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Domain knowledge enhanced deep learning for 

electrocardiogram arrhythmia classification*
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Abstract: Deep learning provides an effective way for automatic classification of cardiac arrhythmias, but in clinical decision-
making, pure data-driven methods working as black-boxes may lead to unsatisfactory results. A promising solution is combining 
domain knowledge with deep learning. This paper develops a flexible and extensible framework for integrating domain 
knowledge with a deep neural network. The model consists of a deep neural network to capture the statistical pattern between 
input data and the ground-truth label, and a knowledge module to guarantee consistency with the domain knowledge. These two 
components are trained interactively to bring the best of both worlds. The experiments show that the domain knowledge is 
valuable in refining the neural network prediction and thus improves accuracy.
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1  Introduction

In recent years, deep learning technology has 
provided a new and effective example for making 
clinical decisions from pathophysiologic data (National 
Center for Cardiovascular Diseases, 2019). Some 
works have achieved better performance than a human 
specialist (Hannun et al., 2019). These successful 
models are all data-based learning methods; that is, the 
models take raw electrocardiogram (ECG) data as 
input, extract features, and output a prediction based on 
the input data. However, pure data-driven methods 
may lead to unsatisfactory results due to an unbal‐
anced, incomplete, or biased dataset, and may not meet 
the constraints prescribed by natural law. A promising 
solution is integrating domain knowledge in the neural 
network pipeline to correct the deviation.

In this paper, we propose a general framework 
to address the questions in ECG arrhythmia classifi‐
cation, including: (1) How to represent the clinical 
knowledge so that it can be injected into the deep 
learning architecture? (2) How can domain know‑
ledge affect the deep neural network (DNN) learning 
process, when the learning is based on gradient de‐
scent and back propagation? (3) Does the integration 
really improve or reduce the performance of the DNN? 
And how?

2  Related works

In recent years, the DNN model has been ap‐
plied in the diagnosis of different cardiac diseases, 
such as heart arrhythmias (Acharya et al., 2019; Ba‐
loglu et al., 2019). Although DNNs have had signifi‐
cant success, they still have limitations in specific tasks 
because they are purely data-driven and are highly 
dependent on the training data. A solution is to integrate 
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prior knowledge in the training process, and a variety 
of approaches have been proposed.

2.1  Integrating knowledge with data before 
feeding them into the DNN model

Domain knowledge can be applied to select ap‐
propriate data before they are fed into the DNN 
model. There are 12 leads in a conventional ECG. The 
six leads I, II, III, aVR, aVL, and aVF are limb leads, 
and the six other leads V1, V2, V3, V4, V5, and V6 
are precordial leads (Surawicz and Knilans, 2008). 
Some leads have more pathological value for detec‐
tion of a particular disease; for example, leads V2, 
V3, V5, and aVL are more sensitive and valuable in 
detecting myocardial infarction, and thus the related 
leads are selected as input instead of all 12 leads (Liu 
WH et al., 2018).

Domain knowledge can also be applied to ana‐
lyze the inherent correlation of the input data. A clas‐
sification model called MBCRNet designs three 
branches and considers synchronization and orthogo‐
nality of multiple leads (Chen B et al., 2018) to ex‐
plore the different features. The average accuracy is 
87.04% and the sensitivity is 89.93%.

2.2  Integrating knowledge after the DNN model 
makes a prediction

Domain knowledge can be integrated with the 
DNN by decision fusion methods. The DNN makes a 
prediction and the clinical knowledge model (repre‐
sented as diagnosis rules) performs inference sepa‐
rately, and the two results are fused to obtain the final 
decision (Jin and Dong, 2017).

Many works leveraged domain knowledge to re‐
fine the prediction result of a DNN model, which is 
called post-processing in some literature. Zhou et al. 
(2017) used ensemble classifiers to divide the ECG 
records into two categories, premature ventricular con‐
traction (PVC) and non-PVC, and then rule-based 
inference was performed for each category to further 
refine the prediction result. Singstad and Tronstad 
(2020) individually classified 27 cardiac abnormalities 
with the deep learning model and rule-based algo‐
rithm. If there was inconsistency between the two re‐
sults, the DNN classification result was rewritten by 
the rule-based algorithm. Parvaneh et al. (2018) ap‐
plied DenseNet to classify the ECG record into four 

categories. In view of the high misclassification be‐
tween the categories “normal sinus rhythm (NSR)” 
and “other rhythm (O),” once the absolute difference 
between the predicted probabilities of the two catego‐
ries was less than a heuristic threshold (0.4 in the 
paper), a binary classification will start working to 
make the final decision.

2.3  Integrating knowledge with the DNN model 
in parallel

A variety of methods have been proposed to in‐
tegrate knowledge with the DNN model and simulta‐
neously perform training. This paper focuses on the 
use of logic, more specifically, first-order logic (FOL), 
to represent domain knowledge.

Rule distillation has been proposed to refine 
the knowledge represented by FOL rules for the DNN 
model, where the rules will force the DNN model to 
simulate the prediction of the rules during training 
through posterior regularization (Hu et al., 2016).

Logic is not differentiable, so many methods in‐
tegrate logic rules as constraints or regularization 
terms of the DNN model, and perform relaxation to 
make them amenable to gradient-based learning. Se‐
mantic based regularization (SBR) represents the 
logic as a regularization term in the loss function to 
provide a penalty when the DNN model prediction 
violates the knowledge (Diligenti et al., 2017). Proba‐
bilistic soft logic (PSL) consists of a set of FOL rules 
and the satisfaction distance of the grounded rules is 
added to the loss function as a regularization term 
(Kimmig et al., 2012). Abductive learning is a frame‐
work that unifies machine learning and logical rea‐
soning (Dai et al., 2019). In each training epoch, the 
conventional neural network is used to produce prim‐
itive logic facts, called pseudo-labels, and logical rea‐
soning is used to revise incorrect pseudo-labels based 
on the domain knowledge. The revised labels are used 
to re-train the neural network in the next epoch.

We prefer this method because the classification 
model can learn from the data and the domain knowl‐
edge jointly. The structural knowledge represented 
with FOL rules can be integrated into the neural 
network without changing the DNN model’s training 
process. Our method applies logic rules to represent 
domain knowledge, but the weight of each rule is 
not manually specified and will be regulated and 
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optimized jointly with DNN weights during the learn‐
ing process. Thus, the knowledge specification will 
also adapt to the meaningful data.

3  Methods

In this paper, we propose a generalized frame‐
work that enables integrated learning of the DNN and 
domain knowledge. The architecture is composed of 
three modules (Fig. 1): a baseline DNN classifier, a 
knowledge inference module, and a joint learning 
module. The DNN is an arbitrary neural network that 
takes a preprocessed signal as input and produces the 
probability of the category to which the input be‐
longs. The knowledge inference module comprises 
a knowledge base and a rule-grounding, matching, 
and scoring (GMS) module. The outputs of the DNN 
model and the knowledge inference module are n-
dimensional vectors, where n is the number of cate‐
gories. The joint learning module will train the DNN 
model and knowledge inference module with back‐
ward propagation.

3.1  Problem setting

The DNN classifier can be formalized as Fc:
X→Y, where X is the preprocessed data and Y∈Rn 
is the output space. For the training data { ( xi,yi ) }n

i = 1, 

the output of the classifier is the probability pθ ( yi|xi ) 
that input xi belongs to category yi, and θ denotes 
the parameter of the neural network. The knowl‐
edge inference module can be formalized as Fk: X̂ × 
Y→C, C∈R+, where X̂ is the raw data without prepro‐

cessing, and C is the degree to which that input data 

matches the label. Input data X̂ is different from the 
preprocessed data X in that it is not chopped or pad‐
ded into segments of fixed length to make it avail‐
able for DNN processing, which will cause valuable 
information to be lost with the abandoned segments.

The objective of the framework is to train the 
neural network under constraints, to simultaneously 
minimize the classification mismatch and penalize 
the violation of the knowledge base. The cost func‐
tion can be represented as

L = LC + λ LK. (1)

Fig. 1  Architecture of the proposed method
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LC is used to force the sample to fit the real la‐
bel, and LK is used to penalize the violation between 
the two outputs of the two modules. λ  is a hyper‐
parameter to trade-off between the knowledge infer‐
ence and deep learning model.

LC =
1
N∑i = 1

N (l ( )yi, pθ ( yi|xi ) , (2)

where l is the cross-entropy loss function.
LK is measured with Kullback-Leibler diver‐

gence (Sankaran et al., 2016) in each training iteration:

LK =
1
N∑i = 1

N

KL ( )pk( )x̂i  || pθ( )yi|xi , (3)

where pk ( x̂i ) is the knowledge inference module soft 

prediction, detailed in Section 3.2.2.

3.2  Domain knowledge inference module

3.2.1  Presentation of knowledge

We use fuzzy logic rules to represent the do‐
main knowledge. An atom is a tuple in the form 
p ( x1, x2, …, xm ), where p∈P, a given set of base 

predicates, and xi is either a variable or a constant. A 
predicate p is a relation defined by a unique feature 
extracted as the attributes of an object according to 
the domain knowledge, such as the permitted value 
range of the feature. A rule r is a Horn clause of dis‐
junctive predicates with one term in the conclusion 
part, and each rule is associated with a weight ηr to 
present the empirically preconfigured confidence of 
the rule, which can be initialized as 0 and should be 
updated and learned during training.

ηr: P1˄P2⋯˄Pm →  Hr. (4)

The rules are stored in the knowledge base. 
When the training data is input, the features are ex‐
tracted and the corresponding predicates are grounded. 
A grounded predicate is the instantiation of all the 
variables xi. The set of grounded predicates is also 
called the Herbrand base, denoted as G. A rule is 
grounded by grounding all the predicates of the rule 
iteratively.

For the training data {(xi, yi)}
n
i = 1, the knowledge 

inference module is formalized as finding a function 

to compute a real value that represents the satisfac‐
tion degree of the grounded rule. Łukasiewicz ’s 
t-norm (Klir and Yuan, 1995) is used to define the 
truth value of basic logical operations, including logi‐
cal conjunction (˄), disjunction (˅), and negation 
(¬). The soft truth value is defined as in Table 1.

3.2.2  GMS module

The data input into the knowledge inference 
module is a complete signal without segmentation or 
dropout to compensate for the information lost in the 
preprocessing. Specific features will be extracted 
from the raw data. The GMS module will use the fea‐
tures to iteratively ground the variables in the rules, 
determine the satisfied rules, and compute the score 
of the satisfied rules. The mapping from features to 
atoms is called an interpretation I. The process is de‐
scribed as follows:

1. Atom translation: When the training data is 
input, the features are extracted and the correspond‐
ing predicates are grounded.

2. Predicate translation: There is a given set P 
of base predicates determined according to the do‐
main knowledge, and the predicates are defined as 
p ( x1, x2, …, xm ). The predicates are grounded as p or 

its negation ¬p.

3. Proposition translation: The proposition is 
translated into a combination of predicates with lo‑
gical operator conjunction (˄) and disjunction (˅).

4. Rule translation: For a rule rbody → rhead, the 
soft truth of the antecedent and consequent of the 
rule are computed as I(rbody) and I(rhead), respectively, 
according to Table 1, and the distance under inter‐
pretation I to satisfy the rule is defined as dr(I) =
max(I(rbody)-I(rhead), 0).

Given the grounded atoms, the GMS module 
derives a distribution over possible interpretations, 
and the probability density function is defined as

Table 1  The soft truth computation of Łukasiewicz’s 
t-norm

Clause

i˄
pi

i˅
pi

¬ p

Soft truth value

max ( )∑
i

pi − || P + 1,0

min ( )∑
i

pi , 1

1 − p
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P ( I ) =
1
Z

exp [ ]−∑r ∈ R
ηrdr( )I , (5)

where Z = ∫exp[ ]−∑r ∈ R
ηrdr( )I  is a normalization 

constant and r∈R is the grounded rule.
We aim to minimize the distance to rule satisfac‐

tion for each instance. We compute the distance with 
the GMS module and find the minimum of all possi‐
ble rule grounding results.

3.3  Joint learning of the two modules

The loss function L can be solved if it is con‐
vex. By relaxing the logic rules using Łukasiewicz’s 
t-norm and limiting the rules as a Horn definite 
clause, the convexity of LK is guaranteed and the 
loss function can be optimized with the GMS method. 
Details of the convexity proof can be found in Giannini 
et al. (2019).

Let θ denote the parameter of the neural net‐
work. The gradient of L with respect to (w.r.t.) θ can 
be computed as

∂L
∂θ =

∂ (LC + λ LK )
∂θ =

∂LC∂θ + λ
∂LK∂θ ,

where

∂LK∂θ =
∂ ( )KL ( pk( )x̂i  || pθ( )yi|xi

∂θ

=∑
i = 1

N
∂ ( )pk( )x̂i ln

pk( )x̂i

pθ( )yi|xi

∂θ
=−∑

i = 1

N ( )pk( )x̂i

∂ ln pθ( )yi|xi∂θ ,

∂L
∂θ =−∑

i = 1

N ( )( )yi + pk( )x̂i ∇pθ( )yi|xi , (6)

and ∇pθ can be computed using the usual neural net‐

work backpropagation.
Let η denote the weight of the logic rules. The 

gradient of L w.r.t. η can be computed as

∂L
∂η =

∂ (LC + λ LK )
∂η

= λ
∂LK∂η

=− λ∑rϵR
dr( )I + E [ ]∑rϵR

dr( )I . (7)

4  Experiments

This section provides a concrete instance of our 

general framework in the task of ECG arrhythmia 

classification. We test the method in detection of 

eight arrhythmias against normal records from 12-

lead ECG signals. The arrhythmias include atrial 

fibrillation (AF), first-degree atrioventricular block 

(I-AVB), left bundle branch block (LBBB), right bun‐

dle branch block (RBBB), premature atrial contrac‐

tion (PAC), PVC, ST-segment depression (STD), and 

ST-segment elevation (STE).

4.1  DNN model

Fig. 2 illustrates the baseline neural network ar‐

chitecture. The input signal in the form of 12×5000 

is fed into the first convolutional block, followed by 

eight convolutional blocks with residual connection 

and a classification layer. The convolutional blocks 

have the same structure except for the first and last.

Fig. 2  The DNN model to detect eight arrhythmias 
against normal records from 12-lead ECG signals
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The first convolutional block consists of a 
one-dimensional convolutional (1D Conv) layer, a 
batch normalization (BN) layer, and a rectified linear 
unit (ReLU) layer. BN is the operation ensuring that 
the dataset has zero mean and unit variances to mini‐
mize the impact of an internal covariate shift (Ioffe 
and Szegedy, 2015), which is the phenomenon that the 
input distribution of each layer will change with the 
parameters of the previous layer in the training phase. 
BN transformation can be added to a network to ma‐
nipulate any activation and enable a higher learning 
rate.

For the next eight blocks, each block consists of 
two convolutional layers. The filter sizes of all the 
convolutional layers are 16 and the number of filters 
is 32×2k, where k starts at 0 and increases by 1 for 
every four blocks. According to the pre-activation 
block design, we apply a BN and an ReLU layer 
before each convolutional layer. We apply residual 
connection by adding a shortcut connection between 
two consecutive convolutional blocks. The outputs 
are added to the outputs of the skipped block. Max 
pooling is an operation that computes the maximum 
value of a particular feature and reduces the dimen‐
sionality of the output features significantly while 
enabling a translation invariant of the features. We 
use max pooling of size 2 and stride 2 in the residual 
connection to guarantee that the input and output fea‐
ture maps have the same dimensionality.

The last convolution layer is used to integrate 
the feature vectors produced. The output of the last 
convolutional block is fed into a SoftMax regression 
layer, which corresponds to the probability distribu‐
tion of the label to which the input ECG segment be‐
longs. A fully connected (FC) layer contains nine cells 
corresponding to the nine categories.

The squeeze-and-excitation (SE) module is ap‐
plied to refine the channel-wise feature maps. As 
shown in Fig. 3, the SE module consists of a global 
average pooling (GAP) layer, and two FC layers, each 
with different activation functions. Given the input 
feature vector as X, the GAP layer will squeeze the 
global spatial information into a channel descriptor 
to capture channel-wise dependencies. The SE mod‐
ule will produce a scalar s to represent the impor‐
tance of the channel in Eq. (8), where δ refers to the 
ReLU function and σ refers to the Sigmoid function. 

The refined feature vector is shown in Eq. (9), where 
s ∙ X refers to the channel-wise multiplication be‐
tween feature vector X and scalar s.

s = σ (W2δ (W1GAP ( X ) ) ) , (8)

X͂ = X + s∙X. (9)

4.2  Domain knowledge

Domain knowledge is used in ECG arrhythmia 
detection to explore characteristics and improve the 
classification performance. Knowledge-based rules are 
aligned with diagnosis criteria according to the cardi‐
ologist’s experience and carry clinical meanings.

As shown in Fig. 4, one cardiac cycle in an ECG 
signal consists of the P-QRS-T waves. The P wave 
represents atrial depolarization, the QRS complex 
represents ventricular depolarization, and the ST seg‐
ment and T wave represent ventricular repolarization 
(Goldberger et al., 2017). Considering that the symp‐
toms of arrhythmias are different in each lead, the di‐
agnostic rules of cardiac arrhythmia are extracted based 
on prior knowledge and clinical experience.

When the sinus rhythm is normal, the P wave of 
lead II is always positive, the P wave of lead aVR is 
always negative, and the heart rate is between 60 bpm 
and 100 bpm.

The diagnostic for BBB is performed mainly in 
a widened QRS complex greater than 0.12 s. RBBB 
will result in the right ventricle depolarizing after the 
left ventricle, which can be reflected by leads I, V6, 
and V1 (indicating the slow depolarization of the 

Fig. 3  The squeeze-and-excitation (SE) module
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right ventricle in a left-to-right direction). Associated 
features of diagnostic criteria for RBBB include a 
wide slurred S wave in leads V5 and V6, ST segment 
depression, and T wave inversion in lead V1. LBBB 
will result in the left ventricle depolarizing after the 
right ventricle. Associated features of LBBB include 
long R waves in leads V5 and V6 and a long S wave 
in lead V1 (Hamad, 2018).

STD and STE are the most widely used features 
for detection of ischemic disease and myocardial infarc‐
tion (MI), which is measured as the height difference 
between the J point and the reference line. The J point 
is at the end of the QRS complex and the beginning of 
the ST segment. The PR segment is used as the refer‐
ence line for measuring the deviation of the ST seg‐
ment. It is STE if the J point is 0.2 mV higher than 
the baseline, and STD if the J point is 0.05 mV lower 
than the baseline in leads V2 and V3 (O’Gara et al., 
2013; Hanna and Glancy, 2015; Gupta et al., 2020). 
V5 is selected because it has the highest sensitivity in 
detecting myocardial ischemia (Crawford et al., 1999). 
Lead aVL is more reasonable for diagnosing MI caused 
by left anterior descending (LAD) coronary artery 
occlusion, especially extensive anterior MI (Acharya 
et al., 2019).

The characteristic of AF is small waves of high 
frequency (350‒600 bpm). The diagnosis of AF is the 
absence of P waves in all leads and short, irregular 
RR intervals. Atrial flutter and AF are related ar‐
rhythmias and often have similar appearance. The 
distinct features of AF are the totally irregular rhythm 
and variable wave morphology, which are constant and 
identical, respectively, in atrial flutter (Goldberger 
et al., 2017).

AVB is characteristic of the prolonged PR inter‐
val. I-AVB occurs when the PR interval is ⩾0.20 s. 
The associated clinical diagnosis criteria also include 
the electrical axis of the QRS complex. The normal 
mean QRS axis in adults lies in [−30°, +100°], 
and the left deviation of the electric axis (<−30°) 
is a noteworthy manifestation (Goldberger et al., 
2017).

PAC can be diagnosed based on the P wave 
characteristics. Compared with the sinus P wave, a 
premature P wave has a different morphology and 
axis. A reverse P wave in lead II or III is a sign of 
PAC. In addition, it occurs earlier than the sinus P 
wave. A prolonged PR interval increases the proba‐
bility of PAC. Lead aVR is used in detection (Gor‐
gels et al., 2001).

PVC is recognized from a QRS complex that is 
wide (⩾0.12 s) and abnormal in appearance. The pre‐
mature ventricular impulse will replace a sinus beat 
and disrupt the regular interval between beats, which 
will lead to a prolonged RR interval.

The associated features are summarized in 
Table 2.

4.3  Dataset

In this work, the dataset used is obtained from 
the China Physiological Signal Challenge (CPSC) 
(Liu FF et al., 2018), which includes 9831 12-lead 
ECG recordings sampled at 500 Hz. The training set 
is open to the public and the testing set is private. To 
validate our model with more data and augment the 
dataset to reduce class imbalance, we incorporate the 
PTB-XL database (Wagner et al., 2020). The records 
are shown in Table 3.

Fig. 4  The cardiac cycle in an ECG signal
The Q, R, and S waves in a QRS complex are plotted in different colors. References to color refer to the online version of this figure
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To reduce the effect of class imbalance, we ran‐
domly divide the records of each class into five sub‐
sets and copy the records of the class with fewer re‐
cords so that the number of records of each class is 
nearly equal. The five subsets are processed to per‐
form five cross validations.

We divide the public accessible records at a 
ratio of 70%:10%:20% randomly for training, valida‐
tion, and testing, respectively. Every recording is 

labeled as the normal type or one of the eight abnor‐
mal types. For a recording with more than one label, 
the classification result is considered correct if it is 
consistent with one of the labels. Before being fed 
into the model, all the ECG signals are denoised and 
filtered to remove baseline wander using a Daubechies 
6 wavelet (Singh and Tiwari, 2006).

The DNN model requires the input signal be a 
fixed segment. The length of CPSC recording varies 
from 6 to 60 s. The standard 12-lead ECG recording 
length is 10 s. These raw signals are preprocessed to 
a fixed length of 10 s. For shorter recordings, we pad 
shorter recording to achieve 10 s with data points cop‐
ied from the same recording; for longer recordings, 
we split the long signal into several segments with a 
length of 10 s and input only one segment into the 
model. To prevent the model from overfitting, we 
input the different segments of the same recording in 
a different training epoch. There are 5000 prepro‐
cessed signal samples for each channel.

Signal cropping will inevitably lead to loss of 
information. That is why we use the complete record 
for the knowledge inference module. The records do 
not need cropping, but do need further slicing into 
heartbeats to extract domain features. The ECG sig‐
nals are segmented according to the location of the R 
peak using the Pan–Tompkins algorithm (Pan and 
Tompkins, 1985), which is regarded as the identifica‐
tion of a heartbeat. The length of each heartbeat 
is fixed at 600 ms (200 ms before the R peak and 
400 ms after) with 300 sample points. The features 
described in Table 2 are computed based on the heart‐
beat segmentation.

5  Results and discussions

The proposed model is developed and trained 
using Python with the TensorFlow library (Abadi 
et al., 2016). The experiments are performed on a 
computer with one Intel Core i9-9900K CPU at 
3.6 GHz, NVIDIA Quadro RTX5000, and 64 GB 
memory. The Adam optimization method (Kingma 
and Ba, 2015) is used to optimize the model with the 
learning rate=0.001, beta1=0.9, and beta2=0.999. The 
procedure is conducted five times to complete the 
fivefold training and validation plus test.

Table 3  Number of recordings of datasets

Arrhythmia

NSR

AF

I-AVB

LBBB

RBBB

PAC

PVC

STD

STE

Number of recordings

CSPC

918

1098

704

207

1695

556

672

825

202

PTB-XL

–

1514

797

536

542

398

–

–

–

Table 2  ECG features extracted based on domain 
knowledge

Feature

RRmed

RRmin

∆RRmin

RRstd

pNN50

NNavg

HRmax

HRmin

RApEn

Rmed

Rstd

TPE

Tmed

PPE

PApEn

Pmed

Pstd

STdev

STmax

STinter

Description

Median of the RR interval

Minimum of the RR interval

Minimum of the difference of successive RR 
intervals

Standard deviation of the RR interval

Percentage of NN interval differences ⩾50 ms

Average of NN intervals

Maximum of the heart rate

Minimum of the heart rate

Approximate entropy of R peak amplitude

Median of R peak amplitude

Standard deviation of R peak amplitude

Permutation entropy of T peak amplitude

Median of T peak amplitude

Permutation entropy of P peak amplitude

Approximate entropy of P peak amplitude

Median of P peak amplitude

Standard deviation of P peak amplitude

Average deviation of the ST segment

Maximum deviation of the ST segment

Deviation of slope intercept of the ST segment
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5.1  Classification performance

In our experiments, the performance of the pro‐
posed model is evaluated with the following statisti‐
cal measures as shown in Eqs. (10)–(13): sensitivity 
(Sen), specificity (Spe), precision (Pre), and accuracy 
(Acc). Sen measures the ability of the model to avoid 
missing an abnormal heartbeat, and Spe evaluates 
how well our model avoids misjudging a normal 
heartbeat. Pre measures the correctly predicted posi‐
tive observations. Acc represents the overall perfor‐
mance of the model in properly classifying a heart‐
beat. True positive (TP) and true negative (TN) indi‐
cate the numbers of heartbeats correctly predicted, 
while false positive (FP) and false negative (FN) in‐
dicate the numbers of heartbeats not predicted as 
labeled.

Sen =
TP

TP + FN
, (10)

Spe =
TN

TN + FP
, (11)

Pre =
TP

TP + FP
, (12)

Acc =
TP + TN

TP + TN + FP + FN
. (13)

For each class x, the F1 score is denoted as F1x 
and computed using Eq. (14), and the average F1 
score of the model is evaluated as Eq. (15):

F1x =
2 (Sen·Pre )
Sen + Pre

, (14)

F1 =
1
9∑x = 1

9

F1x. (15)

The performance is shown in Table 4.

To evaluate the effectiveness of our proposed 
model structure, we compare the performance mea‐
sures of the proposed model with those of two other 
models. The first model (denoted as Expert in Table 5) 
uses the domain features described in Table 2 as the 
input of a classifier. We build a logistic regression on 
the extracted features. The second model (denoted as 
DNN) uses the DNN model described in Fig. 2, which 
uses convolutional neural network (CNN) blocks to 
extract the features of each lead, concatenates all 12 
feature vectors together with a fully connected layer, 
then inputs the concatenated feature vectors to the 
classification layer, and outputs the probability distri‐
bution of the arrhythmia type. The F1 scores of the 
three models are shown in Table 5.

5.2  Effect of domain knowledge on performance

To demonstrate the effect of domain knowledge 
on the performance of the classifier more directly, the 
confusion matrices without and with domain know‑
ledge are shown in Tables 6 and 7, respectively. The 
confusion matrix records the actual and predicted 
classifications for each class and identifies the type 
of errors being made by the classifier. The row labels 
indicate the true class records to which each row be‐
longs, and the column labels indicate the class pre‐
dicted by our model for records in each column. 
Numbers in each grid show the number of records 
classified as the column label when its true class is 
indicated by the row label.

In the classification of ECG arrhythmia, there are 
some domain-specific issues making the result unsatis‐
factory, leaving space to introduce the augmentation 

Table 4  Performance of the proposed model

Class

NSR

AF

I-AVB

LBBB

RBBB

PAC

PVC

STD

STE

Sen

0.873

0.928

0.850

0.911

0.985

0.900

0.950

0.915

0.826

Spe

0.983

0.989

0.997

0.995

0.983

0.990

0.990

0.988

0.993

Pre

0.894

0.946

0.970

0.863

0.954

0.900

0.914

0.920

0.789

Acc

0.968

0.979

0.981

0.992

0.983

0.982

0.986

0.979

0.988

F1

0.883

0.936

0.906

0.886

0.899

0.900

0.902

0.891

0.887

Table 5  F1 score in form “Mean±STD” of different models 
in the fivefold cross-validation

Class

NSR
AF

I-AVB
LBBB
RBBB
PAC
PVC
STD
STE

Average

F1 score
Expert

0.735±0.009
0.802±0.016
0.809±0.014
0.807±0.020
0.701±0.015
0.725±0.043
0.849±0.023
0.680±0.045
0.797±0.021
0.767±0.029

DNN
0.873±0.031
0.821±0.027
0.828±0.017
0.861±0.012
0.821±0.024
0.860±0.028
0.884±0.012
0.812±0.021
0.842±0.030
0.845±0.014

Proposed
0.883±0.017
0.916±0.014
0.901±0.011
0.886±0.012
0.894±0.009
0.901±0.011
0.902±0.007
0.918±0.011
0.889±0.007
0.851±0.009
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of domain knowledge. The issues can be summarized 
as follows:

1. The influence of lost input data information: 
DNN models require input data be preprocessed into 
segments of a fixed length, which may lead to loss of 
important information. For PAC or PVC, the prema‐
ture beat appears just a few times in the record, while 
other arrhythmias, such as AF, appear in each ECG 
beat. In extreme cases, AF beat appears only once. For 
the DNN model, the beat will be neglected because 
the record may be cropped and the characteristic 
beats are abandoned. In this case, the record will be 
misclassified in the NSR. We remedy this issue with 
the knowledge module, which takes the complete re‐
cord as the input without cropping. The module mag‐
nifies the importance of specific important concepts 
missing from the learning model.

2. The influence of the similarity among classes: 
The similarity among classes will lead to high false 
positive cases. From the confusion matrix of the DNN 
model in Table 6, we can see that the DNN model is 
not sensitive to STE and STD detection. The small 

change of the ST segment amplitude is easily affected 
by noise, baseline drift, and subject variability. STD 
and STE can be misclassified into NSR, which makes 
their recognition from the training set a difficult task. 
The characteristic rules of specific leads aim to re‐
duce the misclassification. Similarly, for the further 
classification of AF and atrial flutter, which are often 
misclassified for the morphology similarity, the dif‐
ference between heart rates can be used as a distin‐
guishing rule.

3. The influence of features of different impor‐
tance: One important DNN model issue is that the 
influence of one feature is trivial and may be neglected 
if other features are normal. For example, atrial rhythm 
and sinus rhythm are easily confused. The pathologi‐
cal characteristic is P-wave anomaly. It is hard to 
distinguish when the amplitude of the P wave of a 
specific subject is very small and other features fall 
into the normal range. However, the logic rules can 
amplify the significance of a specific feature, and 
thus focus on the most discriminative part of the 
signal.

Table 6  The confusion matrix of the DNN model

Class

NSR

AF

I-AVB

LBBB

RBBB

PAC

PVC

STD

STE

Predicted label

NSR

344

2

11

1

3

5

0

11

8

AF

1

428

8

1

1

8

2

3

1

I-AVB

3

4

256

0

0

1

1

2

0

LBBB

1

2

4

82

2

0

0

4

0

RBBB

2

13

10

2

718

4

4

0

3

PAC

6

10

7

1

2

225

6

3

0

PVC

2

4

3

1

2

6

267

6

1

STD

20

5

1

1

1

1

1

324

2

STE

15

1

1

1

0

0

0

1
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Table 7  The confusion matrix of the proposed model

Class

NSR

AF

I-AVB

LBBB

RBBB

PAC

PVC

STD

STE

Predicted label

NSR

357

1

9

1

2

3

0

3

1

AF

1

440

8

0

1

3

1

0

0

I-AVB

2

2

263

0

0

1

1

2

0

LBBB

1

3

4

83

2

0

0

2

0

RBBB

2

8

6

2

720

2

1

0

2

PAC

5

7

6

1

1

238

2

2

0

PVC

2

4

3

1

2

1

275

5

1

STD

14

2

1

1

1

1

1

339

2

STE

10

1

1

1

0

1

0

0

79
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5.3  Trade-off between the DNN module and 
knowledge module

The hyperparameter λ in Eq. (1) creates a trade-
off between the impact of the DNN module and know‑
ledge module. It is sampled from a Beta distribution 
(Beta(β, β)). The hyperparameter is selected by ob‐
serving the best F1 performance on the validation set, 
as shown in Fig. 5. We test the model performance 
under different choices with β=0.1 and set λ to 0.1.

When λ=0, the model regresses to a traditional 
CNN model. As λ grows, the performance is improved, 
which shows that logical rules of the knowledge 
module are essential for fallible categories with very 
similar patterns or ignored features. However, a too 
large λ will lead to reduced performance, because the 
power of automatically extracting nonlinear relation 
of the neural network may be significantly weakened 
by the logical rules, leading to high sensitivity and 
low precision. In addition, the knowledge module is 
domain-specific and is highly constrained by classifi‐
cation accuracy and representation power, and thus the 
parameter will impact the generalizability of the model.

In summary, a proper weight of the domain 
knowledge module is helpful in unifying the advan‐
tages of neural networks and logic reasoning. It should 
be estimated in a task-specific way.

5.4  Model parameter optimization

The learning rate and batch size impact the per‐
formance of the model. We conduct two contrast ex‐
periments: one experiment involves a different learn‐
ing rate and an unchanged batch size, and the other 
involves a changed batch size with a fixed learning 
rate of 0.001.

The model is trained for a total of 50 epochs. 
Fig. 6 presents the loss curves with the batch size 
of 64. We test the learning rate of 0.01, 0.001, and 

0.0001, and find that the model converges to a very 
low value with an increased epoch number and a dif‐
ferent learning rate. With a learning rate of 0.001, the 
loss curve shows a stable convergence trend close to 
the value of 0, while the two other curves exhibit 
fluctuations during training.

By fixing the learning rate at 0.001, we test the 
model with different batch sizes. As illustrated in 
Table 8, the best performance is achieved at the 
batch size of 64. When the batch size is larger than 
64, the F1 score decreases as the batch size increases.

The average running time is about 70 s. Note 
that the model converges in a few minutes, also de‐
pending on the size and structure of the knowledge 
inference rules. The inference rules are designed in a 
concise and clear way to avoid recursive inference. 
Fortunately, rules in ECG classification are different 
from commonsense reasoning. For example, given 
two facts “Tom is Alice’s wife” and “John is Tom’s 
son,” a new fact, “John is Alice’s son,” can be de‐
duced and the process can keep working until no new 
fact is generated. This technique is called forward 
chaining, and will result in a deep proof path. The 
training time will depend on the scale of the proof 
path. ECG classification rules avoid the issue because 
two arrhythmias or more will not infer the presence of 
a new arrhythmia.

Fig. 5  Hyperparameter search for λ

Table 8  Performance when using different batch sizes

Batch size

F1

16

0.845

32

0.881

64

0.893

128

0.873

Fig. 6  The loss curves at different learning rates
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5.5  Comparison with state-of-the-art methods

We conduct a comparative study of the pro‐
posed method and the state-of-the-art methods. The 
most frequently used neural networks in ECG classifi‐
cation tasks include CNNs, recurrent neural net‐
works (RNNs), and their combination, convolutional 
recurrent neural networks (CRNNs).

CNNs have proved to be a very powerful and ef‐
fective model in extracting sophisticated features, and 
are popular in different classification tasks including 
ECG signal classification. The ECG signal is sampled 
to be time series, so one-dimensional convolutional 
neural network (1D-CNN) is a preferred option. Al‐
though ECG segments can be transformed into two-
dimensional representation to adapt to the conven‐
tional network, we still take time series as input to 
avoid introducing confounding factors and facilitate 
performance comparison. We conduct experiments 
with three popular CNN models as listed in Table 9: 
InceptionTime (Fawaz et al., 2020) (INCE for short), 
ResNet (He et al., 2016), and VGGNet (Simonyan 
and Zisserman, 2015). The model inputs are tensor 
of 5000×12 and the last FC layer is re-adapted to ex‐
clusively work with nine classes. ResNet includes 
one convolutional layer, eight residual blocks with 
two convolutional layers per block, and one FC layer. 
A kernel size of 5 is used in the 1D convolutions. 
VGGNet includes 16 1D convolutional layers with a 
kernel size of 3. INCE includes six inception blocks 
with kernel sizes of 40, 20, and 10 in each block. The 
experiment details are the same as in our experiment 
setup.

RNNs are natural for time-series data. We inves‐
tigate long short-term memory (LSTM) (Mostayed 
et al., 2018), which comprises two hidden recurrent 
layers with 100 recurrent cells each and one FC clas‐
sification layer. In most cases, an RNN is applied in 
combination with a CNN, i.e., CRNN, where the 
CNN is used as the feature extractor and the RNN is 
used to catch the time dependence of the time se‐
ries. There are three different structures: CNN with 
LSTM (Luo et al., 2019), CNN with GRU (Chen TM 
et al., 2020), and CRNN with the attention module 
(Yao et al., 2020). To make the comparative study 
valid and sound, we select the studies using the same 
dataset and with approximately equal network depths.

Table 9 shows recent ECG classification results 
with bold data denoting the best performance. The 
experiment results show that, although the proposed 
model is not the best for some specific classes, it 
achieves the highest average F1 score. The arrhyth‐
mia classes with the greatest performance improve‐
ment are PAC, PVC, STD, and STE. STD and STE 
could be misclassified as NSR without focusing on 
the deviation of the ST segment. PVC and PAC are 
characteristic of the premature beat, which occurs ar‐
bitrarily in an ECG recording. A fixed-length input of 
the CNN may lead to characteristic information loss 
and make it similar to the normal class. The knowl‐
edge module compensates for this by taking advan‐
tage of a domain-specific determinant.

The next two best models are ResNet and CRNN 
with an attention mechanism. In comparison with the 
two models, our work achieves an increase of 5.4% 
and 9.8% on average, respectively.

Table 9  Performance comparison between the proposed method and the state-of-the-art methods

Class

NSR
AF

I-AVB
LBBB
RBBB
PAC
PVC
STD
STE

Average

Average F1 score 

CNN
INCE
0.717
0.889
0.872
0.841
0.854
0.798
0.786
0.783
0.704
0.805

ResNet
0.893
0.900
0.850
0.874
0.922
0.849
0.776
0.762
0.797
0.847

VGGNet
0.783
0.890
0.841
0.872
0.901
0.703
0.738
0.721
0.549
0.771

RNN
LSTM
0.738
0.768
0.741
0.705
0.821
0.590
0.807
0.658
0.294
0.680

CRNN
CNN+LSTM

0.806
0.918
0.881
0.900
0.925
0.845
0.727
0.782
0.615
0.809

CNN+GRU
0.795
0.897
0.865
0.821
0.911
0.734
0.852
0.788
0.509
0.797

CNN+RNN+Attention
0.790
0.930
0.850
0.860
0.930
0.750
0.850
0.800
0.560
0.813

Proposed

0.883
0.936
0.901
0.886
0.894
0.901
0.902
0.918
0.889
0.893

Best performances are in bold
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The LSTM model alone does not perform well 
on the task, but the combination with a CNN leads to 
significant performance improvement due to the ex‐
cellent power of extracting nonlinear CNN features. 
Note that we do not examine the RNN model with care‐
fully designed input, which might achieve competitive 
performance as their convolutional counterparts.

In summary, our model attains similar or com‐
petitive results when compared to the available state-
of-the-art models. Learning with knowledge injec‐
tion will produce more representative features, thus 
avoiding overfitting. The rich feature space in the 
process of knowledge injection learning improves 
the sensitivity and specificity of the model. Com‐
pared with the above-mentioned methods, we believe 
that infusion of domain knowledge into the DNN 
model will reduce false alarms, improve interpretabil‐
ity, and provide robustness for practical applications.

6  Conclusions

In this study, we propose an automatic classifi‐
cation model for cardiac arrhythmia that combines 
DNN and domain knowledge. The model consists 
of a DNN to capture the statistical pattern between 
input data and the ground-truth label, and a knowl‐
edge module to guarantee consistency with the do‐
main knowledge. These two components are trained 
interactively to bring the best of both worlds.

Our method answers the questions raised in Sec‐
tion 1 as follows: (1) Domain knowledge is repre‐
sented by fuzzy logic rules, which can map a proposi‐
tion into a real value in the range [0,1], making the 
truth degree comparable to the probability vector. 
(2) Logic rules are indifferentiable but can be relaxed 
using the t-norm, so the derivation can be computed 
and the gradient descent method can be applied to 
train the model jointly. (3) The performance is im‐
proved because the knowledge inference module re‐
duces the influence of lost input data information, 
similarity between classes, and features of different 
importance. Compared to the end-to-end DNN model, 
the F1 score of each arrhythmia of the knowledge-
enhanced model increases, which means that the do‐
main knowledge is helpful in learning information 
that the neural network cannot exploit.

We have instantiated our method for the ECG 
arrhythmia classification task. The experiment shows 
that our model attains competitive results when 
compared to many existing approaches. The method 
can be applied to other decision-making fields to 
provide generalization, reduce data bias, and improve 
interpretability.
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