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Abstract: Overcharging is an important safety issue in the charging process of electric vehicle power batteries,
and can easily lead to accelerated battery aging and serious safety accidents. It is necessary to accurately predict
the vehicle’s charging time to effectively prevent the battery from overcharging. Due to the complex structure of
the battery pack and various charging modes, the traditional charging time prediction method often encounters
modeling difficulties and low accuracy. In response to the above problems, data drivers and machine learning
theories are applied. On the basis of fully considering the different electric vehicle battery management system
(BMS) charging modes, a charging time prediction method with charging mode recognition is proposed. First,
an intelligent algorithm based on dynamic weighted density peak clustering (DWDPC) and random forest fusion is
proposed to classify vehicle charging modes. Then, on the basis of an improved simplified particle swarm optimization
(ISPSO) algorithm, a high-performance charging time prediction method is constructed by fully integrating long
short-term memory (LSTM) and a strong tracking filter. Finally, the data run by the actual engineering system
are verified for the proposed charging time prediction algorithm. Experimental results show that the new method
can effectively distinguish the charging modes of different vehicles, identify the charging characteristics of different
electric vehicles, and achieve high prediction accuracy.

Key words: Charging mode; Charging time; Random forest; Long short-term memory (LSTM); Simplified
particle swarm optimization (SPSO)
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1 Introduction problems, overcharging of EVs is one of the most fre-
quently encountered safety problems (Zhu XQ et al.,
2019). Due to aging, inconsistency, battery man-

agement system (BMS) failures, and other reasons,

With steady growth in the number of electric ve-
hicles (EVs) in the automobile market, the running

problems and charging safety of EVs are important
issues to be solved at present. Among many battery
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EV batteries are prone to overcharging, which leads
to the loss of anode and cathode materials and ex-
cessive electrolyte decomposition. This deteriora-
tion leads to thermal runaway of the battery, which

causes an explosion and fire (Li CX et al., 2020). The
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charging pile is the main charging device for EVs, and
can directly affect the EV charging behavior. The
accurate prediction of charging time by the charging
pile can effectively prevent battery from overcharg-
ing. Therefore, the prediction of EV charging time
is of great significance in the operation and charging
safety of EVs. Data used in this study are obtained
from charging piles, and the EV charging time is
also predicted from the perspective of charging piles
to prevent overcharging.

The traditional method of predicting remain-
ing charging time calculates the required charging
time per unit state of charge (SOC) according to
the total charging time, and calculates the remain-
ing charging time according to the required charging
SOC (Sun et al., 2021). This method is not suit-
able for studying the charging time of EVs because
of the uneven distribution of EV charging time. An
equivalent circuit model can be established to study
the charging condition of the battery and reflect its
charging behavior (Frendo et al., 2020). However,
the establishment of an equivalent circuit model re-
quires detailed knowledge of battery parameters and
battery pack structure, which is difficult to obtain
by charging pile, and it is challenging to determine
battery parameters through experiments, which re-
quires considerable engineering work (Frendo et al.,
2020). Moreover, due to battery inconsistency, when
an electric car has not reached the full charge state,
the phenomenon of overcharging may have occurred.
EV BMSs charge according to the unique EV charg-
ing mode, and the charging voltage and current are
different in different charging modes, which leads to
great differences in charging time. All these factors
increase the difficulty in predicting EV charging time
(Zhang QS and Zhao, 2020).

With the development of artificial intelligence,
machine learning algorithms have been applied
to various prediction methods (Altché and de la
Fortelle, 2017; Roondiwala et al., 2017; Chang et al.,
2020; Liu WW et al., 2022; Yang et al., 2022). Com-
pared with the physical battery model, the machine
learning method has a lower computational cost.
The data-driven machine learning model represents
the latest development in prediction methods. In
Liu YY (2018), a battery model with adaptive on-
line parameters based on Lyapunov’s law was used
to evaluate the SOC of the lithium battery, but the
relationship between it and the charging time was

not explained. The charging time of the battery
can be predicted according to the charging temper-
ature (Zhu ZC and Zheng, 2017). The empirical
model established by this method can predict the
battery charging time at different temperatures, but
the model is strongly dependent on data features
and thus has weak generalization ability. In Cheng
et al. (2019), fuzzy information granulation (IG) was
combined with a support vector regression (SVR)
model to predict the remaining charging time of the
lithium battery. This method improves the train-
ing efficiency, but it has limited ability to represent
complex functions when there are limited samples.
The remaining time can be predicted using the unit
charging power method (Han et al., 2014); however,
this method requires a large amount of collection and
calculation work, and thus is not suitable for practi-
cal engineering applications. In Lin (2018), a three-
stage SVR model was used to predict the remaining
charging time of the lithium battery; it divides the
charging process into an early stage, middle stage,
and late stage. In Zhou et al. (2019), the estimation
of battery capacity was converted into the estimation
of the time required for full charging of the battery.
The real-time full charging time of the battery can be
predicted using an extended Kalman filter and Gaus-
sian process regression (EKF-GPR) algorithm. Still,
the error will gradually increase with the increase
of the number of cycles. Independent long short-
term memory (IndyLSTM) was used to predict the
remaining charging time of the lithium battery in
Liu X (2020), but the charging methods of various
batteries were not considered, and the parameters on
which the algorithm depends needed to be selected
artificially.

At present, most research studies only the charg-
ing time of a single battery, and does not consider
the impact of vehicle charging mode, so it cannot be
applied well to the EV industry. It is necessary to
propose an intelligent charging time prediction al-
gorithm that can identify different EV charging pat-
terns. To fill this research gap, in this paper we add a
charging mode recognition module to the prediction
algorithm, and study the constant current constant
voltage (CC-CV) mode and multistage constant cur-
rent (MCC) mode. These are the main modes used
by EVs in the market, making the research content
more universal. Different from other work, we use
real charging vehicle data, and thus the situation is
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more realistic and the model is more suitable for the
general vehicle type.

2 Problem description
2.1 System description

As is commonly known, predicting the charg-
ing time of EVs is a time series prediction problem.
LSTM performs well in time series data and is of-
ten used as a charging time prediction method. An
LSTM schematic and the calculation equations are
shown in Fig. 1 and Eqs. (1)—(6) (Zhang YF et al.,
2021):

Fi=o0(Wihiy + Wiz + by), (1)
iy = o(Wihi_1 + Wiz, + b;), (2)
a; = tanh(W_ h;—1 + Wea, + be), (3)
ci=f,0¢c1+1 O ay, (4)
o =0(Wohi—1+Woxi+ b,), (5)
h; = oy ® tanh(c;). (6)
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Fig. 1 Unit structure of long short-term memory
(LSTM)

Egs. (1)—(6) are the equations for predicting the
charging time of traditional LSTM, where x is the
charging input data, h is the output forecasting data,
“®” represents the inner product of vectors, c is the
state of the unit, and ¢ is the time. f, ¢, and o
are the forgetting gate, input gate, and output gate,
respectively. o denotes the sigmoid activation func-
tion, and tanh denotes the tangent function. W and
b represent the weight matrix and the deviation vec-

tor, respectively (the subscripts “f,” “i,” “c,” and “0”

refer to the forgetting gate, input gate, state of the
unit, and output gate, respectively).

In the actual charging scenario, due to the com-
plexity of vehicle models and the great differences
in charging methods, for a large number of different
vehicles, using a single LSTM method cannot obtain
better prediction accuracy or solve the problem of
preventing overcharge. In addition, LSTM model
parameters must be determined, such as the num-
ber of neurons, the learning rate, and the number of
iterations. The learning rate controls the learning
speed of LSTM. If the learning rate is too low, the
convergence time of the algorithm will be too long.
If the learning rate is too high, the learning speed
of the algorithm will be too high, and the model
may miss the optimal value, which makes it diffi-
cult to achieve sufficient accuracy. Similarly, too few
or too many neurons and iterations will affect the
convergence speed and prediction accuracy of the
algorithm. These problems make it difficult to de-
termine the parameters of the prediction algorithm.
In Liu B (2020), the parameters of the LSTM pre-
diction model were determined by particle swarm
optimization (PSO). PSO is a simple optimization
algorithm, and has been used for parameter opti-
mization of various algorithms because of its being
simple and efficient. The LSTM method improved
by PSO is shown in Fig. 2.
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Fig. 2 Flowchart of PSO-LSTM (PSO: particle swarm
optimization; LSTM: long short-term memory)

Generally, the particle I in the particle swarm
represents the parameters of LSTM, including the
number of units in the hidden layer, number of it-
erations, time step, and learning rate. Hu and Li
(2007) proved that the PSO evolution process is in-
dependent of particle velocity, and that the ultimate
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goal of the algorithm is to make the current solution
infinitely close to the optimal solution. Therefore,
they proposed a simplified PSO (SPSO) algorithm,
whose calculation equation is

Uit = wliy +errt (pia — 1) + cora(gna —15)- (7)

In Eq. (7), l;q is the position of the i'" particle in
dimension, p;q is the current local optimal position
of the particle, and gpq is the global optimal position
of the particle swarm. ¢; and ¢y are learning factors,
and r1 and 7o are random numbers between 0 and 1.
w is a non-negative inertia weight and k represents
the moment.

However, in the face of solving complex multi-
peak and multi-local problems, the particle optimiza-
tion ability of SPSO will be reduced due to the lack
of speed constraints, which will affect the rate of
convergence and the accuracy of the algorithm.

2.2 Research motivation

Different EVs have different BMSs and charging
modes. At present, other research has not consid-
ered the identification of charging mode when study-
ing the charging behavior of EV batteries. The EV
charging mode represents the change of charging cur-
rent with time. The CC-CV and MCC modes are the
most common charging modes, as shown in Fig. 3.

CC-CV charging mode MCC charging mode

Constant curren& Constant current

Constant
: voltage

! 1—|—|

(a) (b)

Fig. 3 Mainstream charging modes of an electric vehi-
cle (EV): (a) constant current constant voltage (CC-
CV) charging mode; (b) multistage constant current
(MCC) charging mode

To improve the accuracy of charging time pre-
diction, the charging mode should be considered and
a clustering method can be used to classify modes.
Density peak clustering (DPC) is a density-based
clustering method proposed by Rodriguez and Laio
(2014); it can classify similar data into the same clus-
ter and realize efficient clustering among arbitrary
data. However, DPC is not sensitive to the local
set of data and performs poorly, especially when the
internal data change greatly. Although k nearest

neighbors (KNN) can be used to improve DPC (Du
et al., 2016), its Euclidean distance cannot reflect
the importance of each indicator. In this study we
propose a new KNN-DWDPC (dynamic weight den-
sity peak clustering) method, which can solve the
problem of local insensitivity of DPC to data, and
increase the attribute differentiation among data.

LSTM is selected to predict EV charging time
in this study. To solve the problem that the LSTM
accuracy is affected by manual parameter setting, it
is necessary to select an intelligent optimization algo-
rithm to determine the appropriate parameters. We
propose a new improved simplified particle swarm
optimization (ISPSO) algorithm based on SPSO and
the velocity mean. This method not only enlarges
the scope of particle search, but also makes it easier
for the particle to approach the global optimal value.
To eliminate the problem that ISPSO falls into a lo-
cal optimum due to the lack of a velocity term, a
strong tracking filter is used to improve the updat-
ing position of the particle swarm. Compared with
existing prediction algorithms, the improved fusion
algorithm can effectively avoid the shortcoming of
the PSO algorithm, which cannot provide suitable
parameters for LSTM due to local optimization. Fi-
nally, the improved fusion algorithm is applied to
the charging vehicles in different charging modes to
predict charging time in real time.

The proposed EV charging time prediction
method (Fig. 4) is divided mainly into three mod-
ules, i.e., the data collection module, classification
module, and prediction module. The main contribu-
tions of this study are as follows:

1. To reduce the large classification error caused
by the significant variation in charging current in the
same charging mode, an improved DWDPC method
is proposed based on KNN. This method can improve
the poor performance of DPC caused by different
local data densities, and can make the classification
samples more representative by dividing the charging
data into several similar data sets.

2. Focusing on the multi-mode charging charac-
teristics of EVs and the fact that prediction of charg-
ing time is not accurate in a single mode, a charging
pile charging mode feature recognition method based
on KNN-DWDPC and random forest (RF) fusion is
proposed. This method considers the influence of
charging modes and designs intelligent charging pat-
tern recognition for different vehicles.
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Fig. 4 Electric vehicle (EV) charging time prediction
based on charging pattern recognition (RF: random
forest; STF: strong tracking filter; CC-CV: constant
current constant voltage; MCC: multistage constant
current)

3. Focusing on the problem that PSO in a tra-
ditional PSO-LSTM algorithm can easily fall into
a local optimum, an improved ISPSO method is
proposed to determine the LSTM parameters. The
method introduces the idea of using the mean value
to improve the global optimal particle leadership.

4. Focusing on the problem that the convergence
time of the algorithm is affected by the omission of
the velocity term, the ISPSO-LSTM-STF charging
time prediction method is proposed. This method
can effectively improve the algorithm’s prediction ac-
curacy and reduce the convergence time.

3 Charging mode classification method
based on KNN-DWDPC-RF

In this section, we introduce an intelligent model
classification algorithm that can identify the charac-
teristics of different charging modes, which is the
prerequisite of the prediction in the next section.

The classification of charging modes is closely
related to charging current. However, in a complete
charging process, the variation of current data in
the same charging mode is very different, which may
lead to deterioration of classification and prediction
effects. Therefore, before classification, we cluster
all model data and classify charging modes after we
cluster similar charging data into one data set. DPC

is used in this study. DPC is based on two important
quantities: the local density p; of each point 7, and
its distance §; from points of higher density. DPC
takes the points with larger p; and §; as the cluster
center, and assigns the remaining data points to the
cluster nearest to the center. Du et al. (2016) used
the KNN idea to calculate the local density of DPC,
and its calculation equation is as follows:

K(z)={jli€X, d(zi,x;)<d(;, NNg(z;))}, (8)

Zz- K(z; d(xi7w.7')2
pPi — eXp <— i €K( I)€ ) (9)

where d is the Euclidean distance and NNy (x;) rep-
resents the k'™ point nearest to z; according to d.
p; calculates the average distance of k nearest data
points to x;, representing the inverse measure of dis-
tance. p; uses the Euclidean distance as the measure
of distance, and X is the data set.

In the DWDPC method, the Euclidean distance
in local density (Eqs. (8) and (9)) is improved to
the weighted Euclidean distance dy, (z;, ), which is
calculated as follows:

Tif +Zjf

Wi, f = 0 y (10>
7 Yije1 (@is +xjr)
2
dy(z,25) = | Y wijp(wip — 2j5)°, (11)
f=1

where z; and x; represent the sample points to be
calculated, x;f is the value of the f* component of
the i*® data point, n is the number of data points,
m represents the sample dimension, and w; j y repre-
sents the distance weight.

The traditional Euclidean distance does not
consider the distribution characteristics of data and
cannot distinguish data attributes well. To increase
the degree of distinction between data attributes,
Wang et al. (2020) proposed the weighted Euclidean
distance, but they considered only the distribution
characteristics of the current point when calculat-
ing the distance between two points. Because the
data distribution characteristics of relative points
were not considered, the change of relative points
was static in this method, and the weight of the
distance between the same data points and differ-
ent relative data points remained unchanged, which
is obviously unreasonable. Compared with the ex-
isting methods and traditional Euclidean distance,
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the proposed dynamic weighted Euclidean distance
simultaneously considers the distribution character-
istics of reference points and sample points in the
sample, and different weights can be assigned.

The flowchart of the improved classification al-
gorithm in this study is shown in Fig. 5.

The flow of KNN-DWDPC-RF is as follows:

Step 1: Import the historical charging data of
various models from the charging pile database.

Step 2: Preprocess the data, including the com-
pletion and normalization of missing values. The
input data of KNN-DWDPC-RF are obtained, con-
sisting of charging current and charging SOC.

Step 3: Calculate K (x;), wij ., dw(x;,x;), &,
and p;. 0; represents the distance between a data
point and the nearest point with a higher density.
The cluster center distance §; of a data point is ex-
pressed as (Du et al., 2016)

(12)

o min(dw (z,,2;)), J : pi > pj,
’ max(dw(x;,x;)), otherwise.

Step 4: Determine the cluster center.

Step 5: Sort the data points in descending order
according to the density.

Step 6: Perform random sampling and deter-
mine the characteristics for each data set.

Step 7: Use the Gini coefficient to divide the
property-generated nodes and establish the CART
decision tree.

Step 8: Determine whether the number of deci-
sion trees is sufficient. If the requirements are met,
random forest classifiers Ry, Rs, ..., R, are gener-
ated. If not, continue the iteration.

Random samples and
| Stvart | > features <
| Input data set T | — * - —
v Use the Gini coefficient to divide
the property-generated nodes and

| Preprocess the data |
v

Calculate K(x;), pi, wjjs, 5,

and dy(x;, X))

establish the CART decision tree

s the number of decision
trees demanded?

Determine the cluster
center

Sort data points by density
in the descending order

Generate random forests
* R, Ry, ..., Ry

Analyze the clustering and
output clustered data sets H
Ti, Ty ooy Ty

Output classification
results

Fig. 5 Flowchart of KNN-DWDPC-RF

Step 9: Multiple random forest classifiers are
used to classify multiple data sets, and the classifi-
cation results are obtained.

Usually, there will be outlier data in the normal
EV charging process. Compared with other works,
the KNN-DWDPC method based on DPC, which
can identify cluster classes and find outliers easily
(Huang and Wu, 2005), is first used to cluster the
charging data. It can improve the classification ac-
curacy of RF and remove noise data, such as outliers
in the data.

4 Charging time prediction method
based on ISPSO-LSTM-STF

4.1 ISPSO algorithm

After the classification of charging modes, it is
necessary to predict the charging time of the data.
When LSTM is used to predict complex charging
history data, setting algorithm parameters is very
complicated, and the parameter quality directly af-
fects the final prediction results. In this study, based
on the traditional SPSO (Eq. (7)), a new ISPSO is
proposed to determine the LSTM parameters, and
ISPSO is proved to have better convergence effect in
principle. The expression of ISPSO is as follows:

Pid+9bd

lfdJrl = wl§d+clT1 < B

- lfd) +car2 (de - lfd) )

(13)
where w is the inertia weight, which can prevent the
l;q 1s the
position of the i*" particle in dimension, p;q is the

particle from falling into local optima.

current local optimal position of the particle, and gpq
is the global optimal position of the particle swarm.
c1 and ¢y are learning factors, and r; and ry are
random numbers between 0 and 1.

Assuming that the particle positions of SPSO
and ISPSO at the current time are the same, the
comparison diagram of the updated positions of par-
ticles at the next time point is shown in Fig. 6. I,
and l’fd are the current positions of the particles,
15! is the updated position of SPSO, and l’f;l is
the update position of the new ISPSO. gpq is the
global optimal position and p;q is the local optimal
position. It can be seen that the updated direction
of particles is closer to the direction of the global op-
timal particle using the ISPSO method proposed in
this study.
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Fig. 6 Comparison diagram of position update

Theorem 1 When ¢ < w < ¢ + 1, ISPSO finally

converges, and the convergence speed is higher than
that of the SPSO method.
Proof Summarize Eq. (13):

E+1 _ k Pid+gbd
L = (w—ciri—cara) iy + cir ——=—

+CaT2gbd-
(14
Define the parameters in the equation: c;rp =
P1, CaT2=p2, P1+P2=0, (Pid+gba)/2=Po.
Put the defined parameters into Eq. (14) and
sort them out to obtain Eq. (15):

I = (w—@)IE + c1m1 Bo+caragna

= (w—9)la+eB, (15)

where § = (c171 fo+car2gbd) /-
Eq. (15) can be written in the form of a differ-
ential equation (Hu and Li, 2007):

I(t+1)+ (¢ —w)l(t) = ¢p. (16)

The solution of the differential equation is

B

_ PAY
1) = 0w = o)+ 30—

where C is a constant.
To make [(t) converge, when T — o0,

tlim I(t+ 1)/tlim l(t)‘ <land0<w—p <1
— 00 — 00
Obtain the final solution: when ¢ <w < ¢ +1,

lim V(1) = —22
t—00 1+ p—w
c171Bo+C2r2g0d

= (17)
1+ ciri+ears—w

c171(Pid+9bd) /24272904
1+ ciri+ears—w '

According to Eq. (17), the ISPSO algorithm
171 (Pid+gvd) /24212904

1+ ciri+ears—w
we can calculate the convergence value of the SPSO

converges to Similarly,

as

lim 1(£)= C1T1Pid +C2T2Gbd
14+ cirtcorg—w’

Suppose that the particle objective is to find the
minimum position, and then gpq < piq, and

111 (Piatgba)/2+Caragbd _ C1m1piatCaragha
14 ciri+cars—w T 1l4+critere—w’

18)

So, lim I'(t) < lim I(¢). Similarly, when the
t—o0 t—ro0

goal of the particle swarm is to find the maximum
" o .
position, tlggol (t) > tlggol(t).

From the above proof, when ¢ < w < ¢ + 1,
ISPSO finally converges, and the performance is bet-
ter than that of SPSO. Therefore, ISPSO is a better
LSTM parameter optimization method for charging
time prediction.

4.2 STF-improved ISPSO-LSTM prediction
method

The previous subsection proved that the ISPSO
proposed in this study can approach the global opti-
mal particle more accurately and has better conver-
gence performance. Therefore, using ISPSO to opti-
mize the parameters of the LSTM prediction model
can improve the charging time prediction accuracy.
Because the speed term is omitted, ISPSO is not
limited by speed. So, a large amount of training
data may lead to a local optimum at the later stage
of training. To solve this problem, we use a strong
tracking filter to improve the ISPSO position updat-
ing algorithm. After iteratively updating the posi-
tion of each particle in the population, the algorithm
will calculate their fitness and then judge whether
the particle is good or bad by the fitness value. If
the fitness of the particle’s current location is better
than that of the historical global optimum, the new
location will replace the original global optimum and
make the particle jump out of the local optimum, so
that ISPSO can find the optimal parameter of LSTM
and improve the prediction accuracy. Different from
other improved PSO methods, we estimate the posi-
tion and fitness of the particle rather than modeling
and estimating the speed and position of the particle.

After the k*" iteration, the fitness value of a
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particle at the x position is as follows:

h(z) = _;Ilfﬂi — ||, (19)
where & is the mean value of x; (i=1,2, ..., n).

The filtering state equation is as follows (Li Y'Y,
2020):

ly =Prr—1lp—1 + g —1Sk k-1, (20)

where [ is an n-dimensional state sequence represent-
ing the position state of each particle, @, ;1 is the
state transition matrix of the system, wj 1 is an
n-dimensional input sequence, and s is the sequence
of process noise with E(s) = 0 and E (ssT) = Qy.

After each position update, the particle position
is adjusted to improve the search efficiency. For each
particle, after k iterations, the current fitness value
of the particle can be expressed as follows (Li Y,
2020):

Zp = h(lk) + vg, (21)

where zj is the series of observations for the sys-
tem, vy is the observation noise, and E(v) = 0,
E (vv") = Ry. The strong tracking filter (STF)
estimation model can be constructed according to
Egs. (20) and (21) (Li YY, 2020):

Ly = ék,kflik—l\k—l +up -1, (22)
ik\k = ik|k71 + Ky (zk — Hkik\k—1)7 (23)
Ky = Py H} (H, Py HY + Ry)™',  (24)

Pyio1 = Me@rp—1Pi1jp—1Pp 1 + Qrp—1, (25)

Py =(I — K Hy) Py (I — K Hy)'

+ KR, K},", 20)

Ny, = Vi — HiQp -1 HY — 1Ry, (27)

My, = Hy® -1 P11 Pp . HY (28)

Ao,k My, = Ny, (29)

A
Oh(lk)

where H;, = , 1 is the weakening

oy, lk:[k\k—l
factor whose function is to reduce the possibility of
overregulation, Ay is the fading factor which can ef-
fectively suppress the divergence of the filter, lAk‘k
is the estimate of the state, k is the moment, K}

is the gain matrix, and Py is the prediction error
covariance matrix.

After each iteration, the particle position esti-
mated by the filter is calculated and compared with
the fitness of the particles in the population. If the
fitness value of the position estimated by the STF es-
timation model is better than the values of the global
best and local best of the current population, the es-
timated model particle position is used instead. Vi
is the new information covariance matrix, and the
calculation equation is as follows (Xu et al., 2019):

ML, k=0,
k pVi1 +’Yk')’k7 k>, (31)
1+p
i = 2k — Hkiklk—lv (32)

where p (0 < p < 1) represents the forgetting factor.

The algorithm flowchart is given in Fig. 7.

In this study, the steps of the charging time pre-
diction method of ISPSO-LSTM-STF are as follows:

Step 1: Import the historical charging data of
different models from the charging pile database.

Step 2: Preprocess data, including normaliza-
tion and completion of missing values.

Step 3: Initialize the ISPSO algorithm parame-
ters and strong tracking filter parameters, including
the population size, the number of iterations, and
the limited interval of the particle position.

Step 4: Use STF to estimate the particle position
and fitness value of ISPSO. The number of neurons
(hy and hg for each layer) for LSTM, the learning
rate r, and the number of iterations n are taken as
the optimization objects of the particle.

Step 5: Compare the fitness values of the local
best advantage of ISPSO and the local best advan-
tage estimated by a strong tracking filter. The par-
ticle with the smallest fitness value is selected as the
best local advantage.

Step 6: Train the LSTM model with the optimal
parameters obtained.

Step 7: Use the trained LSTM model to predict
the real charging data set.

5 Experiments and analysis

5.1 Experimental data

The algorithms used in this study are all run
in the MATLAB 2019b programming environment.
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Fig. 7 Flowchart of ISPSO-LSTM-STF

All EV data used in this work came from a charg-
ing point operating company in Shenzhen. So far,
the company has accumulated >3 million charging
instances. The main charging pile types are Win-
line Technology YLCE-120750 and INFY POWER
IDS120K750D-X5, both following the national stan-
dard: GB/T 27930-2015 Communication Protocols
Between Off-board Conductive Charger and Battery
Management System. The charging pile transmits
the message to the company’s charging safety mon-
itoring platform through a controller area network
(CAN) bus and Ethernet, and saves the data in a
time-series database.

To minimize the impact of external tempera-
ture, the vehicles selected in this study are all con-
tinuously charged in the same time period every day.
The interval for each packet is about 5-10 s. Due
to the time interval during packet transmission, sev-
eral packets may belong to the same SOC. There-
fore, we average the voltage and current values of
the corresponding messages of each SOC, and obtain
the corresponding SOC and the corresponding elec-
tric quantity, average current, and average voltage,
which are used as data input.

However, in data transmission, there may be
false positives, missing positives, delays, and so on.
Therefore, missing values and outliers in the charging
data set need to be identified and processed. In this
study, we consider that the charging data that exceed
the upper limit of charging power are incorrect and
can be deleted. Finally, the interpolation method is

used to fill in the deleted and missing data.
The min-max normalization method is applied
to charging data in this experiment (Ge et al., 2022).

5.2 Experimental results and analysis of the
classification model

Charging current and SOC are used in charging
mode classification. The charging data randomly
extracted from the company database are divided
into seven groups, and each group contains 299 test
samples and 299 training samples. Every group is
two-dimensional data composed of charging time and
charging current. The parameters are set as follows:
k = 15, the number of decision trees is 150, and
the number of iterations is 250. To verify the effec-
tiveness of the improved classification algorithm, the
algorithm is compared with RF and DPC-RF. Clas-
sification accuracy P is used to evaluate the effect of
mode classification (Li B et al., 2020):

B TP + TN
" TP+ FP+ TN+ FN’

(33)

TP is the correct number of CC-CV samples,
TN is the correct number of MCC samples, FP is
the number of classification errors in CC-CV sam-
ples, and FN is the number of classification errors of
MCC samples. The experimental results classified
in this study are shown in Fig. 8. It can be clearly
seen that clustering and then classifying the data
can effectively reduce the classification error. In ad-
dition, among the seven data groups, the accuracy of
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KNN-DWDPC-RF is better than those of DPC-RF
and RF, and the classification effect is more stable.

5.3 Experimental results and analysis of the
prediction model

SOC, charging voltage, charging current, and
electric quantity are used to predict charging time.

—6— RF

sl —s— DPCRF
—+— KNN-DWDPC-RF

Relative error (%)

Data group

Fig. 8 Comparison of accuracy under different clas-
sification methods
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Parameters are set as follows: particle swarm inertia
weight w = 0.9, learning factor ¢; = 2, o = 2,
numbers of iterations of ISPSO and PSO are both
100, and the population size is 20. In LSTM, the
numbers of two hidden layers are hi, hs € [1,200],
the learning rate is r € [0.001, 0.01], and the number
of training times is n € [1,500].
filtering, @ = 0.001, R = 10.

Four vehicles with two CC-CV and two MCC
charging modes are selected in this study. Their
SOC changes are all >60% during charging to make
results more credible.

In strong trace

The prediction algorithm in this study uses the
relative error (RE), absolute error (AE), and mean
absolute percentage error (MAPE) as evaluation in-
dexes in the experiments (Ge et al., 2022).

1. Vehicle 1

Vehicle 1 is a vehicle in MCC charging mode.
Fig. 9a is the LSTM charging time prediction with-
out charging mode classification. Figs. 9b—9e are
the charging time predictions that classify charg-
ing mode first and then forecast using LSTM,
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Fig. 9 Charging time prediction of vehicle 1 under different methods: (a) LSTM without mode classification;
(b) LSTM with mode classification; (¢) PSO-LSTM with mode classification; (d) ISPSO-LSTM with mode
classification; (e) ISPSO-LSTM-STF with mode classification (SOC: state of charge)
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PSO-LSTM, ISPSO-LSTM, and ISPSO-LSTM-STF
methods, respectively. As shown in Fig. 9, charg-
ing mode classification can effectively improve the
accuracy when the charging time has a sudden
change. Compared with ISPSO-LSTM and PSO-
LSTM, ISPSO-LSTM-STF is more accurate in the

early and late stages of charging.

As can be seen from Table 1, the real full
charging time of vehicle 1 is 76.0851 min, and
the predicted values of the full charging time are
68.6775 min for LSTM (unclassified), 71.2542 min
for LSTM (classified), 72.1804 min for PSO-LSTM,
72.5088 min for ISPSO-LSTM, and 73.7123 min
for ISPSO-LSTM-STEF. The corresponding REs are
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9.74%, 6.35%, 5.14%, 4.70%, and 3.12%. The error
after mode classification is smaller than that without
classification. The RE of ISPSO-LSTM-STF is the
smallest.

2. Vehicle 2

Vehicle 2 is a vehicle in MCC charging mode.
Fig. 10ais the LSTM method without charging mode
classification. Figs. 10b-10e are the charging time
predictions that classify charging mode first and then
forecast using LSTM, PSO-LSTM, ISPSO-LSTM,
and ISPSO-LSTM-STF methods, respectively.

In Table 2, the prediction of charging time in
the unclassified model has a large error in the overall
prediction time. After charging mode classification,

Table 1 Comparison of relative errors of vehicle 1 under different methods

Method Actual charging time (min) Predicted charging time (min) Relative error (%)
LSTM (unclassified) 76.0851 68.6775 9.74
LSTM (classified) 76.0851 71.2542 6.35
PSO-LSTM 76.0851 72.1804 5.14
ISPSO-LSTM 76.0851 72.5088 4.70
ISPSO-LSTM-STF 76.0851 73.7123 3.12
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Fig. 10 Charging time prediction of vehicle 2 under different methods: (a) LSTM without mode classification;
(b) LSTM with mode classification; (¢) PSO-LSTM with mode classification; (d) ISPSO-LSTM with mode
classification; (e) ISPSO-LSTM-STF with mode classification (SOC: state of charge)
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the accuracy of medium-term charging prediction is
improved, but for the abrupt change data, the predic-
tion error is still large. Compared with other meth-
ods, ISPSO-LSTM-STF performs best in the face of
data mutation. Although the RE in the early stage is
large, the charging time in the early stage is generally
only a few seconds or tens of seconds.

3. Vehicle 3

Vehicle 3 is a vehicle in CC-CV charging mode.
Fig. 11a is the LSTM without charging mode classi-
fication. Figs. 11b—11e are the charging time predic-
tions that classify charging mode first and then fore-
cast using LSTM, PSO-LSTM, ISPSO-LSTM, and
ISPSO-LSTM-STF methods, respectively.

Li et al. / Front Inform Technol Electron Eng 2023 24(2):299-313

As can be seen from Table 3, the real full charg-
ing time of vehicle 3 is 83.9672 min; the predicted
values of the full charging time are 75.7101 min for
LSTM (unclassified), 80.5296 min for LSTM (classi-
fied), 81.7740 min for PSO-LSTM, 85.9869 min for
ISPSO-LSTM, and 83.9812 min for ISPSO-LSTM-
STF. Accordingly, the REs are 9.83%, 4.09%, 2.61%,
2.41%, and 0.02%, respectively.

4. Vehicle 4

Vehicle 4 is a vehicle in CC-CV charging mode.
Fig. 12a is the LSTM charging time prediction
of vehicle 4 without charging mode classification.
Figs. 12b—12e are the charging time predictions
that classify charging mode first and then forecast

Table 2 Comparison of relative errors of vehicle 2 under different methods

Method Actual charging time (min) Predicted charging time (min) Relative error (%)
LSTM (unclassified) 63.0132 66.0396 4.80
LSTM (classified) 63.0132 61.3405 2.65
PSO-LSTM 63.0132 63.8580 1.34
ISPSO-LSTM 63.0132 62.2409 1.23
ISPSO-LSTM-STF 63.0132 62.6676 0.55
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Fig. 11 Charging time prediction of vehicle 3 under different methods: (a) LSTM without mode classification;
(b) LSTM with mode classification; (¢) PSO-LSTM with mode classification; (d) ISPSO-LSTM with mode
classification; (e) ISPSO-LSTM-STF with mode classification (SOC: state of charge)
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using LSTM, PSO-LSTM, ISPSO-LSTM, and
ISPSO-LSTM-STF methods, respectively.

In Table 4, the real full charging time of vehicle 4

54.9682 min for ISPSO-LSTM-STF. Corresponding
REs are 9.17%, 5.30%, 5.03%, 1.57%, and 0.16%,
respectively.

Table 5 summarizes the MAPE of the four elec-
tric vehicles under different methods. It can be seen
that in two different charging modes, the predic-
tion effect of charging data after classification is far

is 54.8786 min, and the predicted values of the full
charging time are 49.8475 min for LSTM (unclassi-
fied), 51.9700 min for LSTM (classified), 52.1182 min
for PSO-LSTM, 55.7403 min for ISPSO-LSTM, and

Table 3 Comparison of relative errors of vehicle 3 under different methods

Method Actual charging time (min) Predicted charging time (min) Relative error (%)
LSTM (unclassified) 83.9672 75.7101 9.83
LSTM (classified) 83.9672 80.5296 4.09
PSO-LSTM 83.9672 81.7740 2.61
ISPSO-LSTM 83.9672 85.9869 2.41
ISPSO-LSTM-STF 83.9672 83.9812 0.02
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Fig. 12 Charging time prediction of vehicle 4 under different methods: (a) LSTM without mode classification;
(b) LSTM with mode classification; (¢c) PSO-LSTM with mode classification; (d) ISPSO-LSTM with mode
classification; (e) ISPSO-LSTM-STF with mode classification (SOC: state of charge)

Table 4 Comparison of relative errors of vehicle 4 under different methods

Method Actual charging time (min) Predicted charging time (min) Relative error (%)
LSTM (unclassified) 54.8786 49.8475 9.17
LSTM (classified) 54.8786 51.9700 5.30
PSO-LSTM 54.8786 52.1182 5.03
ISPSO-LSTM 54.8786 55.7403 1.57
ISPSO-LSTM-STF 54.8786 54.9682 0.16
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better than that without classification. The pro-
posed ISPSO-LSTM has a slightly better result than
the PSO-improved LSTM. Meanwhile, the mean ab-
solute percentage error of ISPSO-LSTM-STF has
been reduced by 61% compared to that of ISPSO-
LSTM.

Table 5 Mean absolute percentage error (MAPE)
under different methods

Method MAPE (%)
LSTM (unclassified) 8.385
LSTM (classified) 4.598
PSO-LSTM 3.530
ISPSO-LSTM 2.478
ISPSO-LSTM-STF 0.963

6 Conclusions

In this paper, a novel charging time prediction
method, i.e., ISPSO-LSTM-STF, has been proposed
to solve the problem of low accuracy encountered by
traditional methods due to the lack of charging mode
recognition. First, an improved DWDPC method
based on KNN has been used to classify EV charg-
ing modes according to charging voltage and cur-
rent. Then charging time has been predicted by an
LSTM algorithm whose parameters were optimized
by ISPSO and STF. It has been proved by exper-
iments that this ISPSO-LSTM-STF method, based
on charging pattern recognition, can effectively im-
prove the charging time prediction accuracy and has
real engineering value.
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