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Abstract: Traffic signal control is shifting from passive control to proactive control, which enables the controller to
direct current traffic flow to reach its expected destinations. To this end, an effective prediction model is needed for
signal controllers. What to predict, how to predict, and how to leverage the prediction for control policy optimization
are critical problems for proactive traffic signal control. In this paper, we use an image that contains vehicle positions
to describe intersection traffic states. Then, inspired by a model-based reinforcement learning method, DreamerV2,
we introduce a novel learning-based traffic world model. The traffic world model that describes traffic dynamics in
image form is used as an abstract alternative to the traffic environment to generate multi-step planning data for
control policy optimization. In the execution phase, the optimized traffic controller directly outputs actions in real
time based on abstract representations of traffic states, and the world model can also predict the impact of different
control behaviors on future traffic conditions. Experimental results indicate that the traffic world model enables the
optimized real-time control policy to outperform common baselines, and the model achieves accurate image-based
prediction, showing promising applications in futuristic traffic signal control.
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1 Introduction

Traffic signal control plays a pivotal role in re-
lieving urban congestion, a critical issue in social,
economic, and environmental concerns worldwide
(Wang FY, 2010). With the development of sensing,
communication, and intelligence technologies, traffic
signal control is experiencing a transformation from
fixed-time control to passive control to proactive con-
trol (Mei et al., 2019). A fixed-time controller phase
sequence and duration are pre-determined by pro-
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fessional engineers using their experience or rules.
Because the controller lacks perception, it cannot
flexibly adapt to traffic flows with varying patterns.
Passive signal control, including classic actuated con-
trol (Newell, 1969) and model-free data-driven con-
trol (Li L et al., 2016), enables controllers to react
to traffic conditions observed by associated sensors.
However, the controller responses tend to be slower
than changes in traffic status, leading to suboptimal
control policies. By predicting traffic status, proac-
tive signal control can adjust the timing plan in ad-
vance and, ideally, make traffic flow change according
to the controller expectation.

Many proactive control system solutions have
been proposed to incorporate prediction modules to
facilitate traffic control, and parallel transportation
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systems (Wang FY, 2010; Xiong et al., 2020) are
the representation. Parallel transportation systems
integrate actual and corresponding artificial trans-
portation systems. The artificial ones can be used to
optimize the control policy through computational
experiments and prescribe actual system operations
through parallel execution. An effective prediction
model plays a vital role in the two processes. In the
optimizing process, the prediction model introduces
dynamic environment descriptions to improve data
efficiency and help achieve near-optimal control (Li
L et al., 2017). In the prescription process, the pre-
diction model helps human beings interpret decisions
made by artificial systems in human-in-the-loop sys-
tems, like parallel recommendation systems (Zhao
et al., 2017; Zhu et al., 2020; Jin et al., 2021). In other
words, if control agents cannot predict the potential
effect of recommended policies or provide reasonable
explanations, signal control engineers may not exe-
cute the procedure.

To better integrate traffic prediction and control
in proactive control systems and to explore efficient
traffic modeling paradigms for artificial systems of
parallel transportation systems, we need first to con-
sider the following questions:

1. What kind of traffic state formation can com-
prehensively describe the complex traffic conditions
that encompass the interaction and evolution of ve-
hicle entities in intersections?

2. How should we cope with complex traffic
characteristics and learn an efficient traffic model to
capture traffic dynamics while performing accurate
multi-step predictions?

3. How can we achieve effective and real-time
decision-making by combining the prediction model
with traffic control to meet the needs of traffic man-
agement systems for robustness, predictability, and
timeliness?

These three problems are also of interest in
model-based traffic signal control, but most classical
studies do not thoroughly answer these questions,
especially regarding tradeoffs between effectiveness
and timeliness. Specifically, classical planning-based
traffic signal control (Guo et al., 2019) and model
predictive control (MPC) (Hao et al., 2018; Ye et al.,
2019) usually use mathematical models to describe
lane-level traffic dynamics, such as the changes in ve-
hicle trajectories, queue length, and density. These
approaches perform online planning for optimal con-

trol in the execution stage, which may lead to diffi-
culties in real-time decision-making (Ye et al., 2019).
Classical model-based reinforcement learning (RL),
which refers mainly to tabular dynamic program-
ming (Wiering, 2000), constructs lookup tables for
traffic prediction and value functions via data-driven
methods, but the tabular form cannot comprehen-
sively describe traffic dynamics.

Model-based deep reinforcement learning
(DRL) (Wang HN et al., 2020), with its advantages
in representation learning and dynamics learning,
promises to answer the three questions. However,
most studies about model-based DRL (Yu et al.,
2020; Zhang HC et al., 2020) focus mainly on
improving control performance based on lane-level
traffic states (e.g., the queue length, density, and
traffic flow). These works have not explored a way
to build a multi-step prediction model that compre-
hensively describes traffic dynamics and provides
a horizon for controllers. In addition, some recent
works incorporate traffic flow prediction (Lv et al.,
2014) in a DRL-based traffic control framework
(Kim and Jeong, 2019; Abdoos and Bazzan, 2021),
but the traffic flow prediction model that forecasts
5- to 60-min future traffic volumes is unable to help
controllers deal with near-future traffic conditions.

This study provides a feasible solution for the
three problems using model-based DRL, and selects
an isolated traffic signal control scenario to detail the
method. To answer the first question, we formalize
the intersection traffic states as images that contain
vehicle positions, and use image streaming to de-
scribe traffic dynamics comprehensively. The inter-
section image, which can be obtained from cameras
and vehicular networks (Liang et al., 2019; Wang J
et al., 2020), possesses more information than lane-
level traffic state vectors, such as the intersection
topology and semantic context associated with traf-
fic entities.

To answer the last two questions, we introduce
a traffic world model to perform multi-step traffic
prediction and facilitate the learning of effective and
real-time control policies. The traffic world model
learned via a model-based DRL approach, Dream-
erV2 (Hafner et al., 2022), excels in capturing the
spatiotemporal feature in image-based traffic dy-
namics. Specifically, the model introduces a compact
latent space corresponding to the original traffic im-
age space and can perform predictions in the latent
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space. The latent state representation, concatenat-
ing deterministic and stochastic latent variables, is
suitable for capturing fixed patterns and randomness
in traffic environments. In the policy optimization
stage, based on informative and compact state repre-
sentation, the traffic world model can generate many
samples through latent predictions to facilitate pol-
icy optimization without access to high-dimensional
traffic images. In the execution stage, traffic signal
controllers can make real-time decisions based on la-
tent representations of historical and current traffic
states without online planning like MPC.

The main contributions of this study can be
summarized as follows:

1. We introduce a new paradigm, a traffic world
model, for image-based real-time traffic signal con-
trol. Unlike MPC, the world model decouples pre-
diction and decision modules to balance effectiveness
and timeliness for traffic signal control. The world
model enables image-based multi-step traffic predic-
tion to visualize the impact of control behaviors on
future traffic conditions.

2. We implement the traffic world model us-
ing DreamerV2 and leverage its informative com-
pact latent space to substitute high-dimensional im-
age space to realize efficient exploration for a high-
performance traffic control policy.

3. Empirical results show that the control policy
optimized via the world model achieves better con-
trol performance than baselines, and requires shorter
decision time than MPC approaches while maintain-
ing accurate multi-step prediction for image-based
traffic dynamics.

2 Traffic signal control via images

In this section, the traffic signal control prob-
lem is formulated as an image-based Markov decision
process (MDP), which will be tackled by DreamerV2
with the world model introduced in Section 3. We
focus on quantifying traffic states as an image form
and explaining the motivation.

2.1 Markov decision process settings

An MDP describes a sequential decision-making
process: At each time step, the agent performs an ac-
tion based on its policy and the environment state;
then, the environment returns a reward as an evalua-
tion for the action and a subsequent state according

to its dynamics model. A typical MDP is formed
by a quintuple 〈S,A,P ,R, γ〉, where S is the set of
states, A is the set of actions, P : S × A �→ S is
the transition probability from any state s (s ∈ S)
to any state s′ (s′ ∈ S) given action a (a ∈ A),
R : S × A �→ R is the reward function that deter-
mines immediate rewards received by the agent for a
transition from (s, a) to s′, and γ is the discount fac-
tor used for constructing the return, i.e., long-term
rewards.

In the traffic signal control problem, the sig-
nal controller at the intersection can be viewed as an
agent, and the control period is denoted as Δt, repre-
senting the time interval in the environment between
two consecutive time steps. At each time step t, the
agent observes the state st from the traffic environ-
ment, and executes an action at = π(st) for signal
control based on its policy π and state st. The traffic
environment then returns the next state st+1 accord-
ing to the traffic model p(st+1|st, at) and a reward rt
that evaluates the control performance last time.

2.2 State design and motivation

The state st (st ∈ S) denotes the environment’s
condition at time step t available to the agent and
can be used for decision-making and prediction in
model-based DRL. This study selects quantified top-
view images that contain vehicle positions at the in-
tersection as states. Fig. 1a shows a diagram of the
quantifying process for the position image. We first
divide the whole intersection into small grids. Then,
we assign a value to each grid; the value of each grid
is a scalar indicating the number of vehicles whose
center point is in the grid. Finally, we normalize the
quantified image by dividing the number of vehicles
in each grid by the maximum number of vehicles in
all grids. It should be pointed out that there are
two types of grid lengths and widths, to ensure that
vehicles in different lanes are distinguished in the
quantified image. For example, as shown in Fig. 1a,
the width of the grid located in the N-S lanes, de-
noted as wgrid

lane, is equal to the lane width wlane. The
width of the grid outside the N-S lanes is wgrid

out . Its
value can be calculated if we know the width of the
study area wi, number of lanes ngrid

lane, width of the
quantified image ngrid

i , and lane width wlane.
In this study, we formalize the intersection traf-

fic state at each time step as a 64 × 64 position im-
age (Fig. 1b). In practice, we have many ways to
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Fig. 1 State formation for the intersection: (a) diagram of the quantifying process and the quantified position
image; (b) quantified position image of the intersection studied in this study

obtain the position image. We can form the image
by quantifying the raw snapshots from traffic video
surveillance systems or obtaining vehicles’ positions
directly from vehicular networks (Liang et al., 2019).
This study focuses mainly on explaining the idea of
image-based traffic signal control and formalizes traf-
fic states as 64× 64 quantified images. However, the
applied model-based DRL framework could handle
more complex state formation, like raw images ob-
tained from cameras or larger quantified images that
reflect more fine-grained traffic conditions.

The motivation for using images as traffic states
is derived from the image’s broad application po-
tential for traffic signal control. First, multi-frame
raw images of the intersection contain sufficient and
diverse traffic information: lane-level states like the
queue length, density, and vehicle speed; fine-grained
semantics like the road network topology and traffic
entity relationship; natural information like weather

and illumination. Ideally, an effective traffic sig-
nal controller can capture the relationship between
the road structure and vehicles. However, typical
traffic signal control methods consider mainly lane-
level traffic states, which restricts the controllers to
dealing with more difficult traffic conditions beyond
lanes, like intersection emergencies, unusual road
network topologies, and mixed vehicle-pedestrian
scenes. Second, expert signal control engineers use
intersection images from surveillance systems to ad-
just traffic signal control systems (Jin et al., 2021).
So, if we want to train artificial signal control en-
gineers that can precisely imitate real engineers’ be-
havior in parallel transportation systems, a direct ap-
proach is to feed artificial ones with the same images
that real ones use. Third, images are scalable and can
be fused with other forms of data like lane-level data
or a point cloud to help achieve better control perfor-
mance. The field may also benefit from multimodal
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fusion, a hot research topic for autonomous driving
(Nie et al., 2021; Xiao et al., 2022).

Although utilization of image-based traffic
states has various advantages, how to leverage the
state with high dimensions for efficient traffic signal
control is still a complex problem. We provide a
solution using model-based DRL in Section 3.

2.3 Action and reward

The agent takes action at (at ∈ A) at time step
t based on its policy and the environment’s state.
Considering the flexibility, we choose phase selection
as the action for traffic signal control. Specifically, a
feasible phase set is predefined, and the agent selects
a phase from the set every Δt. In the next step, the
signal controller executes the action if the current
green phase duration is between the minimum tgmin
and maximum tgmax. Otherwise, the controller will
keep the current phase or switch to the next phase
according to the predefined phase sequence. More-
over, there is a yellow interval ty (ty < Δt) if two
consecutive executed phases are different.

The reward rt is the immediate feedback
from the environment through the reward function
r(st, at), indicating how good the action at is for
the state st. We select pressure (Varaiya, 2013) as
the reward. Pressure is a notion in traffic theory
that indicates network-level stability by considering
intersection-level traffic properties (Varaiya, 2013).
The pressure for an intersection is defined as in-
flow minus outflow. It has been analytically proven
that minimizing pressure is equivalent to minimiz-
ing the average travel time and maximizing network
throughput (Wei et al., 2019b), which are both chal-
lenging to optimize directly as rewards. The reward
in this study is defined as

rt =
∑

o∈O
vot+1 −

∑

l∈L
vlt+1, (1)

where L and O denote the sets of incoming lanes and
outgoing lanes of the intersection, respectively. The
number of vehicles at time step t + 1 is denoted as
vt+1.

2.4 Image-based traffic model

A standard dynamics model p(st+1|st, at) de-
scribes the transition probability from current state
st to the next state st+1 given the action at (Sut-
ton and Barto, 2018). This study considers quan-

tified intersection images as states, and the traffic
model reveals the relationship between vehicle po-
sition changes and signal controller actions in the
intersection. From the microscopic traffic model, we
can obtain comprehensive traffic information at the
intersection, like vehicle trajectories, and changes in
traffic flow or queue length.

Unlike image-based traffic models, lane-level
traffic models that are adopted in classical planning-
based control, MPC, and most data-driven traf-
fic signal control methods, have difficulty in de-
scribing comprehensive traffic information. Tra-
ditional mathematical macroscopic traffic models
like METANET and cell transmission models (Ye
et al., 2019) cannot accurately describe traffic micro-
variations; data-driven traffic models that consider
changes in lane-level traffic flows or vehicle speeds
focus only on particular parts of traffic dynamics
and fail to describe the vehicle in the middle of the
intersection.

The image-based model contains more informa-
tion than the land-level model, such as road topology,
traffic entity relationships at intersections, and their
evolutionary processes. The model describing traf-
fic dynamics in more detail helps traffic signal con-
trollers handle more complex traffic scenarios. Sec-
tion 3 presents the method for learning the image-
based traffic model and illustrates how to use it to
learn effective control policies.

2.5 Traffic signal control problem

Assuming that we focus on the performance of
traffic signal controllers in a typical intersection for
a period covering a total of T time steps, we can
formulate traffic signal control as the following infi-
nite MDP problem: Given a single-intersection traf-
fic environment, we search for a signal control policy
π = {π : S �→ A} for the intersection agent to maxi-
mize the expected value of the cumulative reward:

G = E

[
T∑

t=1

rt | at ∼ π (· | st) , st+1 ∼ p(· | st, at)
]
.

(2)

3 World model for image-based traffic
signal control

In Section 2.2, we formalize traffic states as 64×
64 images, and the high-dimensional image leads to a
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considerable policy search space. In this section, we
introduce a new paradigm, the traffic world model,
to develop a high-performance control policy in a
significant space, while learning an accurate multi-
step image-based traffic prediction model.

The world-model-based traffic signal control is
different from the current mainstream approaches,
such as model-free RL and MPC. In the training
stage, the world-model-based approach can achieve
higher data efficiency to explore effective traffic con-
trol policies than model-free RL. This characteristic
makes the traffic world model suitable for scaling to
real-world traffic signal control, because real-world
samples are expensive, especially for corner scenar-
ios. In the execution stage, the world model can help
perform real-time traffic control and on-demand pre-
diction, allowing traffic controllers to meet the needs
for robustness, predictability, and timeliness. In con-
trast, model-free RL is incapable of predicting traffic
dynamics, and MPC has difficulty in balancing effec-
tiveness and timeliness due to the rolling optimiza-
tion mechanism.

Fig. 2 compares the world model paradigm with
model-free off-policy RL and MPC paradigms for
traffic signal control. The off-policy RL-based con-
trol agent usually maintains an actor that accepts
traffic states from the environment and outputs sig-
nal control actions. In contrast, the world-model-

based control agent maintains both an actor and a
world model. The world model that abstracts envi-
ronment dynamics maps the original traffic states to
latent states, and the actor uses the latent states to
generate signal control actions. In the training stage,
world-model-based traffic control optimization con-
tains three components that can run interleaved or in
parallel: (1) learning a world model using data col-
lected from the interaction between agents and envi-
ronments; (2) optimizing control policies via latent
predictions of the world model; (3) performing con-
trol in traffic environments and collecting new expe-
rience for world model learning. In this workflow, the
world model introduces a compact latent space that
corresponds to the original high-dimensional traf-
fic state space. Replacing the traffic environment,
the model can generate many informative samples in
the latent space to help the intersection agent effi-
ciently learn high-performance control policies. On
the contrary, off-policy RL approaches require a lot
of interaction data with traffic environments for pol-
icy optimization and may encounter difficulties in
handling high-dimensional traffic states.

In the execution stage, the world model can
help perform real-time traffic control and implement
on-demand image-based traffic prediction to evalu-
ate the performance of control policies. On-demand
prediction means that prediction is decoupled from
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Fig. 2 Comparison of paradigms of the world model, model-free off-policy reinforcement learning (RL), and
model predictive control (MPC) for traffic signal control
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control. We can predict at any time the future traf-
fic state along with currently used or other control
policies. In contrast, off-policy RL approaches have
no consequence for future prospects. Another widely
used paradigm, MPC, which is limited by rolling op-
timization mechanisms, faces intractable problems
for tradeoffs between effectiveness and timeliness.
So, the world model paradigm is introduced to create
balance.

In this study, we employ an efficient and effec-
tive model-based DRL approach DreamerV2 (Hafner
et al., 2022) to build the world model. Fig. 3 details
the implementation of DreamerV2 for three opera-
tions in world-model-based traffic control optimiza-
tion, i.e., learning the traffic world model, optimizing
control policies via the world model, and performing
control in traffic environments. Note that the three
operations can run interleaved or in parallel. In these
operations, traffic world model learning and control
policy optimization are the core of implementing ac-
curate traffic prediction models and effective real-
time signal control policies. The process of collecting
new data in the third component is similar to that
in general RL methods.

In the subsequent subsections, we first present
the implementation of the three operations for world-
model-based traffic control optimization in the train-
ing stage. Then, we introduce how to use the world
model to achieve effective real-time control and on-
demand accurate prediction in the execution stage.

3.1 Training stage: world model learning

In this subsection, we use DreamerV2 to learn
the traffic world model from the growing dataset
of the intersection agent’s traffic control experience.
The experience contains sequences of traffic image
states s1:T , control actions a1:T , and rewards r1:T .
The process of collecting experience is presented in
Section 3.3.

Fig. 3a shows the overall structure of the traffic
world model. The world model introduces a com-
pact latent space where the world model describes
the intersection agent’s experience in the traffic en-
vironment as a latent dynamics model. The latent
dynamics model captures the spatiotemporal char-
acteristics of the traffic state and replaces the traffic
environment for signal control policy optimization.
In the latent space, the latent state at each time step
contains deterministic state ht and random state zt,

which together encode the historical and current traf-
fic image states, and are able to predict forward in
the hidden space, reconstruct the traffic image in the
original space, and return the reward.

The traffic world model consists of five modules:⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Recurrent model: ht = fφ (ht−1, zt−1, at−1) ,

Representation model: zt ∼ qφ (zt | ht, st) ,
Transition predictor: ẑt ∼ pφ (ẑt | ht) ,
Image predictor: ŝt ∼ psφ (ŝt | ht, zt) ,
Reward predictor: r̂t ∼ prφ (r̂t | ht, zt) .

(3)
The recurrent model uses the previous deter-

ministic latent state ht−1, stochastic latent state
zt−1, and the control action at−1 to generate the
current deterministic latent state ht. The represen-
tation model first encodes the current image-based
traffic state st as embeddings, and then uses the em-
beddings and the deterministic recurrent state ht to
generate the stochastic latent state zt, which fol-
lows multiple categorical distributions. Unlike the
representation model, the transition predictor uses
only the deterministic latent state ht to predict the
stochastic latent state, which is called the prior latent
state ẑt. The posterior latent state zt fuses the cur-
rent traffic state st via the encoder, while the prior
latent state ẑt tries to be close to the posterior la-
tent state without access to the current traffic state.
The image predictor reconstructs the traffic image
based on the deterministic latent state ht and the
stochastic latent state zt, and the reward predictor
uses them to predict the reward.

In practice, all the modules of the world model
are implemented as neural networks. Representation
models use convolutional neural networks (CNNs)
(Mnih et al., 2015). Recurrent models use gated
recurrent units (GRUs) (Seng et al., 2021). Transi-
tion predictors and reward predictors both use multi-
layer perceptrons (MLPs). Image predictors use
transposed CNNs to output the mean of a diagonal
Gaussian with unit variance. During traffic world
model learning, all modules are optimized jointly.
The loss function is

L(φ) .=Epφ

[
T∑

t=1

(
−ln psφ (st | ht, zt)

−ln prφ (rt | ht, zt)

+ βKL [qφ (zt | ht, st) ‖pφ (zt | ht)]
)]
, (4)
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r̂3r1̂ r2̂ â3a2ˆa1ˆ V̂3V2
ˆV1

ˆ

(c)

s1 s2 s3

z1 z2 z3

h1 h2 h3

a1 a2 â3

Fig. 3 Components of DreamerV2-based traffic control optimization in the training stage: (a) learning a traffic
world model; (b) optimizing policies via latent predictions in the world model; (c) performing control in traffic
environments

where the first item is the traffic image reconstruc-
tion loss, the second item is the reward prediction
loss, and the third item is the Kullback–Leibler (KL)
divergence between the posterior and prior distribu-
tions. The motivation for using the KL loss can be
found in Hafner et al. (2022).

The core elements of the traffic world model are
the recurrent model, representation model, and tran-
sition predictor. They form a recurrent state-space
model (RSSM) (Hafner et al., 2019), also known
as the latent dynamics model. With the help of
the RSSM, we can emulate traffic environment op-
erations in a compact latent space. RSSMs inte-
grate deterministic models (e.g., recurrent neural
networks) and stochastic models, which excel at cap-
turing deterministic trends and uncertainty in traf-
fic environments, respectively. These characteris-
tics enable RSSMs to robustly predict traffic con-
ditions in a compact latent space (Hafner et al.,
2019).

Two properties make the traffic world model
suitable for image-based traffic prediction and con-
trol. First, the world model’s latent states concate-
nate deterministic and stochastic latent states, and
the two latent states are suitable for modeling the
deterministic trends and uncertain changes in traf-
fic, respectively. The informative latent state allows
agents to predict future states in the compact la-
tent space, facilitating long-term predictions for the
high-dimensional image-based traffic state. Second,
the world model can efficiently predict a multitude
of latent traffic state sequences in parallel in a batch,

and the predicted samples can be used for policy
optimization.

3.2 Training stage: traffic signal control pol-
icy optimization via the world model

The traffic world model constructs a latent space
parallel to the original image space, and the inter-
section agent can use the latent dynamics model
to optimize control policies. The decision-making
process in the latent space can be viewed as a la-
tent MDP. Here, zct denotes the compact latent state
that is the concatenation of the deterministic state
ht and the stochastic state zt; accordingly, the esti-
mated compact latent state ẑct is the concatenation
of ht and ẑt. In the latent MDP, the initial state
ẑc0 can be obtained via world model learning. Then,
given the action sequence, the transition predictor
pφ

(
ẑct | ẑct−1, ât−1

)
will output sequence ẑc1:H of la-

tent states up to the prediction horizon H . The
mean of the reward predictor prφ (r̂t | ẑct ) is used as
reward sequence r̂1:H .

As shown in Fig. 3b, the control policy is opti-
mized purely within the learned traffic world model
via actor–critic learning, wherein a stochastic ac-
tor and a deterministic critic are cooperatively op-
timized. The actor tries to output signal control
actions to maximize the critic’s output, whereas
the critic attempts to accurately estimate the ac-
cumulated discounted future rewards that the actor
achieves. The actor and critic use the parameter
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vectors ψ and ξ, respectively, and can be denoted as
{

Actor: ât ∼ pψ (ât | ẑct ) ,
Critic: vξ (ẑct ) ≈ Epφ,pψ

[∑
τ≥t γ

τ−tr̂τ
]
.

(5)

The critic is updated via temporal-difference
learning, and the loss function can be denoted as

L(ξ) .= Epφ,pψ

[
H−1∑

t=1

1

2

(
vξ (ẑ

c
t )− V λt

)2
]
, (6)

where the value target uses the general λ-target (Sut-
ton and Barto, 2018), which is defined recursively as

V λt
.
= r̂t + γ̂t

{
(1− λ)vξ

(
ẑct+1

)
+ λV λt+1, if t < H,

vξ (ẑ
c
H) , if t = H.

(7)
The actor is updated through a combined loss

function:

L(ψ) .=Epφ,pψ

[
H−1∑

t=1

(
−ρ ln pψ (ât | ẑct ) sg

(
V λt −vξ (ẑct )

)

− (1 − ρ)V λt − ηH [at | ẑct ]
)]
,

(8)

where ρ and η are weighting factors, sg(·) denotes
stopping the gradients around the targets, and H[·]
denotes the entropy. The first item introduces
unbiased but high-variance REINFORCE gradients
(Sutton and Barto, 2018) to encourage the actor to
converge to better control policies. The second item
represents biased but low-variance straight-through
gradients (Hafner et al., 2022) to encourage the actor
to learn faster initially. The third item is an entropy
bonus, which regularizes the entropy of the actor to
make tradeoffs between exploration and exploitation
(Hafner et al., 2022).

3.3 Training stage: traffic signal control in en-
vironments and experience collection

As shown in Fig. 3c, the intersection agent per-
forms control actions in the traffic environment via
the learned policy. In this component, the world
model, actor, and critic are all fixed, and the agent’s
policy is determined by the encoder and latent dy-
namics model in the world model as well as the ac-
tor. It should be pointed out that this component
does not require prediction, and the latent dynam-
ics model is used only to encode historical states and

not to predict future states. The agent interacts with
the traffic environment by encoding sequences of his-
torical traffic states from the environment and out-
putting control actions, and the interaction process
can generate new experience to grow the dataset.
The generated data containing sequences of traffic
image states s1:T , control actions a1:T , and rewards
r1:T , will be further used to update the traffic world
model as presented in Section 3.1.

3.4 Execution stage: real-time traffic signal
control and performance evaluation via image-
based prediction

After optimization, the learned world model can
be leveraged for real-time traffic signal control and
performance evaluation via image-based traffic pre-
diction in the execution stage. Real-time traffic sig-
nal control adopts the same architecture as the third
component in the training stage (Fig. 3c). The con-
trol agent encodes historical traffic states, actions,
and the current traffic state as the latent state, and
generates an action to perform in the environment.
This decision process does not require online plan-
ning, which ensures real-time performance.

Apart from real-time traffic control, we can use
the learned world model to make multi-step predic-
tions for image-based traffic states and estimate the
control performance in the execution stage. Because
the on-demand prediction process is separated from
the control process, it can be performed at any time.
The world model enables flexible prediction of future
traffic states along with the current control policy
or other control policies. An example is illustrated
in Fig. 4. Given the traffic states of two consec-
utive steps s1 and s2, the initial deterministic la-
tent state h1, and the action a1, the intersection
agent first encodes them as latent states (h2, z2).
Then, the agent uses the model to predict future
latent states (h3, ẑ3) and (h4, ẑ4) based on future se-
quence of actions a2 and a3 obtained from policies.
Finally, the agent uses the image predictor to pre-
dict future traffic image states based on future latent
states.

4 Experimental results

This section compares the control performance
and decision time of world-model-based Dream-
erV2 policies with traditional rule-based controllers,
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model-free RL, and MPC policies. We validate that
DreamerV2 policies achieve real-time and robust
control as well as accurate multi-step prediction.

4.1 Environment setups

We use Simulation of Urban MObility (SUMO)
(Lopez et al., 2018) as the traffic environment to
evaluate the performance of signal control policies.
The experiments are conducted in three datasets:
(1) a synthetic single-intersection dataset, D1×1,
with four traffic patterns to model flat and peak
traffic demands and cover unsaturated, saturated,
and oversaturated traffic flows; (2) a synthetic two-
intersection dataset, D2×1, with four types of ve-
hicles to simulate the complex intersection environ-
ment; (3) a real three-intersection dataset, D3×1, to
verify the intersection coordination ability for the
centralized controller.

s1 s2

h1 h2 h3 h4

a1 a2 a3

z1 z2 z3ˆ z4ˆ

ŝ4s3ˆ

Fig. 4 Multi-step prediction using the traffic world
model

The configurations for the traffic datasets are
shown in Table 1. We set the environment to last
600 s and the control period Δt to be 5 s. The
minimum duration tgmin and maximum duration tgmax
of green phases are set at 5 s and 60 s respectively,
and the yellow time ty is set at 3 s. During policy
evaluation, each dataset samples five separate traffic
demands, and the average results of the policy on
the five demands are used as the final performance
for the dataset.

4.1.1 Dataset D1×1

As shown in Fig. 5a, the dataset D1×1 contains
a typical four-leg signalized intersection common in
the real world. Each approach contains four incom-
ing lanes and three outgoing lanes, and the incoming
lanes contain a left-turn lane. The length of each
approach is 233 m, and the width of each lane is
3.2 m. The traffic signal in the intersection has four
phases: N-S straight phase, N-S left-turn phase, E-
W straight phase, and E-W left-turn phase. The
right-turn phase is always allowed.

Table 1 Configurations for traffic datasets

Dataset
Number of Arrival rate

vehicle types Mean Std Max Min

D1×1(1) 1 200 19 218 172
D1×1(2) 1 200 105 347 55
D1×1(3) 1 200 102 337 53
D1×1(4) 1 200 29 231 153
D2×1 4 50 55 120 0
D3×1 1 225 19 246 201

D1×1(i) means traffic pattern i for D1×1. Arrival rate is
measured in terms of the number of vehicles per 120 s

(b)(a)

Fig. 5 The traffic environment of dataset D1×1: (a) structure, signal phases, and snapshot of the intersection;
(b) four traffic demand patterns
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In the experiment, we generate four typical
traffic demand patterns (Fig. 5b). The y-axis of each
subfigure indicates the number of vehicles loaded
into environments at the corresponding time interval.
Four traffic patterns following different distributions
aim to imitate typical intersection traffic dynamics in
the real world: pattern 1, following a uniform distri-
bution, imitates smooth traffic flow during off-peak
hours; patterns 2, 3, and 4, following linearly increas-
ing, linearly decreasing, and parabolic distributions,
respectively, imitate different peak traffic flow stages.
Each experiment’s runtime is 600 s, during which a
total of 1000 vehicles are loaded into environments
under one of the four traffic patterns. The vehicle
turning ratio is set to 0.25.

4.1.2 Dataset D2×1

As shown in Fig. 6a, the datasetD2×1 contains a
two-intersection environment with left-hand traffic.
The distance between the two intersections is 100 m,
which is used to verify the cooperative control perfor-
mance of different policies. The dataset contains four
types of vehicles, including cars, trucks, buses, and
motorcycles, to simulate traffic participants in real
complex traffic environments, which poses challenges
for fine-grained traffic signal control. For image-
based traffic signal control, the state space dimension
is 642 × 2 = 8192 and the action space is 42 = 16.

4.1.3 Dataset D3×1

The dataset is collected from real transporta-
tion systems in Dongfeng sub-district, Jinan, China
(Wei et al., 2019a). As shown in Fig. 6b, the dataset
D3×1 contains three intersections. The traffic de-
mand is derived from the trajectory data recorded
by roadside surveillance cameras. For image-based
traffic signal control, the state space dimension is
642 × 3 = 12 288 and the action space is 43 = 64.
The high dimensionality makes it difficult to explore
effective image-based control policies.

4.2 Compared control policies

We compare DreamerV2 with two traditional
rule-based traffic control policies, i.e., fixed-time and
actuated polices, and three data-driven traffic con-
trol policies, i.e., deep Q-network (DQN), proximal
policy optimization (PPO), and PlaNet policies. The
inputs of the compared policies are position images

500 m

3.2 m

100 m

500 m

500 m

Signal phase sequence for each intersection

CarTruck

BusMotorcycle

Phase 1 Phase 2 Phase 3 Phase 4

Signal phase sequence for each intersection

372 m500 
m

372 m500 
m

372 m

3.2 m

386 m

786 m

Car

Phase 1 Phase 2 Phase 3 Phase 4

(a)

(b)

Fig. 6 The traffic environment of datasets D2×1 (a)
and D3×1 (b)

or lane-level state vectors that contain the queue
length and density. The formalizations of these two
states are illustrated in Fig. 7. DQN and PPO are
model-free, and their inputs are tested for both lane-
level state vectors (denoted as Policy-V) and position
images (denoted as Policy-I) for a comprehensive and
fair comparison. PlaNet is model-based with the
MPC architecture, and it accepts images as inputs
and learns an image-based traffic model like Dream-
erV2. The details for the baselines and DreamerV2
are as follows:

1. Fixed-time policy: A classical fixed-time con-
trol policy called Webster’s method (Webster, 1958)
is used to determine the duration of green phases.
Webster’s method calculates the duration for min-
imizing the overall delay for the traffic demand.
Based on Webster’s method, the duration for straight
phases is 30 s and that for left-turn phases is 14 s.

2. Actuated policy: The actuated controller
(Newell, 1969) will switch to the next phase if detect-
ing no vehicle via induction loop detectors related to
the current phase within a sufficient time gap, which
is 3 s in this study.

3. DQN-V policy: The DQN is a typical off-
policy DRL approach that approximates the Q-
function Q(s, a) using deep neural networks (Mnih
et al., 2015; Li L et al., 2016). The DQN inputs are
lane-level state vectors.
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Fig. 7 Different intersection state formalizations

4. DQN-I policy: The policy is optimized via a
DQN, and the DQN inputs are position images.

5. PPO-V policy: The PPO is a typical on-
policy DRL approach with actor–critic learning
(Mao et al., 2022). The PPO inputs are lane-level
state vectors.

6. PPO-I policy: The policy is optimized via
PPO, and the inputs of the policy network are posi-
tion images.

7. PlaNet policy: As a model-based DRL
method, PlaNet learns a world model with a latent
dynamics model and a reward model and uses MPC
to make decisions (Hafner et al., 2019). PlaNet’s
world model is similar to DreamerV2, but replaces
the categorical variables with Gaussian latents. In
the decision-making process, agents replan at each
time step and execute the first action of the best
sequence leading to the highest predicted future re-
wards. The inputs of PlaNet are the position images.

8. DreamerV2 policy: The applied control pol-
icy, DreamerV2 in this study, is a model-based DRL

method with actor–critic learning and background
planning (Hafner et al., 2022). The inputs of Dream-
erV2 are the position images, which are used for
DQN-I, PPO-I, and PlaNet policies.

In addition to comparing the control perfor-
mance of DreamerV2 and baselines, we conduct an
ablation study to investigate the impact of differ-
ent image-based state formalizations for DreamerV2.
We also explore the feasibility of multimodal fu-
sion for the DreamerV2 policy, as illustrated in Sec-
tion 2.2. In the experiment, in addition to vehicle
positions, we consider vehicle speeds and lane-level
traffic states, including the queue length and density.
Like vehicle position states, vehicle speed states and
lane-level states are formalized as single-channel im-
ages of 64× 64 separately. Their formalization pro-
cesses are shown in Fig. 7. For vehicle speed images,
the pixel values indicate average speeds of vehicles
located in corresponding intersection positions. The
approach of mapping vehicle positions in the inter-
section to pixel positions is shown in Section 2.2. For
lane-level traffic state images, we rearrange vectors
according to lane directions and combine them into
the form shown in Fig. 7.

The DreamerV2 policy and its three variants
based on different image-based formalizations are
listed as follows:

1. DreamerV2-P (DreamerV2): The input con-
tains only position images.

2. DreamerV2-PS: The input contains position
and speed images.

3. DreamerV2-PL: The input contains position
and lane-level state images.

4. DreamerV2-PSL: The input contains posi-
tion, speed, and lane-level state images.

The experiments for testing the impact of differ-
ent state formalizations are presented in Section 4.7.

4.3 Control performance comparison on
dataset D1×1

As shown in Table 2, DreamerV2 outperforms
the baselines in almost all metrics under four traffic
patterns on the dataset D1×1. The policy could lead
to the minimum trip delay and maximum intersec-
tion throughput, indicating that DreamerV2 could
handle image-based traffic states and learn effective
control policies for different traffic patterns.

A noteworthy result is that under pattern 1,
DreamerV2 outperforms the fixed-time control
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Table 2 Control performance comparison for different control policies on dataset D1×1

Traffic pattern Performance metric Fixed-time Actuated DQN-V DQN-I PPO-V PPO-I PlaNet DreamerV2

Pattern 1

Average queue length∗ 2.902 4.097 4.959 8.351 3.395 4.229 4.191 2.705
Average vehicle speed (m/s) 6.242 5.598 4.951 3.888 6.264 5.748 5.780 6.623
Total number of output vehicles 860 812 793 582 829 783 756 860
Average trip delay (s) 41.32 51.27 61.78 108.10 42.78 51.13 51.02 37.76

Pattern 2

Average queue length∗ 3.672 4.089 4.164 5.587 2.988 2.846 3.503 2.512
Average vehicle speed (m/s) 6.129 6.410 6.349 5.411 6.971 7.364 6.987 7.326
Total number of output vehicles 631 614 580 511 693 686 607 703
Average trip delay (s) 51.09 52.34 55.04 75.10 40.24 39.06 47.74 35.80

Pattern 3

Average queue length∗ 7.959 7.764 5.642 5.634 4.937 5.775 6.776 4.333
Average vehicle speed (m/s) 3.751 4.215 4.538 4.565 4.867 4.508 4.022 5.326
Total number of output vehicles 890 948 862 862 897 874 866 944
Average trip delay (s) 106.76 97.33 68.77 67.99 62.81 71.02 90.92 56.26

Pattern 4

Average queue length∗ 3.786 4.273 4.120 4.032 3.894 3.980 4.221 2.995
Average vehicle speed (m/s) 5.761 5.679 5.924 5.916 6.120 6.108 6.130 6.555
Total number of output vehicles 830 841 802 795 814 779 797 858
Average trip delay (s) 52.37 54.85 51.99 50.29 49.01 50.83 52.73 41.48

∗ Measured by the number of vehicles. The best results are highlighted in bold

policy, while all other policies, including the data-
driven policies (DQN, PPO, and PlaNet), underper-
form the fixed-time control policy. The results show
that DreamerV2 has powerful exploration capabili-
ties for high-performance policies because the fixed-
time policy using Webster’s method is a strong base-
line for pattern 1. There are two reasons why the
fixed-time controller has such strong performance.
First, following a uniform distribution, pattern 1 is
a fixed traffic pattern suitable for fixed-time con-
trol. Second, the fixed-time control policy uses Web-
ster’s method to search for the optimal duration of
green phases that minimizes the vehicle delay in the
isolated intersection. However, by optimizing the
control policy via a world model and background
planning, DeamerV2 could search for a policy with
better performance than the fixed-time policy. The
powerful policy exploration capability makes Dream-
erV2 promising for more complex traffic control
scenarios.

Using the same image-based traffic states as for
DreamerV2, DQN and PPO have not learned effec-
tive control policies. Table 2 shows that DQN-I has
similar or worse performance compared with DQN-
V, and PPO-I has similar or worse performance com-
pared with PPO-V. These results indicate that in
our settings, the two vanilla DRL approaches, DQNs
and PPOs, are less capable of handling colossal ex-
ploration space induced by image inputs and learn-
ing effective policies from the image-based traffic

states directly. They can handle lane-level traffic
states relatively easily, which are generally formu-
lated as vectors and adopted by most researchers
in traffic signal control. However, lane-level traf-
fic states cannot fully reflect intersection states like
the image can, which restricts further improvement
of the control performance for DQN-V and PPO-V.
Therefore, carefully designed DQNs and PPOs are
needed to cope with complicated environments. As
a model-based DRL policy, PlaNet performs worse
than DreamerV2. The result indicates that the
DreamerV2’s world model using categorical variables
and background-planning-based optimization mech-
anism is more effective for image-based traffic signal
control.

To better understand the performance change
in the control policy during training, we visualize
the episode reward curve in evaluation over environ-
ment steps for different control policies. As shown
in Fig. 8, DreamerV2 can learn a high-performance
control policy using only a small number of environ-
ment samples, whereas model-free DRL policies need
more environment data to converge. This result vali-
dates that the model-based DreamerV2 has higher
data efficiency than the model-free DRL approaches.
DreamerV2 can generate large amounts of data for
training through its learned world model, whereas
DQNs and PPOs can learn only policies by samples
from the environment. High data efficiency makes
DreamerV2 suitable for scaling to real-world traffic
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Fig. 8 Evaluation rewards over environment steps on dataset D1×1 (References to color refer to the online
version of this figure)

signal control problems, because real-world samples
are expensive, especially for extreme scenarios.

4.4 Control performance comparison on
datasets D2×1 and D3×1

The results of the two experiments are shown
in Table 3. DreamerV2 achieves the optimal control
performance for both scenarios.

In the dataset D2×1, the DreamerV2 policy
achieves the best performance in all metrics. More-
over, an interesting result is that the image-based
traffic control approach shows an overwhelming ad-
vantage in complex intersection scenarios containing
heterogeneous vehicles with different types. Specif-
ically, image-based DQN-I and PPO-I outperform
vector-based DQN-V and PPO-V, respectively. This
indicates that in complex intersection scenarios with
heterogeneous vehicle types, image-based traffic con-
trol can better model the relationships between ve-
hicles and thus achieve better control performance.

In the dataset D3×1, DreamerV2 also achieves
the best performance in all metrics. In addition,
the figure of the evaluation reward curve (Fig. 9)
illustrates that DreamerV2 has the highest data uti-
lization, and the near-optimal control policy can be
explored using data of 2× 105 environment steps.

4.5 Decision time comparison

Fig. 10 shows the decision time statistics for
different policies in the test environment. All poli-
cies are tested on the same Linux server (CPU: Intel
Xeon CPU E5-2650 v4 @2.20 GHz, GPU: NVIDIA
TITAN V). We find that the DreamerV2 decision
time is similar to that of the model-free DRL policies
DQN and PPO. Their average decision time per step
is <0.007 s. DreamerV2 could guarantee real-time
decision-making because its decision module can be
detached from the prediction module in the execu-
tion stage. In contrast, MPC-based PlaNet needs
planning during decision-making, so it takes longer
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Table 3 Control performance comparison for different control policies on datasets D2×1 and D3×1

Dataset Performance metric Fixed-time Actuated DQN-V DQN-I PPO-V PPO-I PlaNet DreamerV2

D2×1

Average queue length∗ 1.194 0.791 2.190 1.091 0.923 0.792 0.810 0.518
Average vehicle speed (m/s) 6.535 6.908 4.281 5.635 5.537 6.420 6.744 7.318
Total number of output vehicles 250 250 196 233 237 247 249 250
Average trip delay (s) 97.57 72.63 151.46 93.27 82.90 76.66 79.03 58.19

D3×1

Average queue length∗ 2.662 1.462 2.091 2.394 1.326 1.238 1.711 1.093
Average vehicle speed (m/s) 5.952 6.306 6.116 6.067 6.259 6.300 6.114 6.332
Total number of output vehicles 648 699 663 654 681 691 674 704
Average trip delay (s) 122.82 112.38 117.48 120.46 113.94 112.06 117.83 110.79

∗ Measured by the number of vehicles. The best results are highlighted in bold
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Fig. 9 Evaluation rewards over environment steps on datasets D2×1 and D3×1 (References to color refer to
the online version of this figure)

to make decisions than other policies. In the experi-
ment, the average decision time of PlaNet is 0.058 s,
eight times longer than that of DreamerV2. More-
over, the decision time for PlaNet will increase for
complex environments with higher-dimensional im-
age inputs, making the handling of real-time traffic
control scenarios difficult. Unlike PlaNet, Dream-
erV2 does not require prediction during decision-
making. So, its decision time is linearly related to
the dimensionality of the image, making it ideal for
handling complex traffic dynamics.

4.6 Visualization of traffic prediction

To evaluate the prediction ability of DreamerV2,
we visualize its predicted image-based traffic states
and check the prediction error. Here, we use the
DreamerV2 policy optimized on pattern 1. Fig. 11

DQN-V DQN-I PPO-V PPO-I DreamerV2 PlaNet
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Fig. 10 Decision time for different policies

shows the DreamerV2 prediction of traffic states for
the next 10 steps (50 s) based on the data from
the past 5 steps. We also plot the ground truth
of future traffic states and the corresponding predic-
tion error. We find that DreamerV2 can accurately
predict the near-future image-based traffic state by
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relying on specially designed predictive learning.
The predicted position changes because all vehicles
are consistent with the actual changes. The pre-
diction results imply that DreamerV2 with a traffic
world model can accurately describe and forecast the
image-based traffic dynamics. The effective image-
based traffic modeling provides interpretability for
DreamerV2 decisions.

Although the traffic world model of DreamerV2
shows a strong prediction ability for traffic dynamics
following the DreamerV2 policy, its generalization in
other control policies needs further validation. Con-
sequently, we conduct experiments to test the traffic
prediction performance of the world model for two
kinds of traffic dynamics that follow opposite signal
control policies: N-S green policy and E-W green
policy. The N-S green policy and the E-W green pol-
icy maintain phase 1 (N-S straight) and phase 3 (E-
W straight), respectively, in any traffic states. The

multi-step prediction for traffic dynamics following
the two policies is shown in Fig. 12. To compare the
prediction results using the two policies with those
using the DreamerV2 policy, we first feed the traffic
world model with the same five-step historical traffic
states and actions as in Fig. 11. Then, the world
model uses sequences of future actions (correspond-
ing to phase indices) for the N-S green policy and
E-W green policy, respectively, to predict traffic dy-
namics following the two opposite control policies.

Fig. 12 shows that even given the same histor-
ical traffic states, the world model is still able to
predict different traffic state changes based on dif-
ferent sequences of future actions. The world model
can predict smooth traffic flow in N-S lanes and traf-
fic congestion in E-W lanes for the N-S green pol-
icy, but makes the opposite prediction for the E-W
green policy. We can also find that for traffic predic-
tion under different control policies, the difference of
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Fig. 11 Visualization of the future traffic states (ground truth) and the predicted traffic states
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Fig. 12 Visualization of world model predictions of traffic states under different control policies
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future states increases with the growth of prediction
length. The prediction for the N-S green policy and
E-W green policy shows a significant difference after
time step t+3. Unfortunately, the world model does
not accurately predict changes in traffic dynamics
under control policies other than DreamerV2: some
blurred pixels in the predicted image-based traffic
states are not representations of vehicles. Although
the learned world model cannot make fine-grained
forecasts for all traffic dynamics in current settings,
its ability to predict traffic trends makes predictors
promising to supplement traffic simulators or mathe-
matical models. We can view traffic evolution under
different policies via the image-based world model.

4.7 Impact of different state formalizations

As shown in Table 4, DreamerV2-PL using posi-
tion and lane-level state images achieves the best per-
formance in most metrics. This result indicates that
DreamerV2 can benefit from lane-level information
about queue length and density. Although the posi-
tion image implicitly contains lane-level information,
the feature may not be fully captured by DreamerV2-
P. So, multimodal fusion is necessary as illustrated
in Section 2.2. Furthermore, the multimodal fea-
tures used for fusion need to be carefully chosen. We
find that the speed image does not improve the con-
trol performance of DreamerV2-PS compared with
DreamerV2-P. This might be because DreamerV2
can implicitly extract speed information from con-

secutive position images based on its GRU modules,
which can track long-term dependency.

5 Conclusions

This paper analyzes the importance of predic-
tion for traffic signal control and reviews the typical
model-based control frameworks. Although model-
based traffic signal control has been studied for many
years, some problems remain to be solved. The
problems lie in the balance between the effectiveness
and timeliness of traffic signal control under complex
traffic dynamics as well as the integrated approach
to prediction and control.

To tackle these problems, we use an image con-
taining vehicle positions at the intersection to de-
scribe traffic dynamics and introduce DreamerV2
to learn an image-based traffic world model, which
performs background planning to help optimize the
traffic signal control policy. The learned control pol-
icy could make decisions independent of the world
model’s predictor, enabling effective and real-time
traffic signal control. We can also use the traffic
world model to derive future traffic trends under the
current policy or other policies on demand. This
mechanism for flexible use of the world model pro-
vides a new perspective for building a real-world-
oriented traffic signal control framework outside
the mainstream MPC framework. In the execu-
tion stage, the MPC framework using planning at

Table 4 Control performance comparison for different state formalizations on dataset D1×1

Traffic pattern Performance metric DreamerV2-P DreamerV2-PS DreamerV2-PL DreamerV2-PSL

Pattern 1

Average queue length∗ 2.705 2.949 2.583 2.608
Average vehicle speed (m/s) 6.623 6.519 6.801 6.766
Total number of output vehicles 860 867 865 875
Average trip delay (s) 37.76 39.70 36.07 36.87

Pattern 2

Average queue length∗ 2.512 2.684 2.460 3.049
Average vehicle speed (m/s) 7.326 7.151 7.464 6.721
Total number of output vehicles 703 718 723 695
Average trip delay (s) 35.80 37.24 35.30 40.51

Pattern 3

Average queue length∗ 4.333 4.903 4.012 5.324
Average vehicle speed (m/s) 5.326 5.004 5.599 4.830
Total number of output vehicles 944 921 964 914
Average trip delay (s) 56.26 61.39 53.15 65.92

Pattern 4

Average queue length∗ 2.995 3.284 2.892 3.347
Average vehicle speed (m/s) 6.555 6.376 6.693 6.410
Total number of output vehicles 858 850 869 836
Average trip delay (s) 41.48 43.67 40.26 44.67

∗ Measured by the number of vehicles. The best results are highlighted in bold
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decision time leads to difficulties in real-time
decision-making. In contrast, world-model-based
decision-making does not depend on the prediction,
but we can make accurate multi-step predictions on
demand to estimate the controller’s performance.

To better apply the traffic world model to the
futuristic real-world traffic signal control, we need to
further validate its feasibility in more complex traf-
fic scenarios. First, it is necessary to use a unified
traffic control policy incorporating multimodal fu-
sion to handle a wide variety of traffic environments,
including different traffic patterns, road conditions,
and other factors such as weather. Second, we need
to consider networked traffic control. It is feasible
to study how to build an effective multi-intersection
world model. The model can perform city-wide traf-
fic prediction (Dai et al., 2019; Li ZS et al., 2022),
and help optimize coordinated control policies by in-
troducing multi-agent RL (Bertsekas, 2021; Zhang
KQ et al., 2021) or hierarchical RL (Liu et al., 2021).

For future applications of the traffic world
model, we consider integrating it with current ad-
vanced traffic control systems, like human-in-the-
loop recommendation systems (Jin et al., 2021), to
explain the recommended policy by intelligent ma-
chines. The world model also provides a solution
to constructing artificial systems of parallel trans-
portation systems. We can simulate different traf-
fic evolutions in the world model for many compu-
tational experiments. In a sense, the traffic world
model enriches the study of artificial systems by en-
abling them to take on forms other than mathemati-
cal and simulation models. By optimizing the control
policy via predictive learning in the parallel learning
framework (Li L et al., 2017), the world model can
facilitate parallel execution and prescribe the opera-
tion of real-world transportation systems.
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