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Abstract: Asymmetric massive multiple-input multiple-output (MIMO) systems have been proposed to reduce the
burden of data processing and hardware cost in sixth-generation mobile networks (6G). However, in the asymmetric
massive MIMO system, reciprocity between the uplink (UL) and downlink (DL) wireless channels is not valid. As
a result, pilots are required to be sent by both the base station (BS) and user equipment (UE) to predict double-
directional channels, which consumes more transmission and computational resources. In this paper we propose an
ensemble-transfer-learning-based channel parameter prediction method for asymmetric massive MIMO systems. It
can predict multiple DL channel parameters including path loss (PL), multipath number, delay spread (DS), and
angular spread. Both the UL channel parameters and environment features are chosen to predict the DL parameters.
Also, we propose a two-step feature selection algorithm based on the SHapley Additive exPlanations (SHAP) value
and the minimum description length (MDL) criterion to reduce the computation complexity and negative impact
on model accuracy caused by weakly correlated or uncorrelated features. In addition, the instance transfer method
is introduced to support the prediction model in new propagation conditions, where it is difficult to collect enough
training data in a short time. Simulation results show that the proposed method is more accurate than the back
propagation neural network (BPNN) and the 3GPP TR 38.901 channel model. Additionally, the proposed instance-
transfer-based method outperforms the method without transfer learning in predicting DL parameters when the
beamwidth or the communication sector changes.

Key words: Asymmetric massive multiple-input multiple-output (MIMO) system; Channel model; Ensemble
learning; Instance transfer; Parameter prediction

https://doi.org/10.1631/FITEE.2200169 CLC number: TN92

1 Introduction

To fulfill the requirements of high spectrum effi-
ciency and high energy efficiency, massive multiple-
input multiple-output (MIMO) arrays are widely
used in fifth-generation mobile networks (5G). How-
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ever, as the number of antenna elements increases
continually to meet the increased demand in sixth-
generation mobile networks (6G), the signal process-
ing burden and hardware costs become higher and
higher (Albreem et al., 2019, 2021; Radhakrishnan
et al., 2021; Qiu et al., 2022). To solve this prob-
lem, asymmetric full-digital beamforming massive
MIMO systems (Hong et al., 2020, 2021) have been
put forward. Unlike conventional large-scale beam-
forming arrays, the asymmetric massive MIMO sys-
tem employs a smaller number of receiving (Rx) ra-
dio frequency (RF) chains than transmitting (Tx)
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chains, which can reduce the hardware cost and en-
ergy consumption. This asymmetric system with
non-reciprocal Tx/Rx beam patterns has also been
proven to realize wider coverage in the uplink (UL)
and offer higher gain beams in the downlink (DL)
(Hong et al., 2021). Thus, there is great potential
for its application in future wireless communication
networks.

However, an emerging problem in the asymmet-
ric massive MIMO system is that the reciprocity be-
tween the UL and DL wireless channels is not valid.
This means that even in a time division duplexing
(TDD) system, it is impossible to directly use the UL
channel estimation results to predict the DL chan-
nels. Thus, pilots are required by both base station
(BS) and user equipment (UE), which occupy more
transmission and computational resources (Wimala-
jeewa et al., 2017). This problem becomes severe in
the DL because the number of Tx antenna elements
on the BS side is very large.

Actually, the non-reciprocity between the UL
and DL channels results from different Tx and Rx
beam patterns; i.e., the UL/DL signals do not travel
under the same propagation conditions. Analyzing
the relationship between beam patterns and channel
parameters can be useful in characterizing this non-
reciprocity. Some research has been conducted to
investigate the impacts of the beamwidth on chan-
nel parameters and can be divided into two cate-
gories. The first category is based on empirical mod-
els. In several studies (Wu et al., 2015; Kim et al.,
2016; Li et al., 2017; Erden et al., 2020; Jiang et al.,
2021), the channel parameter distributions of dif-
ferent Tx beamwidths were obtained by conducting
signal acquisition experiments, to fit empirical mod-
els that can be used for channel parameter estima-
tion. The estimation results can be quickly calcu-
lated by the empirical models. However, they could
provide only statistical results and the accuracy was
limited. In addition, they were applicable only to
specific beamwidths and scenarios. The second cat-
egory is to employ ray-tracing techniques, which are
based on the principles of geometric optics (Tuan
et al., 2016; Chen YS et al., 2019). The ray-tracing-
based methods can provide accurate results, but may
require a great amount of computation time.

Recently, methods based on artificial intelli-
gence (AI) (Ye et al., 2018; Joo et al., 2019; Yang GS
et al., 2019; Yang YW et al., 2019; Han et al., 2020;

Lin B et al., 2021; Zhang S et al., 2021; Zhang SB
et al., 2021) enabled fast and accurate channel statis-
tical parameter prediction without relying on electro-
magnetic propagation maps. Although these works
considered only a single link, i.e., UL or DL, they
provided inspiration to solve the prediction problem
in the non-reciprocal channels. In this paper, we
propose a method based on ensemble learning and
instance transfer to predict DL channel parameters,
which are important for the link budget and adaptive
transmission in asymmetric massive MIMO systems.
Although the selected scenario is a typical urban one,
our proposed method can also be applied in other
outdoor scenarios, such as suburban or rural ones.
It should be mentioned that the transfer learning
module may be useful only when the new scenario
is similar to the original one; e.g., they are different
sectors in the same cell. The intrinsic physical mech-
anism is that although the Tx and Rx beam patterns
are different, the BS and UE are located in the same
area. Therefore, the UL and DL channels share a
common part of the propagation environment. An
AI-based model is built to characterize the relation-
ship among the UL channels, DL channels, and prop-
agation environments. Our work is the first one to
apply ensemble transfer learning for channel param-
eter prediction in asymmetric massive MIMO sys-
tems. We investigate the correlation between the UL
and DL propagation environments and design a two-
stage feature selection method, which can reduce the
negative impact of redundant features. An ensemble
learning approach is used to combine multiple weak
learners to improve the generalization of the channel
parameter prediction model. In addition, to realize
fast network deployment in new propagation condi-
tions, we propose an instance transfer scheme that
can use the knowledge within the original condition
for the new model training. The proposed method
is helpful for the design and optimization of asym-
metric massive MIMO systems under non-reciprocal
channel conditions.

In our proposed model, both the environment
information and UL channel parameters are chosen
as features to participate in the DL channel parame-
ter prediction. However, too many training features
or irrelevant features may increase the computational
complexity of the model and even reduce the accu-
racy (Liu and Tang, 2014; Wang D et al., 2015; Lund-
berg and Lee, 2017; Yang GS et al., 2019; Wang ZG
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et al., 2020). Thus, we design a two-step feature se-
lection algorithm. Compared with classical feature
selection methods which quantify the importance of
multiple features and select the best number of fea-
tures by ergodic search, our algorithm can automat-
ically ascertain the number of most relevant features
and therefore reduces the computation complexity of
feature selection. Then, an ensemble-learning-based
prediction model composed of multiple weakly su-
pervised models is proposed to predict DL channel
parameters.

A sufficient amount of training data are essen-
tial to ensure the prediction accuracy of AI-based
methods. In practice, obtaining a large amount of
training data under new propagation conditions is
time-consuming and computationally intensive, thus
limiting the generalization performance of AI-based
methods. To settle this problem, we propose an
instance transfer method to achieve prediction in
new propagation conditions by applying the existing
data from the original condition to the new model
training.

Moreover, the aforementioned works concern-
ing channel parameter prediction focus on path loss
(PL) (Wu et al., 2015; Kim et al., 2016; Tuan et al.,
2016; Li et al., 2017; Chen YS et al., 2019; Joo et al.,
2019; Yang GS et al., 2019; Yang YW et al., 2019;
Erden et al., 2020; Han et al., 2020) or delay spread
(DS) (Kim et al., 2016; Li et al., 2017; Yang GS
et al., 2019; Han et al., 2020). In this paper, we real-
ize the prediction of many important parameters in-
cluding PL, path number (PN), DS, azimuth angular
spread of arrival (AASA), elevation angular spread
of arrival (EASA), azimuth angular spread of depar-
ture (AASD), and elevation angular spread of depar-
ture (EASD). The prediction results are compared
with the data generated by commercial ray-tracing
software. It is verified that the proposed method
can provide acceptable prediction accuracy with low
complexity.

The major novelties and contributions of this
paper are summarized as follows:

1. A prediction method based on ensemble learn-
ing and instance transfer is proposed to predict DL
parameters in non-reciprocal DL channel parame-
ters. The proposed method is able to predict mul-
tiple DL channel parameters including PL, PN, DS,
and angular spreads. Simulation results show that
this method can achieve rapid channel parameter

prediction while ensuring their accuracy.
2. We propose a two-step feature selection al-

gorithm that can determine a feature importance
ranking and an optimistic feature combination. This
algorithm reduces the computational complexity of
feature selection and is beneficial for improving pre-
diction accuracy.

3. The instance transfer method is introduced
to assist the prediction model in new propagation
conditions. By using this transfer-learning-based ap-
proach, it is possible to deploy our method in a new
propagation condition where enough training data
are difficult to collect within a short time.

2 System model

As illustrated in Fig. 1, we consider an asym-
metric massive MIMO system in an urban scenario,
which is composed of a BS and n UEs. The array on
the BS side is equipped with non-reciprocal Tx/Rx
beam patterns.

Fig. 1 A typical application scenario of the asymmet-
ric massive MIMO system (BS: base station; MIMO:
multiple-input multiple-output; UE: user equipment)

Consider the UL and DL between the BS and
the ith UE, where i = 1, 2, . . . , n. {θiUL} and {θiDL}
represent the UL and DL channel parameter sets,
respectively. Then, {θiUL} can be expressed as

{θiUL} ={PLi
UL,PN

i
UL,DSiUL,AASA

i
UL,EASA

i
UL,

AASDi
UL,EASD

i
UL},

(1)
where PLi

UL, PNi
UL, DSiUL, AASAi

UL, EASAi
UL,

AASDi
UL, and EASDi

UL are the PL, PN, DS, AASA,
EASA, AASD, and EASD of the ith UE’s UL chan-
nel, respectively.

Similarly, {θiDL} can be expressed as

{θiDL} ={PLi
DL,PN

i
DL,DSiDL,AASA

i
DL,EASA

i
DL,

AASDi
DL,EASD

i
DL},

(2)



278 He et al. / Front Inform Technol Electron Eng 2023 24(2):275-288

where PLi
DL, PNi

DL, DSi
DL, AASAi

DL, EASAi
DL,

AASDi
DL, and EASDi

DL are the PL, PN, DS, AASA,
EASA, AASD, and EASD of the ith UE’s DL chan-
nel, respectively.

Environment features are those features that re-
flect the characteristics of the communication envi-
ronment. In addition to the commonly used UE co-
ordinates and propagation distance (Luo et al., 2019;
Yang GS et al., 2019), we further consider the prop-
erties of buildings between BS and the ith UE. The
environment features {θiEN} are given by

{θiEN} ={xi, yi, di, Ωi, Li, N i
building, H

i
average, H

i
first,

Hi
last}.

(3)
Detailed explanations of {θiUL}, {θiDL}, and

{θiEN} are given in Table 1. An example is given
in Fig. 2. In this example, N i

building = 3 and Hi
average

is the average height of three buildings. Then, the
problem is to build an appropriate model to predict
{θiUL} by using {θiDL} and {θiEN}.

Fig. 2 The explanation of environment features (BS:
base station; UE: user equipment)

In practice, we can obtain partial data for train-
ing purposes by measurement or other means. The
training set includes UL channel parameters, en-
vironment features, and DL channel parameters,
which are denoted as {θi′UL,train}, {θi′EN,train}, and
{θi′DL,train} respectively, where i′ denotes the index
of the UE whose DL parameters are known. To pre-
dict the DL parameters of other UEs in the same
condition, the first step of the proposed prediction
method is to select features from the UL parameters
and environment features as inputs of the ensemble
learning model. We design a two-step feature selec-

tion method, in which the SHapley Additive exPla-
nations (SHAP) algorithm is employed to obtain the
feature importance, and then the minimum descrip-
tion length (MDL) algorithm is used to determine
the number of selected features. Second, the ensem-
ble learning model can be built with a training set
to realize DL channel parameter prediction. The UL
channel parameters and the environment features of
the predictive channel are expressed as θi

′′
UL and θi

′′
EN,

respectively, where i′′ denotes the index of the UE
that is waiting for the prediction, and are inputted
into the trained ensemble learning model to predict
DL channel parameters.

The accuracy of the built model relies on the
amount of training data. However, in practical ap-
plications, it is difficult to obtain sufficient training
data in a short time for a new propagation condition.
Thus, we introduce the instance transfer method to
quickly build the DL channel parameter prediction
model in a new condition. The new condition con-
tains changes in the Tx beamwidth of the BS or
changes in the sector where the UEs are located.
Assume that the index of the UE in the training
set within the new condition is j′. Similarly, it con-
sists of the UL channel parameters θj

′,new
UL,train, environ-

ment features θj
′,new

EN,train, and DL channel parameters

θj
′,new

DL,train. Unlike the above prediction steps, we per-
form feature screening for the training set under the
new channel propagation condition based on the fea-
ture selection results obtained in the first step. In
the third step, the instance transfer model is trained
together with θj

′,new
UL,train, θ

j′,new
EN,train, and θj

′,new
DL,train. The

fourth step is to input the UL channel parameters
and environment features under the new conditions
into the trained instance transfer model, which will
output the corresponding DL channel parameters
under the new conditions after calculation.

3 Downlink prediction for the same
propagation condition

In this section, we consider the prediction of DL
parameters in the same propagation condition with
the training set. As mentioned above, to achieve bal-
ance between the prediction accuracy and the time
consumption, the first step of the prediction model
training process is selecting the features from {θiUL}
and {θiEN}. The second step is to feed the selected
features and DL parameters of the training samples
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Table 1 Definitions of UL/DL parameters and environment features

Parameter/Feature Description

PLi
UL/PLi

DL Path loss of the ith UE’s UL/DL channel

PNi
UL/PNi

DL Path number of the ith UE’s UL/DL channel

DSiUL/DSi
DL Root-mean-square delay spread of arrival of the ith UE’s UL/DL channel

AASAi
UL/AASAi

DL Azimuth angular spread of arrival of the ith UE’s UL/DL channel

EASAi
UL/EASAi

DL Elevation angular spread of arrival of the ith UE’s UL/DL channel

AASDi
UL/AASDi

DL Azimuth angular spread of departure of the ith UE’s UL/DL channel

EASDi
UL/EASDi

DL Elevation angular spread of departure of the ith UE’s UL/DL channel

xi, yi Location coordinates of the ith UE

di Two-dimensional distance from BS to the ith UE

Ωi Angle between the horizontal plane and the connection between BS and the ith UE

Li=0 or 1 Propagation condition between BS and the ith UE, line-of-sight (1) or non-line-of-sight (0)

N i
building Number of buildings located in the propagation path between BS and the ith UE

Hi
average Average height of buildings located in the propagation path between BS and the ith UE

Hi
first Height of the first building located in the propagation path between BS and the ith UE

Hi
last Height of the last building located in the propagation path between BS and the ith UE

Fig. 3 Framework of the proposed downlink parameter prediction in the same condition (SHAP: SHapley
Additive exPlanations; MDL: minimum description length)

into the weak learners of the ensemble learning model
for training. The overall process is shown in Fig. 3.

3.1 Two-step feature selection

In Section 2, we have listed many features in-
cluding the UL parameters and environment fea-
tures. However, some features may have little rel-
evance to the predicted targets. Using these fea-
tures for training will increase the burden on the
model, and even cause a decline in the accuracy of
predictions. Moreover, for different DL channel pa-
rameters and different propagation conditions, the

relationship between the features and the predicted
parameters may differ. We propose a two-step fea-
ture selection method. The features are interpreted
with the SHAP algorithm. The optimal number of
features is then decided with the MDL algorithm.

3.1.1 Feature interpretation

The SHAP algorithm measures how much each
feature contributes to each training sample. The
median SHAP values reflect the importance of fea-
tures for prediction and are used as the measurement
of feature importance. Consider the i′th training
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sample; if we denote the basic prediction model used
to calculate the SHAP values as G, the feature inter-
pretation process can be expressed as

G(θi
′
UL, θ

i′
EN) = φ0 +

K∑

k=1

φi′
k z

i′
k , (4)

where φi′
k is the SHAP value of the kth feature for

the i′th training sample. K is the total number of
features. zi

′
k ∈ {0, 1}K are the sample coalitions.

zi
′
k = 1 means that the kth feature is presented in

the coalition and zi
′
k = 0 means that it is absent. φ0

is the mean predicted value of the training samples
and can be calculated as

φ0 = E({G(θi
′
UL, θ

i′
EN)}). (5)

The SHAP value φi′
k is the contribution of the

kth feature in the prediction of the i′th sample. When
φi′
k > 0, the kth feature increases the prediction value

and has a positive effect on the prediction. Con-
versely, when φi′

k < 0, the kth feature decreases the
prediction value and has a negative effect on the
prediction. Unlike other feature interpretation ap-
proaches, which yield the feature importance with-
out differentiating samples, the SHAP value reflects
the influence of the feature on the prediction of each
sample. φi′

k of the kth feature for the i′th training
sample is expressed as

φi′
k =

∑

S⊆{θi′
UL}∪{θi′

EN}\{fi′
k }

|S|!(K − |S| − 1)!

K!

· [GS∪{fi′
k }(θ

i′
UL, θ

i′
EN)−GS(θ

i′
UL, θ

i′
EN)],

k = 1, 2, . . . , K.

(6)

Here, {θi′UL} ∪ {θi′EN}\{f i′
k } means removing f i′

k

from {θi′UL} ∪ {θi′EN}. S is all subsets of {θi′UL} ∪
{θi′EN}\{f i′

k }. To compute the contribution of the kth

feature to the prediction result, the model GS∪{fi′
k }

is trained with {f i′
k } and S. GS is the model trained

only with S. Each sample in the training set has
its own SHAP value. To eliminate the influence of
a few extreme samples on the results, the median
of the samples’ SHAP values is selected to represent
the overall importance of the feature. The median
SHAP values of features after normalization are il-
lustrated as s1, s2, . . . , sK , which represent the im-
portance value of each feature in the model training.

3.1.2 Estimation of the number of features

After calculating the median SHAP values of
all features, we introduce the MDL-based thresh-
old calculation algorithm to compute the number
of selected features. The MDL criterion is com-
monly used for accurate source enumeration (Wax
and Ziskind, 1989; Huang et al., 2009; Bazzi et al.,
2016; Lin CH et al., 2018). In this paper, the algo-
rithm is used to determine the number of features
involved in the prediction. The number of selected
features computed by MDL is K̃ and the selected
features are stated as f ′

1, f
′
2, . . . , f

′
K̃

. The objective
function of the MDL criterion used in calculating the
feature selection threshold is defined as

MDL(k) = −(K − k)log2

⎛

⎜⎜⎜⎝

K∏
a=k+1

sa
1

K−k

1
K−j

K∑
a=k+1

sa

⎞

⎟⎟⎟⎠ . (7)

The number of selected features K̃ is estimated as

K̃ = arg min
j

MDL(j), j ∈ {0, 1, . . . ,K − 1}. (8)

Then, we select the features with the top K̃

importance values. These features compose the new
training set and are inputted into the ensemble learn-
ing model to realize the prediction of DL channel
parameters.

3.2 Construction of the ensemble learning
model

The idea of ensemble learning is to improve the
performance of prediction by merging weak learners.
The weak learners are decision trees and are trained
with θi

′
UL, θi

′
EN, and label θi

′
DL. After training, each

weak learner is given a weightwl, l = 1, 2, . . . , L. L is
the total number of the weak learners. In the predic-
tion process of the i′′th prediction sample, each weak
learner can obtain a prediction result pi

′′
l . The final

prediction result of the ensemble learning model is
the sum of the prediction results of the weak learn-
ers multiplied by the weights, expressed as

θ̂i
′′
DL =

L∑

l=1

pi
′′
l wl. (9)

Boosting is the most popular branch of ensem-
ble learning. The focal point of boosting is reducing
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bias. Therefore, boosting methods can build a strong
integration learner from several base learners, thus
enabling powerful generalization. Three boosting
methods, such as adaptive boosting (AdaBoost) (Hu
et al., 2008), extreme gradient boosting (XGBoost)
(Chen TQ and Guestrin, 2016), and light gradient
boosting (LightGBM) (Wang DH et al., 2017), are
selected for DL parameter prediction.

4 Downlink prediction for the new
propagation condition

Based on the method depicted in Section 3, the
DL parameters of the channel under the same prop-
agation conditions can be predicted. When we con-
sider the development in a new propagation condi-
tion, the Tx beamwidth may be set with more op-
tional values, and the users may be located in differ-
ent sectors. It is difficult to obtain enough training
samples under the new condition in a short time,
which affects the prediction accuracy of the data-
driven ensemble learning model. In this paper, we
further propose a method for the prediction of DL
channel parameters with a small number of samples
under new propagation conditions based on instance
transfer.

We employ the two-stage TrAdaBoost.R2 (Par-
doe and Stone, 2010) algorithm, which divides the
weight adjustment of source domain instances and
target domain instances into two stages. In the first
stage, only the weights of source instances are ad-
justed to a certain point and the weights of target
instances remain unchanged. In the second stage,
the weights of all source instances are frozen and the
weights of the target instances are updated. The
process of the proposed prediction method based on
the two-stage TrAdaBoost.R2 algorithm is described
as follows.

Assume a source domain training set named
Θ′ori

train, which includes n samples, and a target do-
main training set named Θ′new

train, which includes m

samples. Θ′total
train = Θ′ori

train ∪ Θ′new
train is the total train-

ing set. The UL channel parameters of the ith sam-
ple in Θ′total

train are indicated as {θ′iUL}, and the envi-
ronment features of the ith sample are named {θ′iEN}.
The predictive DL channel parameters of the ith sam-
ple are named {θ′iDL}. i = 1, 2, . . . , n represents the
index of the samples from the original training set
and i = n + 1, n + 2, . . . , n + m represents the in-

dex of the samples from the new training set. Use w

to represent the instance weight and e to represent
the prediction error rate. The DL channel parame-
ter prediction model in the new propagation condi-
tion is named MTrans. At first, initialize the weight
distribution W1 of Θ′ori

train and Θ′new
train. t represents

the number of training iterations and is set to 1 at
initialization.

W1 = {w1,1, w1,2, ..., w1,n+m}, (10)

where w1,i represents the weight of the ith sample in
the first iteration and is given by

w1,i =
1

n+m
. (11)

For each iteration t = 2, 3, . . . , T , construct a
regression estimatorM t

Trans by training it with Θ′ori
train

and calculate the average error et only on Θ′new
train as

et =
n+m∑

i=n+1

wt,i

∣∣θ′iDL −M t
Trans(θ

′i
UL, θ

′i
EN)

∣∣
n+m∑
i=n+1

wt,i

. (12)

Then, update the weights of Θ′new
train as

wt+1,i =
wt,iβt

−|θ′i
DL−Mt

Trans(θ
′i
UL,θ

′i
EN)|

Zt
,

i = n+ 1, n+ 2, . . . , n+m,

(13)

where wt,i represents the weight of the ith sample in
the tth iteration. Zt is a normalized constant. βt is
provided by

βt =
et

1− et
. (14)

The weights of Θ′ori
train remain unchanged. This

process is the first stage of DL parameter prediction
for a new propagation condition. In the second stage
of DL parameter prediction for a new propagation
condition, the error rate εt of Θ′ori

train is calculated as

εt =

n∑

i=1

∣∣θ′iDL −M t
Trans(θ

′i
UL, θ

′i
EN)

∣∣wt,i. (15)

Then, the weights of Θ′ori
train are updated as

wt+1,i =
wt,iγ

εt
t

Zt
, i = 1, 2, . . . , n, (16)

and the weights of Θ′new
train stay unchanged. γt is given

by

γt =
m

n+m
+

t

T − 1

(
1− m

n+m

)
. (17)
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Finally, we calculate t̃ and choose M t̃
Trans as the

DL parameter prediction model for the new propa-
gation condition. The formula for t̃ is

t̃ = argmin
t

εt. (18)

The predicted values of the DL channel param-
eters can be acquired by inputting the selected fea-
tures of the new propagation condition in the trained
DL channel parameter prediction model.

5 Performance analysis

The simulation data are generated by commer-
cial ray-tracing software, Wireless Insite (Medeđović
et al., 2012), which is an accurate and reliable ur-
ban wave propagation calculation tool for planning
and designing mobile wireless networks. A typical
urban propagation environment in Ottawa, Canada
is considered (Fig. 4). It is an urban scene consist-
ing of buildings and streets. The height distribution
of buildings is from 9 to 51 m. The average height
of buildings is 19.38 m. The area of the considered
scenario is 1000 m × 630 m. The BS is fixed in the
center, 30 m above the ground. The propagation en-
vironment is divided into three sectors centered on
the location of the BS. The Rx beamwidth of the BS
is 60◦/120◦ and the Tx beamwidth is 10◦/30◦. All
UEs employ omnidirectional antennas for transmis-
sion and reception and they are distributed along the
roads. A total of 14 routes, namely routes 1–14, are
considered. The height of each UE is 1.5 m. We con-
sider 5635 different UE locations with 1 m spacing
on each road. The channel parameters including PL,
PN, DS, AASA, EASA, AASD, and EASD are calcu-
lated at each position. The parameter configurations
are listed in Table 2.

The weak learners of the ensemble learning
model are decision trees. The maximum tree depth
is 16, and the number of ensemble members is 500.
The performance of the proposed prediction method
based on ensemble learning and instance transfer is
evaluated. In terms of prediction accuracy and cal-
culation time, the prediction results of the proposed
method are compared with those of the 3GPP TR
38.901 (3GPP, 2020) channel model and the back
propagation neural network (BPNN) (Gao et al.,
2021).

Fig. 4 Propagation environment and sector partition
in an Ottawa urban area (BS: base station)

5.1 Evaluation metric and models for compar-
ison

The mean absolute error (MAE) is used as a
metric to measure the accuracy of the prediction re-
sults (Sterba and Kocur, 2009; Pan et al., 2019). It
can be calculated as

MAE =
1

B

B∑

b=1

∣∣∣θbDL − θ̂bDL

∣∣∣, (19)

where B is the total number of samples in the test
data set, θbDL is the actual DL parameter value of the
bth sample, and θ̂bDL is the predicted DL parameter
value of the bth sample.

A standardized model, the 3GPP TR 38.901
channel model, is used as one of the comparison
methods. We calculate PL using its urban macro
(UMa) propagation model with the non-line-of-sight
(NLoS) condition.

BPNN is also used as a comparison method.
The rectified linear unit function is selected as
Table 2 Parameter configurations of the simulation
environment

Parameter Value/Description

Environment Ottawa urban scenario
Central frequency 26 GHz
Bandwidth 500 MHz
Transmit power 40 dBm
BS height 30 m
UE height 1.5 m

Rx/Tx beamwidth
120◦/30◦, 120◦/10◦,
60◦/30◦, 60◦/10◦

Number of BS locations 1
Number of UE locations (2518, 1703, 1414)*

Height distribution of buildings (9–48, 9–45, 9–51) m*

Average height of buildings (20.23, 19.23, 18.67) m*

* The three values in the brackets refer to the parameter values
of sector 1, 2, and 3, respectively. BS: base station; UE: user
equipment.
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the activation function. A three-layer feed-forward
structure is employed and the optimal number of
neurons in the hidden layer is 15.

In the following analysis, we compare the predic-
tion results of the proposed method with the 3GPP
TR 38.901 channel model and the non-ensemble
learning method BPNN. Both prediction accuracy
and running time are evaluated.

5.2 Evaluation of the two-step feature selec-
tion algorithm

To verify that the proposed two-step feature se-
lection method could achieve balance between the
prediction accuracy and efficiency of DL channel pa-
rameter prediction, we compare the prediction ac-
curacy, number of features, and training time of
the proposed two-step feature selection method with
those of a variance filter (Wang F et al., 2018; Zhao
et al., 2018; Huang et al., 2019) and Lasso regular-
ization (Gallieri and Maciejowski, 2012; Yao et al.,
2015). The variance filter is used to remove the fea-
tures with low variance. The results of feature selec-
tion using the variance filter are obtained by setting
the threshold at 0.16 and discarding all features with
variance less than the threshold. Lasso regulariza-
tion performs regularization and feature selection of
the given data. Lasso regularization places a limit
on the sum of features and the results of feature se-
lection consist of the features that are not reduced
to zero after reduction. In the comparison simula-
tion, the UL beamwidth is set to 120◦ and the DL
beamwidth is set to 30◦. The proposed models are
trained using the feature sets obtained from differ-
ent feature selection methods to predict multiple DL
channel parameters. A comparison of different fea-
ture selection methods is shown in Table 3.

According to the comparison results of the pre-
dicted MAE, the number of selected features, and
the model training time of different feature selection
methods, it is shown that different numbers of fea-
tures are selected, with the number ranging from 7
to 10. The feature selection based on the variance
filter considers only the variance of the features, so
the selection is the same for different prediction tar-
gets, and the number of features is 2. Although
the reduction in the number of features reduces the
model training time, the prediction accuracy is sig-
nificantly reduced. For the feature selection based
on Lasso regularization, different feature sets are se-

lected depending on the prediction target, but the
number of selected features is larger than that of the
proposed method and is between 10 and 13. The in-
creased number of features results in a longer train-
ing time. However, instead of improving the pre-
diction accuracy of the model, the increase in the
number of features enlarges the MAE compared to
that of the proposed method. This indicates that the
inclusion of less relevant features not only increases
the training time of the model but also reduces the
prediction accuracy. The feature set obtained by the
proposed method can achieve accurate and efficient
predictions.

5.3 Performance analysis of downlink param-
eter prediction in the same condition

To verify the proposed method in DL channel
parameter predictions in the same condition, there
are 2518 samples corresponding to different UE lo-
cations in sector 1. To verify the prediction ability
of the proposed prediction algorithm, we randomly
divide the collected data into two sets. Eighty per-
cent of the data are used as the training set, and
the remaining, as the testing set. Table 4 shows
the predicted MAEs of different methods. The pro-
posed method with three different boosting methods
has higher prediction accuracy than BPNN. Further-
more, the prediction results when XGBoost is cho-
sen as the boosting module are the worst. When
AdaBoost or LightGBM is employed, AdaBoost has
higher prediction stability and gives accurate predic-
tion results for each DL channel parameter. Light-
GBM has slightly lower prediction accuracy than Ad-
aBoost for some parameters, but faster model train-
ing and prediction.

In addition, the Tx and Rx beamwidths of the
BS have an impact on the model prediction accuracy.
When the beamwidths of Tx and Rx differ greatly,
the intrinsic relation between UL and DL channel
parameters drops drastically, which causes increase
of MAE. Finally, Table 4 illustrates the MAEs of
the proposed method and BPNN for different DL
parameters.

To compare the prediction performance between
the proposed method, 3GPP TR 38.901 channel
model, and BPNN, we select PL prediction results
of route 4 and plot them in Fig. 5. The horizontal
coordinate indicates the indices of the test samples,
which are given in the order of their positions. The
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Table 3 Comparison of different feature selection methods

Feature selection method Prediction target MAE Number of features Training time (s)

Proposed method

PL 1.03 dB 7 4.69
DS 13.44 ns 10 5.46
PN 0.20 8 5.27

AASA 0.34◦ 10 5.30
EASA 2.77◦ 7 4.88
AASD 0.09◦ 9 5.17
EASD 0.37◦ 10 6.13

Variance filter

PL 2.73 dB 2 2.66
DS 68.73 ns 2 2.74
PN 0.98 2 1.83

AASA 1.85◦ 2 2.05
EASA 32.61◦ 2 2.21
AASD 2.64◦ 2 1.96
EASD 2.78◦ 2 2.25

Lasso regularization

PL 1.08 dB 10 6.45
DS 13.99 ns 12 6.68
PN 0.22 13 7.37

AASA 0.37◦ 13 7.09
EASA 2.83◦ 13 6.45
AASD 0.13◦ 12 5.62
EASD 0.40◦ 13 6.34

MAE: mean absolute error

vertical coordinate indicates the PL values. From
the prediction results of ray tracing in the figure,
the PL values on the street fluctuate greatly due to
the presence of building obstruction in the urban
scenario. The proposed method can accurately pre-
dict the PL fluctuation. The MAE of the proposed
method is 1.01 dB. In contrast, 3GPP TR 38.901 can
predict only the trend of PL based on the propaga-
tion distance. The MAE of the 3GPP TR 38.901
channel model is 26.91 dB. BPNN can also predict
PL fluctuations, and the MAE of BPNN is 4.21 dB,
which is larger than that of our proposed method.

In addition, we compare the running time of
each method and list the results in Table 5. Ray
tracing relies on the electromagnetic map, and the
calculation time is almost hundreds of times that of
our method with AdaBoost and almost thousands of
times that of our method with LightGBM. In addi-
tion, when using the proposed method for DL param-
eter prediction of the channel in the same condition,
offline training is available and the model needs to
be trained only once. After the model is trained,
the actual time required is only the prediction time.
BPNN takes less time than ray tracing, but its train-
ing time and prediction time are much longer than
those of our proposed method. Among our proposed
method with different boosting methods, LightGBM

Fig. 5 Path loss prediction values of the proposed
method with AdaBoost and other methods

takes the least time, whereas AdaBoost takes the
longest time for training and prediction.

5.4 Performance analysis of downlink param-
eter prediction in new conditions

In this subsection, we consider two transfer cases
of new conditions. The first case is to predict the
channel parameters with a new Tx beamwidth. To
verify our proposed method, the source domain is se-
lected as the channel with 120◦ Rx beamwidth and
30◦ Tx beamwidth in sector 1. The target domain
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Table 4 MAEs of different methods for each Downlink parameter

Prediction target Rx/Tx beamwidth
MAE

Our method Our method Our method
BPNN

(AdaBoost) (LightGBM) (XGBoost)

PL (dB)

120◦/30◦ 1.03 1.28 2.44 3.42
120◦/10◦ 2.10 2.29 5.07 7.71
60◦/30◦ 0.96 1.02 2.01 3.20
60◦/10◦ 2.17 2.21 4.96 7.62

DS (ns)

120◦/30◦ 13.44 18.66 58.24 53.39
120◦/10◦ 25.35 24.98 79.3 60.45
60◦/30◦ 9.78 18.69 50.27 51.61
60◦/10◦ 22.55 24.75 76.29 53.54

PN

120◦/30◦ 0.20 0.48 0.61 0.66
120◦/10◦ 0.33 0.50 0.71 0.90
60◦/30◦ 0.21 0.50 0.53 0.60
60◦/10◦ 0.32 0.54 0.73 0.87

AASA (◦)

120◦/30◦ 0.34 0.29 0.86 1.36
120◦/10◦ 0.72 0.48 1.36 1.85
60◦/30◦ 0.29 0.24 0.70 1.26
60◦/10◦ 0.74 0.45 1.34 1.70

EASA (◦)

120◦/30◦ 2.77 3.97 13.11 17.98
120◦/10◦ 6.08 6.29 20.78 19.27
60◦/30◦ 2.01 3.73 10.29 18.05
60◦/10◦ 5.21 5.72 20.36 27.57

AASD (◦)

120◦/30◦ 0.09 0.07 0.16 0.18
120◦/10◦ 0.07 0.05 0.14 0.21
60◦/30◦ 0.08 0.07 0.13 0.30
60◦/10◦ 0.07 0.05 0.13 0.19

EASD (◦)

120◦/30◦ 0.37 0.44 1.59 0.72
120◦/10◦ 0.24 0.25 0.77 0.93
60◦/30◦ 0.32 0.39 0.13 1.85
60◦/10◦ 0.23 0.24 0.76 0.89

is the channel with 120◦ Rx beamwidth and 10◦ Tx
beamwidth in the same sector. The prediction target
is the DL PL with the new Tx beamwidth. The total
number of samples in the target domain is 2518. We
choose only 10–250 samples for training. The train-
ing set is composed of a total of 2518 samples in the
source domain and the chosen samples in the target
domain. We compare the performance of using the
proposed algorithm with that of using the method
without the transfer learning algorithm.

Table 5 Running time of different methods

Prediction method Training time (s) Prediction time (s)

Our method with
AdaBoost 4.56 0.13
LightGBM 0.45 0.02
XGBoost 1.34 0.05

BPNN 105 32
Ray tracing – 1703

Fig. 6 shows a comparison of the results, show-
ing that the participation of instance transfer im-
proves the accuracy of DL channel parameter pre-
diction. As the number of samples in the target
domain increases, the prediction accuracy of the pro-
posed model gradually increases. When the number
of samples in the target domain reaches 150, the pre-
dicted MAE is only 3.54 dB. Meanwhile, the MAE
of the method without transfer learning is 14.25 dB.
Note that the proposed method can also be extended
to the prediction of other channel parameters.

The second case is to predict the channel pa-
rameters in different sectors. We select the source
domain as the channel with 120◦ Rx beamwidth and
30◦ Tx beamwidth in sector 1. The target domain
is the channel with the same beamwidth pair in sec-
tor 2 or 3, and the prediction target is the DL PL.
The total number of samples in sector 2 is 1703 and
that in sector 3 is 1414. We choose only 50–200
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Fig. 6 Comparison of the path loss prediction accu-
racy of the proposed method and the method with-
out transfer learning when the downlink beamwidth
changes from 30◦ to 10◦ (MAE: mean absolute error)

samples of the target domain for training. The train-
ing set is composed of a total of 2518 samples in the
source domain and the chosen samples in the target
domain.

Fig. 7 shows the comparison between the pro-
posed method and the method without transfer
learning. The results of the proposed method are al-
ways better than those of the method without trans-
fer learning. In sector 2, when the number of sam-
ples in the target domain reaches 150, the MAE of
the proposed method has fallen to 6.31 dB and is
19.01 dB less than that of the method without trans-
fer learning. Moreover, the prediction accuracy is
related to the similarity between the original sector
and the new sector. As shown in Table 2, the dis-
tribution and the average height of the buildings in
sector 2 are more similar to those in sector 1, and the
prediction error of sector 2 is a bit lower than that
of sector 3.

50 70 100 150 200
Number of samples in the target domain

0

10

20

30

40

50

M
AE

 (d
B)

Sector 2 without transfer learning
Sector 2 with the proposed method
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Fig. 7 Comparison of the path loss prediction accu-
racy of the proposed method and the method with-
out transfer learning when the sector changes (MAE:
mean absolute error)

6 Conclusions

In this paper, an ensemble-transfer-learning-
based channel parameter prediction method was
proposed for asymmetric massive MIMO systems
with different Tx/Rx beam patterns. The UL
channel parameters and environment features
participated in the model training. A two-step
feature selection algorithm was designed to improve
the prediction accuracy and efficiency of the model.
In addition, the proposed method could predict DL
parameters in the new propagation condition with
the help of the instance transfer algorithm, even
when the new training samples were insufficient.
The proposed method could be used to predict PL,
PN, DS, and angular spread. Its performance was
compared with those of the 3GPP TR 38.901 chan-
nel model and BPNN. Simulation results showed
that the prediction accuracy of the proposed method
was better than those of the compared methods.
When the Tx beamwidth or the sector changed, the
instance-transfer-based DL parameter prediction
method provided higher prediction accuracy than
the method without the transfer learning algorithm
with a small number of new samples. The proposed
prediction method could be useful in analyzing the
effect of beamwidth on channel parameters and
for developing practical applications of asymmetric
systems, thereby reducing the burden of data pro-
cessing and hardware costs in 6G mobile networks.
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