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Abstract: Ensuring the safety of pedestrians is essential and challenging when autonomous vehicles are involved.
Classical pedestrian avoidance strategies cannot handle uncertainty, and learning-based methods lack performance
guarantees. In this paper we propose a hybrid reinforcement learning (HRL) approach for autonomous vehicles
to safely interact with pedestrians behaving uncertainly. The method integrates the rule-based strategy and
reinforcement learning strategy. The confidence of both strategies is evaluated using the data recorded in the
training process. Then we design an activation function to select the final policy with higher confidence. In this way,
we can guarantee that the final policy performance is not worse than that of the rule-based policy. To demonstrate
the effectiveness of the proposed method, we validate it in simulation using an accelerated testing technique to
generate stochastic pedestrians. The results indicate that it increases the success rate for pedestrian avoidance to
98.8%, compared with 94.4% of the baseline method.
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1 Introduction

Autonomous vehicles (AVs) are expected to
avoid traffic accidents and improve road traffic safety.
Interaction with other traffic participants is one of
the major considerations in evaluating the AV safety,
which can be intractable even for experienced hu-
man drivers (Li et al., 2021). According to the Na-
tional Highway Traffic Safety Administration of the
U.S. Department of Transportation, from 2017 to
2018, pedestrian fatalities increased from 6274 to
6482 in the United States, accounting for 20% of
all motor vehicle fatalities (National Highway Traf-
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fic Safety Administration, 2019). The great uncer-
tainty of pedestrians’ behavior makes handling in-
teraction with them a challenging task for AVs. A
review illustrates that pedestrians’ attention, speed,
and trajectory can be affected by many factors, such
as their age, the time of day, and road structure
(Rasouli and Tsotsos, 2020). To promote the social
acceptance of AVs, researchers must design a robust
decision-making system to cope with stochastic and
uncertain pedestrian behaviors.

In recent years, a rapidly growing amount of
literature specifically studies the interaction be-
tween pedestrians and autonomous vehicles. Typ-
ical methods can be categorized as classical meth-
ods and learning-based methods. Classical methods
include rule-based methods, optimization methods,
and probabilistic methods (Yang et al., 2020; Bhat-
tacharyya et al., 2021; Koç et al., 2021). Learning-
based methods imply using machine learning
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techniques, such as deep learning (Li et al., 2022a),
transfer learning (Li et al., 2022b), and reinforcement
learning (Liu et al., 2021).

Classical methods gained popularity because of
their advantages on interpretability, adjustability,
and feasibility of implementation. Kapania et al.
(2019) demonstrated that a hybrid controller with
just four distinct modes allowed an autonomous ve-
hicle to handle interaction with pedestrians success-
fully. Simulation and experimental results validated
that the proposed controller outperformed an alter-
nate partially observable Markov decision process
(POMDP) based solution in Schratter et al. (2019).
In addition, several researchers depicted pedestrian
avoidance as a model predictive control (MPC) prob-
lem, by translating each pedestrian’s predicted mo-
tion into inequality constraints (Batkovic et al.,
2019). Jayaraman et al. (2020a) attempted to model
pedestrians’ crossing behavior using their gap ac-
ceptance behavior and constant velocity dynamics
for long-term (>5 s) pedestrian trajectory prediction
at crosswalks. Based on this work, they developed
a behavior-aware MPC controller to efficiently plan
for longer horizons to handle a wider range of pedes-
trian interaction scenarios (Jayaraman et al., 2020b).
Rule-based strategies can be implemented easily in
practice and work well in most situations. However,
such strategies may fail in some situations where the
assumptions in the design process are not consistent
with the facts, and they cannot adjust themselves
to avoid repeating these mistakes in the future. For
example, in Kapania et al. (2019), the proposed hy-
brid controller fails if pedestrians stand still on the
roadway.

Some researchers have used learning-based
methods for decision-making on interaction with
pedestrians. Bai et al. (2015) implemented a
POMDP-based online planner on an autonomous car
to drive near pedestrians safely, which indicated its
effectiveness of planning under uncertainty. Bou-
ton et al. (2018) leveraged a similar strategy and
scaled it to avoid multiple road users. Everett et al.
(2021) developed an algorithm, using deep reinforce-
ment learning (DRL), to learn collision avoidance
in a complex environment, without assuming any
particular behavior rule for nearby agents. Pusse
and Klusch (2019) proposed a hybrid solution named
HyLEAP, combining the advantages of DRL and ap-
proximate POMDP planning, for collision-free nav-

igation. The method was evaluated by simulation
in multiple pedestrian–car accident scenarios in a
German in-depth road accident study. The results
revealed that the hybrid solution is superior to its
individual methods. The previous work shows the
strength of the learning-based algorithms in decision-
making under significant uncertainties. However, the
performance of learning-based methods cannot be
guaranteed without sufficient training (Cao et al.,
2022).

In recent years, many explorations have been
conducted to ensure the performance of learning-
based approaches in safety-critical systems (García
and Fernández, 2015; Cao et al., 2021). Combining
learning- and rule-based policies is one of the typical
approaches for guaranteeing safety and can integrate
their strengths (Zhou et al., 2020). Yurtsever et al.
(2020) proposed a hybrid approach for integrating
a path planner into a vision-based DRL framework
to mitigate the drawbacks of both approaches. By
introducing a straying-away penalty in the reward
function, the DRL agent is taught to oversee the
planner and follow it when the planned path is safe.
Simulation results showed that the proposed method
can plan its path and navigate between randomly
chosen origin–destination points. Cao et al. (2022)
designed a framework named confidence-aware rein-
forcement learning (RL). In this framework, the RL
agent works with a baseline rule-based policy and
intervenes only when it has higher confidence. The
framework has been applied in a two-lane round-
about scenario and shows better performance than
both the pure RL policy and the baseline policy.

In this paper, to interact with pedestrians with
safety-guaranteed performance for AVs, we propose
a hybrid RL (HRL) strategy. The strategy starts
with a baseline rule-based pedestrian-avoidance pol-
icy, and the RL policy is activated when the baseline
policy has a lower score. We design the rule-based
strategy based on the literature and focus on en-
hancing its performance through RL. To this end,
we design a method to evaluate both policies and
a function to decide the activation time. Finally,
a simulation platform based on CARLA is built to
train and test the proposed hybrid policy.

The main contributions of this paper are sum-
marized as follows: (1) a hybrid RL approach for the
autonomous vehicle to avoid pedestrians, combining
the rule-based policy and RL policy, (2) a reliable
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activation function design to determine whether to
activate the rule-based policy or RL policy, and (3)
a stochastic pedestrian generation method for accel-
erated evaluation in simulation.

2 Problem statement

In this paper, we focus on the traffic scenario
illustrated in Fig. 1: An autonomous vehicle, called
the ego vehicle, is driving on an urban road with-
out traffic signs, where no control device explicitly
guides the interaction between the ego vehicle and
pedestrians. Pedestrians enter the road from the
sidewalk at some reasonable speed and orientation.
The ego vehicle is required to avoid collision when
the pedestrians are on the roadway.

d

v
v dy

Fig. 1 Traffic scenario of the ego vehicle and pedes-
trian interaction, where the distances between the
ego vehicle and pedestrian, along and vertical to the
forward direction, are represented by d and dy, re-
spectively, the ego vehicle drives at the speed vv along
the road, and the pedestrian goes across the road at
speed vp and heading angle ψp

In the process of designing the pedestrian avoid-
ance method, we follow several reasonable principles
and assumptions: (1) Once a pedestrian enters the
roadway, the ego vehicle can detect his/her position,
speed, and heading direction. This assumption holds
easily because AVs are usually equipped with various
sensors and algorithms to realize pedestrian detec-
tion. (2) The ego vehicle is not explicitly required to
stop when interacting with pedestrians. This prin-
ciple relates to local traffic rules, but we consider
only avoiding collision in this work. (3) In each
vehicle–pedestrian interaction, only one pedestrian
enters the roadway. This is the typical scenario that
occurs most of the time. The proposed approach fo-
cuses on avoiding collision in this scenario. (4) The
pedestrian does not change walking speed or orienta-
tion while crossing in the crosswalk. In this work, the
reaction of the pedestrian is not modeled explicitly.

3 Hybrid reinforcement learning

In this section, we establish a hybrid reinforce-
ment learning (HRL) framework in which the ego
vehicle can safely interact with pedestrians. The
HRL framework starts with a rule-based policy, and
the RL policy is integrated to enhance performance.
Section 3.1 introduces the rule-based policy adopted
in the framework, and Section 3.2 explains how the
HRL framework is implemented.

3.1 Rule-based policy

We select the hybrid control architecture in Ka-
pania et al. (2019) as the fundamental rule-based
policy. However, other rule-based policies can also
be used in our framework. The basic policy designs
a finite state machine (FSM) with four modes: keep
speed, slow down, hard brake, and speed up, as
shown in Fig. 2; the variables of the FSM are ex-
plained in Table 1.

Slow down

Keep speed Speed up

Hard brake

PD
=0

tadv>τmax

PD=0 d<0

tadv≤τmax d<dmax

PD=1

PD=1 d ≥0

PD=1

t ad
v≤
τ m
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d>

d c
m

f

τ

Fig. 2 Baseline rule-based policy

Table 1 Variables of the finite state machine

Symbol Definition

tadv Time advantage, dy
vp

− d
vv

τmax Time advantage threshold
amax Value of maximum deceleration
acmf Value of comfortable deceleration

dmax Maximum braking distance, v2
v

2amax

dcmf Comfortable braking distance, v2
v

2acmf
PD Variable indicating whether the pedestrian

is detected—1, detected; 0, not

In each mode, the baseline algorithm uses differ-
ent methodologies to compute the desired accelera-
tion. The transitions between modes are determined
by the current state of the ego vehicle and whether a
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pedestrian is detected. Details of the four modes are
as follows:

Keep speed: In this mode, the ego vehicle de-
tects no pedestrian on the road and attempts to
drive at the desired speed vdes. The proportional
speed control law is applied to compute the target
acceleration:

a = kp(vv − vdes), (1)

where kp represents the proportional coefficient, vv
is the current speed of the ego vehicle, and vdes is
the desired speed of the vehicle, which is the same as
the limit speed of the current lane vlim. The Boolean
variable PD is 1 when pedestrians are detected on the
roadway. If PD is equal to 0, or time advantage tadv

exceeds a specified threshold τmax, the ego vehicle
keeps in the keep speed mode. Otherwise, the FSM
decides which mode to enter next.

Slow down: The FSM enters the slow down
mode if the time advantage is too small for the ego
vehicle to pass directly. Considering the smoothness
of driving, the ego vehicle will yield to the pedestrian
at a comfortable deceleration acmf when the distance
is sufficient, namely d > dcmf =

v2
v

2acmf
. In this mode,

the desired deceleration is acmf and the desired speed
is given by

vdes(d) =
√
2acmf(d− do) + v2o , (2)

where do and vo are the values of d and v at the
beginning time when FSM turns to the slow down
mode, respectively. The vehicle yields at a deceler-
ation of acmf, with an additional feedback term as
shown in Eq. (3):

a = −acmf + kp(v − vdes). (3)

Hard brake: If the distance between the ego
vehicle and the pedestrian satisfies dmax < d < dcmf,
the ego vehicle needs to decelerate more quickly than
acmf. In this mode, the desired speed is given by

vdes =
v′o√
d′o

√
d, (4)

where d′o and v′o are the values of d and v when the
FSM first enters the hard brake mode, respectively.
The target deceleration in this mode can be com-
puted by

a = − v
2

2d
+ kp(v − vdes). (5)

Speed up: The condition under which the FSM
enters this mode is d < dmax, which means that there
is no sufficient place for the ego vehicle to slow down
to avoid the pedestrian. In this situation, speeding
up and passing quickly make more sense. The accel-
eration in this mode is set as acmf.

The FSM policy used in this study shows its ef-
fectiveness for most pedestrian avoidance situations
in previous work (Kapania et al., 2019; Jayaraman
et al., 2020b). However, it may fail in some cases
where the given assumptions do not hold. Starting
with this policy, our HRL policy can achieve a con-
tinuously improving performance.

3.2 Hybrid reinforcement learning policy

The framework of the designed HRL strategy
is shown in Fig. 3. According to the current traf-
fic environmental state, we can obtain a rule- or
learning-based policy. We evaluate both policies
with a uniform criterion. Then we design an acti-
vation function to select the final policy. In this way,
we can guarantee that the performance of the final
policy is not worse than that of the rule-based pol-
icy. Moreover, by combination with the self-learning
algorithm, the autonomous vehicle can learn from
previous failures and improve safety. We use deep
Q learning (DQN) as the learning-based method in
our HRL framework (Mnih et al., 2015). To ap-
ply the learning-based method, we should model the
pedestrian avoidance problem as a Markov decision
process (MDP). First, we define the state, action,
and reward model for the problem.

FSM

DQN
arl

1 Q (st arl
1)

Activation 
function 

Q (st arl
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Q (st ab)
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Fig. 3 Framework of the proposed hybrid reinforce-
ment learning (HRL) pedestrian avoidance strategy

State: The state space should contain all the
considered elements of the scenario. The state space
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S can be defined as follows:

s = (d, dy , ψp, vv, vp) ∈ S,
and the explanations of each state variable can be
referred to in Section 2.

Action: In this work, we assume that the ego ve-
hicle handles interaction with pedestrians by simply
adjusting its longitudinal acceleration. For RL policy
generation, the ego vehicle can use the same modes
as the baseline FSM policy, namely keep speed, slow
down, hard brake, and speed up. Therefore, action
space A can be defined as

A = {aks, asd, ahb, asu},
where each action corresponds to a mode in the FSM.
At each time t, according to the current state st, the
ego vehicle can obtain two candidate actions, arule by
the FSM and arl by RL exploration. The calculation
of the target acceleration taking each action is the
same as that in the FSM.

Reward: The proposed strategy aims to avoid
collisions and improve efficiency, so the reward model
of RL, r(s, a) : S × A → R, should be relevant to
these two factors. The reward function consists of
two portions, safety reward r1 and efficiency reward
r2. The final reward is r = r1 + r2.

The agent obtains a safety penalty when colli-
sions occur.

r1 =

{
0, no collision,

−1, there is a collision.

The safety reward encourages the ego vehicle to
interact with pedestrians safely. However, if we set
only a safety reward, the vehicle may drive overly
conservatively to avoid collisions. To keep a normal
road capacity, we introduce an efficiency reward

r2 =
v

vdes
− 1,

where the desired speed vdes is equal to the limit
speed of the current lane. The agent receives a
penalty when the speed is lower than the desired
speed.

Data collection: To generate an HRL policy, we
need to collect datasets defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τπ(s) := {s1 = s, aτ1 , s
τ
2 , a

τ
2 , ..., s

τ
H},

Dπ := {τπ(si)}, si ∈ S,
G(τπ(s)) :=

∑

i

γn(r(sτi , a
τ
i )),

(6)

where τπ(s) stands for a trajectory of length H with
policy π, which is a sequence of states and actions
starting with state s. Dπ denotes the dataset that
saves all these trajectories. For each trajectory, the
return value means the sum of the discounted re-
wards, represented as G(τπ(s)).

In the process of data collection, the sliding win-
dow with a fixed horizon is used to collect the trajec-
tory and its value return. To evaluate two different
policies, we define two sub-datasets as

⎧
⎪⎨

⎪⎩

D(s, a) = Drule(s) ∪Drl,

Drule : = {τ(s1 = s, a1 = πrule(s1))},
Drl : = {τ(s1 = s, a1 = πrl(s1))},

(7)

where the total dataset D(s, a) consists of two sub-
datasets Drule and Drl. The former contains the
trajectories that use the rule-based policy as the first
action, while the latter uses the RL policy.

RL policy generation: The objective of RL is
training the ego vehicle to execute optimal actions
to handle the interaction with pedestrians so that
it will obtain a high cumulative reward in a finite
expectation horizon. We employ DQN as the learn-
ing method in our HRL approach to solve the MDP
problem described above.

The DQN updates the Q value by sampling en-
vironmental data, rather than setting up a state tran-
sition probability template. Therefore, the DQN can
solve the MDP faster. The principle of updating the
Q value is the Bellman equation:

Q(st, at)← Q(st, at)

+ α
[
r(st+1) + γmax

a
Q(st+1, a)−Q(st, at)

]
,

(8)
where Q(sk, ak) : S ×A → R represents the Q func-
tion at state sk with action ak. α is the learning rate
and γ denotes the discount factor, which is a scalar
in [0, 1] that demonstrates the relative importance of
the next reward concerning the current.

In Eq. (8), we notice that the update of the Q
function depends on the state and the action. How-
ever, in our problem, the state space is continuous,
where we cannot visit a specified state repeatedly.
Therefore, we use a neural network with parame-
ter θ to approximate the Q function. The updating
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principle is
{
θj+1 ← θj − α∇θE

[
(Q(st, at, θj)−Q+(st, at))

2
]
,

Q+(st, at) = r(st+1) + γmax
a
Q(st+1, a, θ

−),

(9)
where θ and θ− represent the current adjusting pa-
rameter and parameter from some previous iteration,
respectively. θ− is updated after a specified number
of iterations, which is helpful to keep the network sta-
ble. The term (Q(st, at, θj)−Q+(st, at))

2 denotes a
training error, where Q+ means the value calculated
by the Bellman equation. The action generated by
the deep Q learning algorithm is

arl = argmax
a∈A

Q(st, a). (10)

Training process: To collect the required data
efficiently, the proposed HRL method designs a train-
ing process with two stages, baseline evaluation stage
and RL agent exploration stage. In the first stage,
the ego vehicle uses only the baseline rule-based pol-
icy to collect datasets and train the value net. In the
second stage, the RL policy may explore different
actions for better performance. The ε-greedy algo-
rithm is used for exploration. Two conditions prevent
switching to the second stage: (1) The baseline pol-
icy has not been evaluated sufficiently; namely, the
number of times the state is visited is smaller than
a threshold nthre. (2) The baseline policy performs
well. For the second condition, the exploration prob-
ability is set equal to −Q(s, arule). These conditions
help the agent reduce unnecessary exploration.

HRL policy: The core idea of the HRL policy
is to determine which policy is used according to a
uniform criterion. To generate hybrid policies, we
first use the datasets collected by rule-based policy
D(st, arule) to compute the value function distribu-
tion of the rule-based policy. Further, based on the
datasets D(st, arl), we can estimate the distribution
of the learning-based policy’s value function. Then
the hybrid policy can be designed as

πhrl = πrule +
πrl − πrule

1 + exp(−wC(πrl, πrule, s))
, (11)

where πrule, πrl, and πhrl represent the rule-based
policy, RL policy, and hybrid policy, respectively.
w is a constant that tends to ∞. The activation
function C(πrl, πrule, s) is

C(πrl, πrule, s) = Q(s, πrl(s)) −Q(s, πrule(s))− cthre,

(12)

where cthre is the activation threshold that ranges
from 0 to 1. A larger activation threshold makes the
policy more conservative. Previous work has demon-
strated by experiments that when the threshold is set
as 0.5, the maximum expectation of the performance
enhancement can be achieved (Cao et al., 2021).
Nevertheless, the activation threshold is still selected
by trial and error, and further research is needed for
theoretical foundation. When C > 0 the learning-
based policy is triggered; otherwise, the rule-based
policy is adopted.

4 Simulation

In this section, we describe a simulation test we
conducted to validate the effectiveness of the pro-
posed HRL policy. Section 4.1 describes the details
of the simulation setup. The simulation results are
displayed and discussed in Section 4.2.

4.1 Simulation setup

To test the performance of the HRL policy,
we designed a scenario with stochastic pedestrians.
The ability of AVs to handle interaction with the
pedestrian relates to the distance at the moment the
pedestrian is detected and its behavior. We veri-
fied our method in a four-lane urban road scenario
constructed using the CARLA simulator. At the be-
ginning the ego vehicle drove in the left lane, and the
pedestrian was spawned near the road and started to
cross the walk at some initial condition. If the ego ve-
hicle arrived at the destination or hit the pedestrian,
the next test epoch started.

The algorithm architecture of the ego vehicle
was based on an open-source autonomous driving
platform CLAP (Zhong et al., 2020). The desired
acceleration was calculated by the proposed algo-
rithm, and a proportional integral derivative (PID)
controller was used to track the desired acceleration
in the platform. The proposed method was im-
plemented in Python based on an open-source RL
framework named Stable Baselines. The parameters
used in the baseline policy and training process are
listed in Table 2.

To simulate the randomness of pedestrians, we
set several types of pedestrians with different be-
havior patterns and risk levels, as listed in Ta-
ble 3. Owing to the rareness of safety-critical events,
we designed a pedestrian generation method for
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Table 2 Parameter setup in simulation

Parameter Symbol Value

Limit speed vlim 8 m/s
Comfortable acceleration acmf 2 m/s2

Maximum acceleration amax 6 m/s2

Feedback factor ks –2
Activation threshold cthre 0.5
Number of visited times nthre 30
Discount factor γ 0.99

accelerated evaluation to demonstrate the perfor-
mance of the algorithm (Feng et al., 2021). There are
two categories of pedestrian behavior patterns, nor-
mal behavior and random behavior. Normal pedes-
trians walk at a relatively low speed, while random
pedestrians walk faster and may often act abruptly,
such as naughty children. The pedestrians are also
divided into four risk levels according to the amount
of deceleration required of the ego vehicle to avoid
the pedestrian (Wang et al., 2019). In each test, we
sampled a pair of time-to-collision (TTC = d

vv
) and

speed value as the initial condition of the pedestrian.
TTC is calculated as the initial distance divided by
the initial speed of the vehicle. We also set normal
or random behavior patterns for each pedestrian. In
the training process, the initial conditions of pedes-
trians were generated randomly. The HRL policy
was trained for 1500 epochs in total. For testing,
we sampled 1000 cases with different risk levels, as
shown in Fig. 4. Both the baseline FSM policy and
the HRL policy were tested in these cases.

Table 3 Pedestrian behavior patterns and risk levels

Type Speed vp (m/s) Orientation ψp (◦)

Normal [1, 2] 0
Random [1.5, 4] [−30, 30]

Risk level Required deceleration (m/s2)

High [−amax,−4.1)

Medium [−4.1,−2.3)

Low [−2.3, 0)

Trivial [0,+∞)

4.2 Results

In this subsection, the simulation results of the
HRL algorithm are shown and compared with those
of the baseline method. Fig. 5 shows the relation-
ship between the success rate and the number of
simulation runs for both HRL and the baseline FSM
method. The success rate converged after about 400

simulation runs. Figs. 6 and 7 show the results of
test cases. Every marker in the figure represents 1 of
1000 simulation cases.

Fig. 4 Initial conditions generated according to differ-
ent risk levels (References to color refer to the online
version of this figure)
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Fig. 5 Success rate of the ego vehicle passing the
crosswalk (References to color refer to the online ver-
sion of this figure)

4.2.1 Safety

Safety is the most significant factor to consider
for autonomous vehicles. This work evaluates the de-
gree of safety based on how successful the pedestrian
is in crossing the street. From Fig. 8, the overall
success rate of the baseline FSM method was 94.4%,
while that of our HRL method was up to 98.8%. For
both the normal pedestrian case and random pedes-
trian case, our HRL method (99.8%, 97.8%) outper-
formed the baseline FSM method (96.3%, 92.5%).
The minimum distance between the ego vehicle and
the pedestrian in each test case is shown in Fig. 6.
For the baseline results, most collisions happened
when the ego vehicle interacted with pedestrians
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(

)

Fig. 6 Relationship between the minimum distance
and TTC (References to color refer to the online ver-
sion of this figure)

with random behavior. This is because their behav-
ior does not match the baseline assumptions. The
initial TTC of the collision cases was about 2–3 s,
because in this case the ego vehicle did not have
enough time to react to the suddenly detected pedes-
trian. To demonstrate the effectiveness of the pro-
posed method in providing a lower bound of the per-
formance, we conducted the simulation test using
solely the learning-based policy. The action was se-
lected by the policy used in the hybrid method to ex-
clude the influence of the training process. As shown
in Fig. 5, the success rate of the DQN alone was
lower than those of the baseline and HRL, because
the learning-based method is not sufficiently trained.
Thus, the introduction of the learning-based method
enables the ego vehicle to attempt to avoid the acci-
dents that occurred before.

4.2.2 Efficiency

Fig. 7 shows the average speed of the ego vehicle
for each simulation case. For large TTC, the distance
between the ego vehicle and the pedestrian is suffi-
cient to pass with less or even no deceleration. Con-
versely, small TTC indicates a high collision risk, so

Fig. 7 Relationship between the average speed of the
ego vehicle and TTC, where the dashed line stands
for the mean value of the average speed in all test
cases (References to color refer to the online version
of this figure)

the ego vehicle needs to slow down to yield to pedes-
trians. The dashed line indicates the mean value of
the average speed in all test cases, and shows that
the two methods had similar pass performance effi-
ciency (5.37 m/s for FSM and 5.38 m/s for HRL).
This result means that the proposed HRL method
does not improve safety using overly conservative
driving. Moreover, we discuss the HRL computa-
tional efficiency to prove its usability in real-world
AVs. The average runtime of the proposed HRL
policy was 1.79 ms, which is greater than FSM’s
0.51 ms. Obviously, the introduction of the learn-
ing policy increases the computational burden of the
autonomous vehicle. The increase in computation is
acceptable for real-world AVs, because most of them
are equipped with huge computing power and can
meet the real-time requirements.

4.2.3 Effectiveness of the proposed method

To demonstrate the effectiveness of the HRL
policy in enhancing safety when interacting with
pedestrians, the cases where the rule-based policy
fails are plotted in Fig. 9. The ego vehicle can
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succeed in most cases where the baseline policy fails.
This is because the rule-based policy cannot adjust
its actions according to the environment, while the
proposed strategy can avoid previous failures by self-
learning. In addition, the HRL strategy never fails as
long as the baseline policy succeeds, which demon-
strates that the proposed strategy takes the perfor-
mance of the baseline as a lower bound. Theoret-
ically, if the RL policy is sufficiently trained, most
failures can be avoided by HRL. Nevertheless, there
are several cases in which HRL still fails. By observ-
ing the simulation process, we conclude two reasons:
(1) The RL policy is not sufficiently trained and is
not trained in some cases that FSM fails to han-
dle; (2) The modeling of the pedestrians’ behavior is
simple. There are some cases where the pedestrian
still goes forward even though the ego vehicle has
stopped to yield. It is hoped that HRL will be safer
in the future when a more reasonable behavior model
is introduced.

Fig. 8 Performance comparison of the finite state ma-
chine and hybrid reinforcement learning (References
to color refer to the online version of this figure)

Fig. 9 Performance of the proposed method in the
cases where the baseline method fails (References to
color refer to the online version of this figure)

5 Conclusions

In this paper, we propose a hybrid reinforce-
ment learning strategy for autonomous vehicles that
must handle interaction with stochastic pedestrians.
The proposed strategy can adjust the ego vehicle’s
longitudinal acceleration to improve the success rate
when interacting with pedestrians in different risk
levels and behavior models.

Our proposed strategy is a combination of
the finite state machine and DQN. The baseline
FSM method provides rule-based actions and state
transition in most situations, and the learning-based
action should be activated when the rule-based
action may fail. The method is tested on an urban
road on the CARLA simulator. The results show
that the hybrid reinforcement learning method can
increase the success rate by 4.4% compared with
the basic rule-based method, and benefits from the
introduction of reinforcement learning. Meanwhile,
the ego vehicle can maintain a similar average speed.
To conclude, the proposed hybrid reinforcement
learning control strategy can generate stable actions
against uncertain pedestrian behavior and outper-
form the baseline. Nevertheless, we only verify the
effectiveness of the proposed method against the
various speeds and orientations of pedestrians. In
fact, pedestrian behavior is complex, and current
research shows that precise behavior modeling and
prediction are significant (Li et al., 2020). In the
future, we will consider the pedestrian model, test
our method in a real-world environment, and scale
it to handle multiple pedestrians.
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