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Abstract: The rapid development of communications industry has spawned more new services and applications. The
sixth-generation wireless communication system (6G) network is faced with more stringent and diverse requirements.
While ensuring performance requirements, such as high data rate and low latency, the problem of high energy
consumption in the fifth-generation wireless communication system (5G) network has also become one of the
problems to be solved in 6G. The wide-area coverage signaling cell technology conforms to the future development
trend of radio access networks, and has the advantages of reducing network energy consumption and improving
resource utilization. In wide-area coverage signaling cells, on-demand multi-dimensional resource allocation is an
important technical means to ensure the ultimate performance requirements of users, and its effect will affect the
efficiency of network resource utilization. This paper constructs a user-centric dynamic allocation model of wireless
resources, and proposes a deep Q-network based dynamic resource allocation algorithm. The algorithm can realize
dynamic and flexible admission control and multi-dimensional resource allocation in wide-area coverage signaling
cells according to the data rate and latency demands of users. According to the simulation results, the proposed
algorithm can effectively improve the average user experience on a long time scale, and ensure network users a high
data rate and low energy consumption.
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1 Introduction

With the global commercialization of the fifth-
generation wireless communication system (5G) net-
work, mobile communication has risen to a new level,
from the realization of “connection of people” to the
establishment of “connection of things” between ter-
minals in thousands of industries. Driven by the 5G
network, the requirements of users are more differ-
entiated, and the data rate and latency performance
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required by various new services and new applica-
tions are more extreme. Affected by the coverage
of mainstream 5G network frequency bands (such
as 3.5 GHz), to meet the extreme performance re-
quirements of users, the deployment density of base
stations (BSs) has to be greatly increased, which in-
creases the 5G network construction cost and energy
consumption.

The high energy consumption of the 5G network
has also become a key issue of the sixth-generation
wireless communication system (6G) network. To re-
duce the network power consumption caused by the
dense deployment of high-frequency BSs and ensure
the performance of network wide-area coverage, Liu
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et al. (2022b) proposed a wide-area coverage signal-
ing cell technical scheme. As shown in Fig. 1, in this
scheme, the low-frequency (such as 700 MHz) con-
trol BSs/cells provide unified signaling coverage for
a large geographical area, and are responsible for the
transmission of radio resource control (RRC) mes-
sages and physical layer control signaling, thereby
reducing the impact of high path loss caused by
high-frequency bands and ensuring continuous and
reliable connectivity and mobility. High-frequency
(such as 62.5 GHz and above) data BSs/cells provide
data transmission and a small amount of necessary
signaling. These high-frequency data BSs have the
characteristics of high capacity and on-demand acti-
vation, to reduce the interference between data cells
and energy consumption of the entire network.

Resource allocation is also a key problem to be
solved in wide-area coverage signaling cells, because
resource allocation is related to both user experi-
ence and network efficiency. The application of arti-
ficial intelligence (AI) in 5G networks promotes the
development of the mobile communication network
and its application in vertical industries (Liu et al.,
2022a). With the improvement of network automa-
tion and intelligence, AI has become one of the effec-
tive means of solving the problem of resource alloca-
tion in dynamic radio environments (Lin and Zhao,
2020). Ji et al. (2021) proposed an online band-
width resource allocation algorithm based on deep
reinforcement learning (DRL) to solve the resource
allocation problem caused by operators by sharing
network resources, which effectively improves the
bandwidth resource utilization. Gang and Friderikos
(2019) studied the bandwidth allocation and power
allocation problems in 5G virtual network slicing
and proposed an optimization framework for flexi-

Data BS

Data BS Data BS

Data BS
Control BS Data BS

Fig. 1 Wide-area coverage signaling cell (BS: base
station)

ble inter-tenant resource sharing based on transmis-
sion power control. Luo et al. (2014) took the max-
imization of the average signal to interference plus
noise ratio (SINR) as the goal of resource alloca-
tion, and used Q-learning to finish the channel as-
signment and power allocation at the same time. To
overcome the excessive energy consumption problem
in indoor wireless networks, Lü et al. (2021) pro-
posed a deep Q-network (DQN) based transmission
power allocation algorithm for home BSs. Ren et al.
(2021) proposed a DRL-based approach to minimize
long-term system energy consumption in a compu-
tation offloading scenario with multiple Industrial
Internet of Things (IIoT) devices and multiple fog
access points. In Zhao et al. (2015), a method based
on the combination of K-means clustering and Q-
learning was proposed to jointly optimize the spec-
trum allocation, load balancing, and energy saving
in mobile broadband networks. The above research
works were designed based on a traditional network
architecture.

Different from traditional cells that are respon-
sible for transmission of both signaling and data, the
wide-area coverage signaling cell will primarily be in
charge of the transmission of signaling messages as
well as management of all data cell resources. For
future wide-area signaling coverage scenarios, in this
paper, the network side uses intelligent capabilities
to summarize user characteristics, and uses AI tools
to realize on-demand and dynamic resource alloca-
tion according to the differentiated requirements of
users, which can improve the overall resource uti-
lization of the network and greatly improve the user
experience. In this paper, the user experience consid-
ered is the difference between the data rate revenue
and the total delay loss.

The main contributions of this paper are sum-
marized as follows:

1. Aiming at solving the problem of multi-
dimensional resource allocation in wide-area cover-
age signaling cells, a user-centric dynamic allocation
model is constructed for multi-dimensional wireless
resources, in which more differentiated requirements
of users in the future, such as rate and latency, are
considered, and the actual limitations of network
power and bandwidth are considered.

2. Considering the dynamic BS changes con-
cerning the data queue, wireless channel state, and
user service requirements, a user admission control
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scheme is formulated to enable the on-demand on/off
of data BSs.

3. A DQN-based dynamic allocation algorithm
for wireless resources is proposed to realize user ad-
mission control and the dynamic and flexible alloca-
tion of physical resource blocks (PRBs) and power.
According to the simulation results, the proposed al-
gorithm can improve the average user experience on a
long time scale, ensure a high data rate for users and
low energy consumption of the network, and achieve
real-time optimization of the overall network utility.

2 System model and problem formula-
tion

2.1 System model

In this paper, we consider the wide-area cover-
age signaling cell scenario. The dynamic user-centric
allocation model of multi-dimensional wireless re-
sources is shown in Fig. 2. In this model, we assume
that the network perceives each user that it serves,
and that users regularly report their requirements
to the network. Users in different industries have
different quality of service (QoS) requirements, in-
cluding the rate and latency. The network performs
big data calculation on users through the data col-
lection module, summarizes user characteristics, and
customizes flexible and dynamic wireless resource al-
location strategies according to user requirements.
The resource allocation involved in the process of the
BS providing services to users includes user admis-

sion control, PRB allocation, and power allocation.
In this model, we assume that there is a con-

trol BS and multiple data BSs in a specific area,
J = {1, 2, · · · , J}. The total bandwidth of W Hz
is divided into multiple PRBs, B = {1, 2, · · · , B},
which are shared by all BSs. Suppose that there are
N users in the area, N = {1, 2, · · · , N}. Due to the
limitation of orthogonal frequency division multiple
access (OFDMA), a user can access only one BS. Let
aj,n (t) and φb

j,n (t) represent the binary user admis-
sion control factors, i.e., the user admission control of
BS j and the allocation strategy of PRB b in time slot
t, respectively. When user n accesses BS j in time
slot t, aj,n (t) = 1; otherwise, aj,n (t) = 0. When BS
j allocates PRB b to user n in time slot t, φb

j,n (t) = 1;
otherwise, φb

j,n (t) = 0. φb
j,n (t) satisfies

φb
j,n (t) ≥ 0,

∑

j∈J
φb
j,n (t) ≤ B. (1)

The channel state in each time slot is assumed
to be fixed when a user requests access to each BS.
The channel states among different time slots change
randomly, and are independent of each other. The
transmission rate provided by BS j to user n on PRB
b in time slot t can be expressed as

rbj,n(t)=wb
j,n

· log2

⎛

⎜⎝1+
pbj,n(t)h

b
j,n(t)∑

∀j′∈J ,j′�=j

∑
∀n′∈N ,n′�=n

pbj′,n′(t)hb
j′,n′(t)+σ2

⎞

⎟⎠ ,

(2)

Fig. 2 Dynamic user-centric resource allocation model in a wide-area coverage signaling cell (BS: base station;
PRB: physical resource block)
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where wb
j,n is the bandwidth allocated by BS j to

user n on PRB b, and σ2 is the noise power. The
noise power is the same on all PRBs of all BSs for all
users. pbj,n (t) represents the power allocated by BS j

to user n on PRB b in time slot t. Let H be a finite set
of channel states. When user n accesses BS j in time
slot t, hj,n (t) is the channel gain, where hj,n (t) ∈
H = {h1, h2, · · · , hH} (here, H is the number of
different channel states in this model).

Therefore, the total transmission rate provided
by BS j for all users accessing the BS in time slot t

is
rj (t) =

∑

b∈B

∑

n∈N
aj,n (t)φ

b
j,n (t) rbj,n (t) . (3)

The total rate of all BSs in time slot t in the
whole network is

r (t) =
∑

j∈J
rj (t). (4)

The long-term average total rate of the whole
network is

r̄ = lim
T→∞

sup
1

T

T−1∑

t=0

E [r (t)]. (5)

Consider a discrete-time queuing system, in
which the length of each time slot is fixed. Denote
the number of data packets arriving at BS j accessed
by user n in time slot t as Xj,n (t). The number of ar-
riving data packets follows the Poisson distribution
with parameter λj,n and is independent and identi-
cally distributed between different time slots. This
model constructs a corresponding queue for the data
packets of the services to be processed by each BS.
At the beginning of time slot t, the queue length of
BS j is Qj (t), Qj (t) =

∑
n∈N

Qj,n (t), where Qj,n (t)

is the queue length of user n accessing BS j.
The dynamic update process of Qj (t) is de-

scribed as follows:

Qj (t+ 1) = max {Qj (t)−Dj (t) , 0}+Xj (t) , (6)

where Dj (t) = εj (t)wAj (t) /S represents the num-
ber of data packets leaving the queuing of BS j in
time slot t, εj (t) represents the spectral efficiency
in time slot t, w is the bandwidth of each PRB,
Aj (t) is the number of PRBs allocated by BS j

to users in time slot t, S is each data packet’s
size in the BS queue, and Xj (t) =

∑
n∈N

Xj,n (t)

is the number of data packets arriving at BS j in
time slot t. Let Q (t) = {Q1 (t) , Q2 (t) , · · · , QJ (t)}
represent the global queue state information of
the network in time slot t. The global channel
state information in time slot t can be expressed
as H (t) =

{
h̄1 (t) , h̄2 (t) , · · · , h̄J (t)

}
, where h̄j (t)

(j = 1, 2, · · · , J) represents the average channel gain
of users accessing BS j in time slot t.

2.2 Optimization problem

The objective of this study is to maximize the
overall user experience on a long time scale, that is,
the difference between the data rate revenue and the
total delay loss.

The total radio interface delay considered in this
study includes the processing delay dnproc and the
transmission delay dntran of user n. After the BS re-
ceives the data request from the corresponding user,
the time required to process the data packets is de-
fined as the processing delay. The data processing
delay of user n accessing BS j is expressed as

dnproc (t) =
Xj,n (t)Sj,n

Rj,n
, (7)

where Rj,n is the rate at which BS j processes the
data packets of user n, and Sj,n is the data packet
size of user n accessing BS j.

Between the BS and the user, the time required
to transmit data packets over the air interface is de-
fined as the transmission delay. The data transmis-
sion delay of user n is expressed as

dntran (t) =
Xj,n (t)Sj,n∑

b∈B
φb
j,n (t) r

b
j,n (t)

. (8)

The total radio interface delay of user n is

dn (t) = dnproc (t) + dntran (t) . (9)

The total air interface delay of the whole net-
work is

d (t) =
∑

j∈J
dj (t)

=
∑

j∈J

∑

n∈N
aj,n (t)

(
dnproc (t) + dntran (t)

)
. (10)

The long-term average total air interface delay
of the whole network is

d̄ = lim
T→∞

sup
1

T

T−1∑

t=0

E [d (t)]. (11)
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The average network benefit and the average
network cost of the system can be expressed as

gr = rδr, (12)

ld = d̄δd, (13)

where δr and δd refer to the unit prices of the data
rate and delay, respectively.

The overall average user experience is

ū = gr − ld. (14)

Therefore, the optimization problem is

max
a(t),φ(t),p(t)

ū s.t. (15a)

C1 :
∑

b∈B
φb
j,n (t) r

b
j,n (t) ≥ rnmin, ∀n ∈ N , (15b)

C2 : dn (t) ≤ dnmax, ∀n ∈ N , (15c)

C3 :
∑

b∈B

∑

n∈N
aj,n(t)φ

b
j,n(t)p

b
j,n(t) ≤ pjmax, ∀j ∈ J ,

(15d)

C4 :
∑

n∈N
φb
j,n (t) ≤ 1, ∀j ∈ J , ∀b ∈ B, (15e)

C5 :
∑

j∈J
aj,n (t) = 1, ∀n ∈ N , (15f)

C6 :
∑

n∈N
aj,n (t)Rj,n ≤ Rj , ∀j ∈ J , (15g)

C7 : rj (t) ≤ Wj , ∀j ∈ J . (15h)

C1 indicates that user admission control and re-
source allocation should meet the minimum data rate
requirements of users. C2 indicates that user admis-
sion control and resource allocation should meet the
user delay limit. C3 means that the total power al-
located to users by each BS should not exceed its
maximum transmission power limit pjmax. C4 means
that each PRB can be assigned to only one user. C5
indicates that each user can be associated with only
one BS. C6 means that the data processing rate re-
quired by each user on any BS should not exceed
the total data processing rate of the BS, where Rj

represents the total data processing rate of BS j. C7
represents that the total allocated bandwidth of BS
j is not greater than the upper limit of the available
bandwidth Wj of BS j.

3 Dynamic resource allocation algo-
rithm based on DQN

In traditional resource allocation problems, the
Q-learning algorithm is often used. The problem

of the Q-learning algorithm is that when the state
space and action space are discrete and the dimen-
sion is not high, a Q-table can be used to store the Q

value of each state-action pair. However, when the
state space and action space are high-dimensional
and continuous, the action space and state space are
too large, and it is very difficult to use a Q-table. As
an algorithm based on value iteration which is simi-
lar to Q-learning, DQN is a concrete implementation
of the combination of a deep learning multi-layer
convolution neural network (CNN) and Q-learning.
When the state space and action space are high-
dimensional and continuous, DQN can transform the
update of Q-table into a function-fitting problem. By
fitting a function instead of the Q-table to generate
the Q value, similar states can obtain similar out-
put actions. Therefore, we propose a DQN-based
dynamic allocation algorithm for wireless resources
to solve our optimization problem and dynamically
allocate wireless resources in the access network.

3.1 Reconstruction of constrained Markov de-
cision process (CMDP) based on DQN

The optimization problem in this study can be
formulated as a CMDP problem (Xu et al., 2021).
CDMP is closely related to reinforcement learning.
CDMP uses a time-varying random variable to sim-
ulate the state of the system, and its state transition
depends on the current state and the action vec-
tor applied to the system. A Markov decision pro-
cess is used to calculate the action strategy, which
will maximize the utility related to the expected re-
ward. In this model, user admission control, PRB
allocation, and power allocation are formulated as a
CDMP problem, which can be denoted as a quadru-
ple 〈C,A, pa (c

′|c) , Ra (c
′|c)〉, where C represents the

finite set of states in the network and A represents
the finite set of possible actions. When action a

is taken in state c during the current time slot t,
pa (c

′|c) is the probability that the state will transi-
tion to c′ from c. When the system transitions to
state c′ after performing action a in state c, Ra (c

′|c)
is the reward function, indicating the immediate
cost/reward, which reflects the learning objective.
The basic elements include the system state, resource
allocation behavior, state transition probability, and
cost function.

Take state c as the input to the DQN algo-
rithm. After the neural network analysis, the DQN
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algorithm outputs the corresponding action. The
main idea behind the algorithm is to approximate
the distribution of Q values using the neural network
training function fap. The Q value can be denoted
as

Q (c, a) ≈ fap (c, a, θ) , (16)

where Q denotes the main network’s weight, and
Q (c, a) = [Q (c, a1) , Q (c, a2) , · · · , Q (c, aK)] (here,
K is the maximum number of actions that can be
taken in A).

The target Q-network is updated only once in a
period, while the main network is updated after each
iteration. The target Q value can be denoted as

Q′ = r (c, a) + γ

[
max
a′∈A

Q
(
c′, a′, θ−

)]
, (17)

where the discount factor γ ∈ [0, 1) represents the
decay degree of the reward function value, indicat-
ing the impact of the future reward on the current
behavior choice, and θ− is the target Q-network’s
weight. To improve the network prediction perfor-
mance, it is required to learn and train the weight
function repeatedly to fit complicated environmental
data.

Fig. 3 depicts the DQN training procedure. In
this training model, the optimization of weight θ is
achieved by minimizing the loss function between the
main network and the target Q-network, which can
be described as

L (θ) = E
[
(Q′ −Q (c, a, θ))

2
]
. (18)

(c, a)

Update the 
target 

Q-network

Randomly select 
state c′

Training
Gradient descent 
update weight θ

Q(c(t), a, θ)

Target 
Q value

Experience pool Loss function L(θ)

Main network

Target Q-network
−

′∈

⎡ ⎤′ ′⎢ ⎥⎣ ⎦
( , ) + max ( , , )

Fig. 3 Deep Q-learning network training model

The optimal allocation strategy for wireless re-
sources can be found using the trained main net-

work of the DQN algorithm after the main network
has been trained. The process of the dynamic wire-
less resource allocation algorithm is organized as fol-
lows: in time slot t, the system state is specified as
ct = (Q (t) , H (t)) ∈ C, and the action is defined as
at = (a (t) , φ (t) , p (t)) ∈ A. π : C → A, which is a
stability policy and can be expressed as a = π (c), is
the process of mapping the state space to the action
space. According to the initial state c and the strat-
egy π ∈ Π , where Π represents the set of all possible
strategies, in time slot t, the expected cumulative
network sum rate can be denoted as

r̄π (c) = Eπ

{ ∞∑

t=0

γtr (ct, at)|c0 = c

}

= Eπ

⎧
⎨

⎩

∞∑

t=0

γt
∑

j∈J
rj (t)|c0 = c

⎫
⎬

⎭ . (19)

The expected cumulative sum delay of the total
network radio interface is

d̄π (c) = Eπ

{ ∞∑

t=0

γtd (ct, at)|c0 = c

}

= Eπ

⎧
⎨

⎩

∞∑

t=0

γt
∑

j∈J
dj (t)|c0 = c

⎫
⎬

⎭ . (20)

3.2 Algorithm implementation

The proposed algorithm’s state, action, and re-
ward are specifically defined as follows:

State: Define the state of the network system
of the access network as ct = (Q (t) , H (t)) ∈ C,
including the global queue state information Q (t)

and the global channel state information H (t).
Action: Action set a∗t is defined as a se-

ries of vectors. Each vector represents user
admission control, PRB, and power allocation
on all BSs, satisfying [a∗ (t) , φ∗ (t) , p∗ (t)] =

arg max
a(t),φ(t),p(t)

(
r̄π (c) δr−d̄π (c) δd

)
, where a∗ (t),

φ∗ (t), and p∗ (t) represent the user admission con-
trol scheme, PRB, and power allocation strategy that
satisfy the user experience maximization in time slot
t, respectively.

Reward: Considering that the objective of this
algorithm is to maximize the overall average user
experience, the reward function is defined as the sum
of user experience gained after all users associate BSs
and allocate their PRB and power when constraints
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C1–C7 are satisfied. Otherwise, it is defined as a
negative feedback:

r (c, a) =

⎧
⎨

⎩

∑
n∈N

un, s.t. C1− C7,

−1, otherwise.
(21)

The specific flow of the algorithm is shown in
Algorithm 1. At step 3, the optimal action at under
state ct according to the output result of the latest
main network is obtained. At step 4, the PRB and
power allocation of the access network are jointly ad-
justed according to at, to ensure the QoS in real time
and obtain the final user admission control scheme
aj,n (t), power allocation strategy pbj,n (t), and PRB
allocation strategy φb

j,n (t). Then the resource allo-
cation process ends.

Algorithm 1 DQN-based dynamic allocation
Input: system initial state c and the corresponding reward

r (c, a)

1: for t = 1, 2, · · · , T do
2: In current time slot t, monitor the global state ct of

the access network, including the global channel state
information H (t) and the global queue state information
Q (t)

3: Calculate the optimal power and PRB allocation actions,
at = argmax

a∈A
Q (ct, a, θ)

4: Adjust the power and PRB allocation depending on the
optimal action at

5: t = t+ 1

6: end for
Output: user admission control scheme aj,n (t), power al-

location strategy pbj,n (t), and PRB allocation strategy
φb
j,n (t)

4 Simulation results and analysis

In this section, the overall user experience of the
system and the average user experience of a single
user are used as the performance evaluation indices
to evaluate the feasibility of the built model and the
effectiveness of the proposed algorithm. The algo-
rithm proposed in this study is compared with the
heuristic algorithm (Kalil et al., 2017) and the min-
imum distance allocation (MDA) algorithm (Zhang
et al., 2021). In the heuristic algorithm, the weight of
each user is calculated according to the queue state
and channel state of each BS in the current time
slot and the minimum resource requirement of each
user. Based on the calculated user weight, network
resources are allocated to the corresponding users

according to the weight in each discrete resource
scheduling time slot. In the MDA algorithm, each
BS associates users according to the shortest dis-
tance, and each PRB allocates the same amount of
power for users.

4.1 Simulation environment

In the simulations, we assume that four BSs are
distributed uniformly in a 2 km× 2 km area. The co-
ordinates are (0.5, 0.5), (0.5, 1.5), (1.5, 0.5), and (1.5,
1.5) km, and users are randomly distributed in the
area. Assuming that there are three types of services
required by users, the minimum rate requirements
and the total radio interface delay requirements of
different users are different, and the arrival process
of user data packets follows an independent and iden-
tically distributed Poisson distribution. In addition,
set the noise power σ2 = 10−7 mW. The optional
power level on the PRB is {0, 0.5, 1} dBm. The ser-
vice rate unit price and the delay unit price are 5 per
Mb/s and 1 per ms, respectively.

In the DQN-based dynamic allocation algo-
rithm, a multi-layer CNN is used in the main net-
work and target Q-network, including three convo-
lution layers and two fully connected layers. The
relevant information of each layer includes the size
of the convolution kernel, the size of the convolution
step, and the number of convolution kernels. The
queue length of each BS is discretized into a finite
number of equally spaced intervals, and each inter-
val represents the current queue state. Therefore,
the system state space in the constrained Markov
problem is a finite state set. The parameters of the
target Q-network are updated every 200 iterations.
In the training process, the capacity of the DQN ex-
perience playback pool is set to 10 000. ε = 0.7 is
the probability value of an ε-greedy strategy. The
remaining parameters are shown in Table 1.

4.2 Performance evaluation

Fig. 4 shows the changes of the user experience
of the system of the three resource allocation algo-
rithms with the advancement of time series when the
number of users is 30 and the maximum transmission
power of the BS is 39 dBm. The figure shows that
the user experience of the proposed algorithm and
the heuristic algorithm tends to be stable over time,
while as a static resource allocation algorithm, the
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user experience obtained by the MDA algorithm does
not change with time. Compared with the heuristic
and MDA algorithms, the proposed algorithm can
obtain superior user experience on a long time scale.

Fig. 5 illustrates the relationship between the
average user experience and the number of users
when the maximum transmission power of the BS
is 39 dBm on a long time scale. Fig. 5a shows the
average user experience of all the users in the sys-
tem, and Fig. 5b shows the average user experience
of a single user. The simulation results show that
compared with the heuristic and MDA algorithms,
the proposed algorithm can obtain the maximum av-
erage user experience and has the greatest optimal
effect on the user experience. Because the heuristic

Table 1 Simulation parameters

Parameter Value

Number of PRBs, Z 50
System bandwidth, W 10 MHz
Maximum transmission power 20, 25, 30, 35, 39 dBm

of BS j, pjmax

Minimum data rate limit 5 Mb/s, 1 Mb/s, 51 kb/s
of user n, rnmin

Maximum delay limit 10, 7.5, 1 ms
of user n, dnmax

Pathloss from a BS to a user 37.6lg[d (km)]+128.1 dB
Noise power spectral density −174 dBm/Hz
Data packet size, S 4 kb/packet
Maximum number of iterations 3000
Discount factor, γ 0.9
Time slot length 1 ms
Learning rate 0.0001

PRB: physical resource block; BS: base station
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Fig. 4 Changes of the user experience of the system
over time when the number of users is 30 and the
maximum transmission power of the base station is
39 dBm

algorithm considers the user’s minimum demand for
resources, the heuristic algorithm can guarantee the
service rate, but cannot achieve the optimal user ex-
perience. In the MDA algorithm, each PRB allocates
the same amount of power for users, and resources
cannot be flexibly and dynamically allocated accord-
ing to the user’s needs.

In Fig. 5a, when the number of users is small, the
average user experience obtained by the heuristic al-
gorithm is similar to that obtained by the proposed
algorithm, because the network resources are rela-
tively sufficient. With the increase in the number of
users, the increase of the data rate revenue is greater
than the total delay loss in the whole network, so the
average user experience of all the users in the system
increases. In addition, it can be seen from Fig. 5b
that the average user experience of a single user de-
creases with the increase in the number of users, due
to the limitation of radio resources in the network.
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Fig. 5 Average user experience varying with the num-
ber of users when the maximum transmission power
of the base station is 39 dBm: (a) average user expe-
rience of the system; (b) average user experience of a
single user
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When the number of users in the system is small, the
network resources are relatively sufficient, and a sin-
gle user can obtain a high data rate and a low delay.
With the increase in the number of users in the sys-
tem, the available resources are limited. When the
number of users reaches a certain scale, the proposed
algorithm can maintain only the user’s minimum re-
quirements for rate and delay. Therefore, the average
user experience of a single user gradually decreases
as the number of users increases. From the simula-
tion results, it can be concluded that the proposed
algorithm can maintain the optimal performance and
maximize the average user experience regardless of
the overall user experience of the system or the av-
erage user experience of a single user.

Fig. 6 shows the relationship between the aver-
age user experience of the system and the maximum
transmission power of the BSs when the number of
users is 30. It can be seen from Fig. 6 that the user
experience of the three algorithms all increases with
the increase in the maximum transmission power of
the BSs. An increase in the transmission power of
the BSs will boost the data rate revenue and improve
the overall user experience of the system. When the
maximum transmission power of the BSs is small,
the average user experience of the MDA algorithm
is negative, because the transmission power of the
BSs is too small to guarantee the service rate and
latency requirements of the surrounding users. By
comparing these three algorithms, it can be con-
cluded that the proposed algorithm can guarantee
the maximum average user experience and has the
best performance.
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Fig. 6 Average user experience of the system varying
with the maximum transmission power of the base
stations (BSs) when the number of users is 30

5 Conclusions and future work

Considering the future wide-area coverage sig-
naling cell scenario, we proposed a dynamic
user-centric multi-dimensional resource allocation
method. Considering the different QoS requirements
of users in different industries, we constructed a dy-
namic allocation model for wireless resources. A
DQN-based dynamic allocation algorithm for wire-
less resources was proposed to maximize the overall
user experience. In the model, the network fully per-
ceived its state through various measurements re-
ported by the terminal. The proposed algorithm
realized on-demand user admission control and dy-
namic resource allocation according to the require-
ments of rate and latency reported by users. The
simulation results showed that the proposed algo-
rithm can effectively improve the average user expe-
rience on a long time scale, while ensuring the user’s
minimum data rate requirements and latency con-
straints and ensuring low energy consumption of the
network in the process of resource allocation, thus
achieving the goals of optimizing the overall network
utility in real time and realizing on-demand wireless
resource allocation.

In the future research work, more types of re-
sources can be considered in this paper’s model,
including communication resources, computing re-
sources, and cache resources, to enable deeper in-
tegration of data, information, and communication
technologies.
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