, 2, . . . ,K. The Levenberg–Marquardt
algorithm is applied, while the Jacobian matrix
needs to be approximated numerically due to the
complexity of calculating the analytical formula.
This is realized using the MATLAB function lsqnon-
lin. The parameters obtained in the first and second
steps are adopted as initial values, and the initial
guesses for k and s are set to 1 and 0, respectively.

4 Experiments and analysis

4.1 Numerical simulations

4.1.1 Configurations of simulations

The infrared camera used for simulations is the
same as a real infrared PAL camera, including the
FOV and the blind areas. Its main specifications are
shown in Table 1. A combination of three calibration
targets is chosen here. The values of model param-
eters and their initial guesses during the iteration
process are shown in Table 2. The two-axis rotary
table is set to rotate around the X axis in steps of
5◦, and rotate around the Z axis in steps of 10◦.

Because the true value is known in the simula-
tions, the root mean square error (RMSE) of the re-
projected points, which are based on the calibrated
model, and the corresponding true points are used
to evaluate the calibration effect in the simulations
(Scaramuzza et al., 2006). This RMSE is also called

Table 1 Specifications of the infrared panoramic an-
nular lens (PAL) camera

Component Specification

Detector 384×288 UFPA
FOV 162◦(H)×120◦(V)
Effective focal length (mm) 2.3
Spectral range (μm) 8–14
Detector pitch (μm) 17
Relative aperture F1.4

FOV: field of view; UFPA: uncooled focal plane array; H:
height; V: vertical

the real reprojection error (RRE):

RRE =

√√√√√ L∑
j=1

K∑
i=1

∥∥∥(uij , vij)
T − (ûij , v̂ij)

T
∥∥∥2

2LK
, (20)

where (uij , vij) represents the true value. The RRE
is the average distance error in the x and y direc-
tions, which is slightly different from the Euclidean
distance. We performed 200 sets of independent sim-
ulations for each condition, and the results shown are
the average values.

4.1.2 Simulation results

In the simulations, we investigated the feasi-
bility and robustness of the proposed algorithm in
the case of inaccurate control point positioning. To
this end, Gaussian noise with a mean of 0 and a
standard deviation of σ pixels was added to the x

and y coordinates of each control point. The noise
level was changed from σ = 0.1 pixels to σ = 2

pixels with a step size of 0.1 pixels. The simula-
tion results are shown in Fig. 8. As we can see,
the average RRE of the optimal estimate is much
smaller than the noise level in different simulation
conditions, which fully demonstrates the good ro-
bustness of the proposed method. The average RRE
increases linearly with the increase of the noise level
in both optimal estimation and preliminary estima-
tion, while the gap between the RRE of the pre-
liminary estimation and that of the optimal estima-
tion gradually decreases. This indicates that the
distorted imaging model shows greater advantages
in low-noise conditions.

Furthermore, for σ = 2 pixels, which is larger
than the noise caused by control point positioning,
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Fig. 8 Performance under different noise levels
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Table 2 Simulation parameters and the initial values

Parameter Simulation value Initial guess Parameter Simulation value Initial guess

(α, β, ϕ) (−2◦, 0.5◦, 178◦) (0◦, 0◦, 180◦)
(
BXC ,BYC ,BZC

)
(0.1,−0.5, 1) (0, 0, 1)

(u0, v0) (195, 150) (192, 144)
(
BXD1

,BYD1
,BZD1

)
(1, 1, 10) (0, 0, 10)

(k, s) (1.005, 0.005) (1, 0)
(
BXD2

,BYD2
,BZD2

)
(−1,−1, 9) (0, 0, 10)

(a0, a2, a3, a4) (136.9,−0.0027, f = 2.3
(
BXD3

,BYD3
,BZD3

)
(0, 0, 9) (0, 0, 10)

2.43× 10−6,−1.98× 10−8)

the average RRE of the optimal estimation is
0.254 pixels. Real points, measurement points, and
reprojected points of one simulation are shown in
Fig. 9. Although the measurement points are very
noisy relative to the real points, after correction by
the proposed method, the reprojected points can ap-
proximate the real points very well.

The iteration process of one calibration with σ =

2 pixels is shown in Fig. 10. Although the initial cost
function J in the preliminary estimation is ultra-high
due to the poor initial guess of parameters, it still
converges in a few cycles, and J decreases further
in the optimal estimation, which demonstrates the
effectiveness of the proposed parameter estimation
algorithm.

4.2 Practical experiments

4.2.1 Experimental results

We used 10 infrared horizon sensors to validate
the accuracy and stability of the proposed method.
All control points obtained in the experiment of one
infrared horizon sensor are shown in Fig. 11. Due
to the use of three closely spaced targets and the
high-density rotation of the rotary table, the con-
trol points of the three targets covered the camera’s
entire FOV evenly, as shown in Figs. 11 and 1.

The reprojection error distribution of one ex-
periment with three targets is shown in Fig. 12. The
errors of all three targets were uniformly distributed
and concentrated around zero. This indicates that
the control point positioning accuracies of the three
infrared targets are similar, and the constraints pro-
vided by all three infrared targets are treated equally
by the estimation algorithm. The calibration results
of one infrared horizon sensor are shown in Table 3.
These parameters will be injected into each infrared
horizon sensor’s software to help them achieve higher
accuracy.

Because the true value was not known in the ex-
periments, the RMSE between the reprojected points
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and the corresponding measurement points was used
to evaluate the calibration effect in the experiments.
This RMSE is also called the measurement reprojec-
tion error (MRE):

MRE =

√√√√√ L∑
j=1

K∑
i=1

∥∥∥(ũij , ṽij)
T − (ûij , v̂ij)

T
∥∥∥2

2LK
. (21)

The experimental results of 10 cameras are
shown in Fig. 13 and Table 4. Comparison ex-
periments were performed with the same set of
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calibration photos, and one of the targets, as well
as all three targets, was taken for parameter solv-
ing, separately. The average MRE is 0.175 pixels
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zon sensors

when using only one target, while the average MRE
is 0.148 pixels when using three targets, implying
an improvement of 15% in the calibration accuracy.
Also, the experiments with three targets showed bet-
ter stability with a standard deviation of 0.0028 pix-
els, while it was 0.014 pixels with a single-target cal-
ibration experiment. Compared to a single target,
the combination of three targets increases the cali-
bration data exponentially without additional time
consumption. In addition, the position relationship
constraint between the three targets suppresses the
random noise of a single target. These factors lead
to better performance of the calibration system when
using three targets.

During the calibration experiments, the posi-
tions of the three targets with respect to the rotary
table were kept constant, so we can evaluate the es-
timation accuracy of the extrinsic parameters based
on their distribution. According to the estimation
algorithm in Section 3.2, the estimates of the extrin-
sic parameters are relative values and are based on
the assumption of BZD1 = 10. The estimates of ex-
trinsic parameters are shown in Table 5. The error
distributions are relatively small, so the extrinsic pa-
rameters are estimated effectively via the proposed
algorithm.

Table 3 Infrared horizon sensor calibration results

Camera parameter Calibration result

(u0, v0) (193.83, 146.32)

(k, s)
(
1.0003, 4.14× 10−5

)

(a0, a2, a3, a4) (135.33,−0.0028,

1.65× 10−7,−1.08× 10−9)

Table 4 Results of calibration experiments

Method
Average MRE Standard deviation

(pixel) (pixel)

One target 0.175 0.014

Three targets 0.148 0.0028

MRE: measurement reprojection error

Table 5 Estimation of extrinsic parameters

Parameter Mean value Error∗ (%)

BXD1
−0.5622 0.8294

BYD1
3.8948 0.6975

BXD2
−0.5793 1.5926

BYD2
4.8950 1.5530

BZD2
9.3953 0.6634

BXD3
−1.1042 0.9183

BYD3
4.2325 1.0445

BZD3
9.5397 0.2996

∗Error=(standard deviation)/mean×100%
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4.2.2 Comparison with other geometric calibration
methods

Existing results of other infrared camera calibra-
tion methods are shown in Table 6 for comparison.
The evaluation criterion was described in Eq. (21);
and the results of all calibration methods are similar.
The method proposed in this study achieves higher
calibration accuracy than other ultra-field infrared
cameras. Even compared with the best result avail-
able, which is 0.219 pixels (Zhang S et al., 2020a), our
method has achieved at least a 30% improvement.

As shown in the last row of Table 6, because of
the severe distortion and low control point position-
ing accuracy of the ultra-field cameras, the geometric
calibration of ultra-field infrared cameras is still less
accurate than that of narrow-field infrared cameras
(Usamentiaga et al., 2017). The distorted model and
control point positioning algorithm of the ultra-field
infrared camera will be researched more thoroughly
in future works.

5 Conclusions

A high-accuracy camera geometric calibration
method for infrared horizon sensors with a large FOV
has been proposed. Control points were evenly dis-
tributed throughout the entire FOV with the help of
a two-axis rotary table and multiple infrared targets.
Thus, the calibration accuracy of the entire FOV was
ensured. The three-step parameter estimation algo-
rithm based on integrated modeling achieved highly
accurate parameter estimation.

Simulation results showed that the proposed cal-
ibration algorithm was effective and robust at differ-
ent noise levels. Experiments using 10 infrared PAL
cameras demonstrated that the proposed method
achieved not only high accuracy, with an average
MRE of 0.148 pixels, but also good stability with a
standard deviation of 0.0028 pixels. The combina-

tion of three targets proposed in this paper improved
the calibration accuracy by 15% compared to a sin-
gle target. The calibration accuracy of this method
is at least 30% better than those of other existing
methods.

The camera calibration method proposed in this
paper helped infrared horizon sensors achieve higher
accuracy, and it will be an important foundation for
other measurement applications with ultra-field in-
frared cameras.
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