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Abstract: Harmony search (HS) is a form of stochastic meta-heuristic inspired by the improvisation process of musicians. In this 
study, a modified HS with a hybrid cuckoo search (CS) operator, HS-CS, is proposed to enhance global search ability while 
avoiding falling into local optima. First, the randomness of the HS pitch disturbance adjusting method is analyzed to generate an 
adaptive inertia weight according to the quality of solutions in the harmony memory and to reconstruct the fine-tuning bandwidth 
optimization. This is to improve the efficiency and accuracy of HS algorithm optimization. Second, the CS operator is introduced to 
expand the scope of the solution space and improve the density of the population, which can quickly jump out of the local 
optimum in the randomly generated harmony and update stage. Finally, a dynamic parameter adjustment mechanism is set to 
improve the efficiency of optimization. Three theorems are proved to reveal HS-CS as a global convergence meta-heuristic 
algorithm. In addition, 12 benchmark functions are selected for the optimization solution to verify the performance of HS-CS. 
The analysis shows that HS-CS is significantly better than other algorithms in optimizing high-dimensional problems with strong 
robustness, high convergence speed, and high convergence accuracy. For further verification, HS-CS is used to optimize the back 
propagation neural network (BPNN) to extract weighted fuzzy production rules. Simulation results show that the BPNN 
optimized by HS-CS can obtain higher classification accuracy of weighted fuzzy production rules. Therefore, the proposed HS-CS 
is proved to be effective.
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production rule extraction
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1  Introduction

Swarm intelligence (SI) optimization is a proba‐

bilistic search algorithm that operates by simulating 

the cooperative behavior of social biological groups. 

It has always been one of the research hotspots in the 

artificial intelligence domain (Tang et al., 2021). 

There are many complex and challenging optimiza‐

tion problems in this area. The traditional mathemati‐

cal optimization schemes, such as the quasi-Newton 

method and gradient descent method, can hardly solve 

large-scale complex optimization problems. Due to 

the limitation of traditional schemes, the SI algorithm, 
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using its stochastic walk search characteristics in 
solving a variety of optimization problems, has be‐
come more and more popular and is widely used in 
various applications such as cyber-physical social 
systems and feature selection (Tu et al., 2019). Over 
the past few decades, many SI algorithms have been 
developed, including the universal gravitational force 
between objects which was inspired by the gravita‐
tional search algorithm (Wang YR et al., 2021). Fur‐
ther SI algorithms have been developed, including 
the memetic algorithm (MA) which is based on a 
simulation of cultural evolution (Zhao et al., 2021), the 
flickering behavior among fireflies which simulates 
the firefly algorithm (FA) (Jagatheesan et al., 2019), 
the artificial bee colony (ABC) algorithm which is 
simulated by bee division and cooperative behavior 
(Karaboga et al., 2014), the moth-flame optimization 
(MFO) by simulation of the special navigation of 
moths at night (Mirjalili, 2015), and the harmony 
search (HS) algorithm inspired by the improvisation 
process in which musicians repeatedly adjust the pitch 
of different instruments to create the most beautiful 
music (Geem et al., 2001).

HS has the advantages of fewer parameters, 
simple operation, and easy implementation compared 
with peer algorithms. However, due to the disadvan‐
tages of low optimization speed, relatively poor pop‐
ulation diversity, and easy premature convergence, 
scholars have proposed various improvements to it. 
Valaei and Behnamian (2017) proposed a new param‐
eter adjustment method, using a dynamic adjustment 
Taguchi method to improve the pitch adjusting rate 
(PAR) and to obtain an improved multi-objective HS 
algorithm. Ouyang et al. (2018) employed a perturba‐
tion strategy, key parameter adjustment, and a global 
selection strategy to balance the capabilities of explo‐
ration and exploitation in an amended HS (AHS).  
AHS was applied to the reliability problem of large-
scale systems of non-convex integer nonlinear pro‐
gramming. The search efficiency and convergence per‐
formance of the AHS algorithm were then evaluated 
for performance verification. Shaffiei et al. (2019) 
proposed a constrained self-adaptive HS with 2-opt 
(CSAHS-2opt) for solving the driver scheduling prob‐
lem of the university shuttle bus (DSPUSB). The band‐
width (also called fret width) value was dynamically 
changed and determined based on the current solution 

of each driver every week and, when generating a 
schedule under some constraints, the proposed algo‐
rithm could obtain the optimal scheduling scheme. Li 
et al. (2020) proposed a global optimal adaptive HS 
algorithm (AGOHS) to obtain weighted fuzzy gener‐
ation rules from datasets. This algorithm realizes rule 
extraction by optimizing the back propagation neural 
network (BPNN) and shows high rule extraction accu‐
racy. Abbasi et al. (2021) used the mutation operation 
of differential evolution (DE) to replace the bandwidth 
to improve the local exploitation ability. At the same 
time, a differential-based HS (DH/best) algorithm was 
proposed through dynamic distance adjustment between 
the harmonies in the harmony memory (HM). Har‐
mony was used to enhance search ability in the pro‐
cess of algorithm update. When optimizing the IEEE 
118-bus and 57-bus systems, the DH/best algorithm 
achieved the lowest actual power loss, improved the 
power of voltage, and reduced the minimizing active 
power of generation units. Singh and Kaur (2021) 
embedded the HS algorithm in a sine–cosine algo‐
rithm (SCA) to make up for the poor global optimiza‐
tion and low convergence speed of the SCA and pro‐
posed a hybrid SCA with HS (HSCAHS). Al-Shaikh 
et al. (2023) integrated the hill climbing algorithm 
with HS, and proposed a hybrid harmony search con‐
tact tracing (HHS-CT) algorithm for social network 
contact tracing of the COVID-19 infection. The algo‐
rithm could accurately track contacts through social 
networks and prevent further spread of the epidemic. 
To overcome the uncertain factors of medical data‐
sets and improve the efficiency of medical diagnosis, 
Mousavi et al. (2021) used the Taguchi method to ad‐
just the parameters of HS, so that the algorithm could 
find the best rule in a fuzzy rule based system. Mean‐
while, external cross-validation (CV) and internal 
CV were used to verify and classify the obtained 
rules to obtain better classification results. Zhu et al. 
(2021) proposed the K-density based spatial clus‐
tering of application with noise (K-DBSCAN) clus‐
tering concept. However, the DBSCAN clustering 
algorithm has difficulty in predicting appropriate 
clustering parameters; therefore, HS was used to opti‐
mize clustering parameters. The experimental results 
demonstrated that the K-DBSCAN optimized by HS 
has good clustering performance and high clustering 
accuracy when dealing with four different datasets. To 
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optimize the dynamic parallel row ordering problem 
(DPROP) on the production line, Gong et al. (2021) 
proposed a hybrid tabu search and HS. The results 
showed that the algorithm obtained the best solution 
when solving the DPROP with 30–40 large compo‐
nents. To overcome the defects of the traditional HS, 
Gupta (2022) proposed a modified HS algorithm 
(MHSA). A new calculation formula was reconstructed 
for the search strategy, harmony memory consider‐
ation rate (HMCR), and PAR of HS, to enhance search 
efficiency and accuracy. The algorithm obtained the 
optimal value in engineering structure design and 
the performance was far better than those of other 
comparison algorithms. Costa and Fernandez-Viagas 
(2022) proposed a self-adaptive HS (SAHS) mecha‐
nism to solve the single machine scheduling problem 
with flexible/variable maintenance in a specific time 
window.

To sum up, although HS has made some achieve‐
ments in theoretical and practical application re‐
search, there are some shortcomings of the HS algo‐
rithm, such as poor convergence accuracy and ease 
of falling into a local extremum state, in solving high-
dimensional problems (Qin F et al., 2022). Therefore, 
in this paper we propose an improved HS algorithm. 
The local search strategy and updating mechanism in 
HS are improved by introducing cuckoo search (CS) 
(Yang and Deb, 2009; Ye et al., 2022). The proposed 
algorithm guides the iterative direction of the HS al‐
gorithm, prevents the algorithm from falling into stag‐
nation, and enhances its population diversity and con‐
vergence efficiency. The specific improvement meth‐
ods are as follows:

At the optimization stage of HS, due to the ran‐
domness of the HS pitch disturbance adjusting method, 
the exploitation optimization ability is insufficient be‐
cause of poor solution accuracy and low convergence 
speed. To improve the optimization ability of HS, an 
adaptive inertia weight is constructed based on the re‐
lationship of information transfer between individu‐
als in HM. Then the optimal solution in HM is used 
to replace the bandwidth for ensuring that conver‐
gence is towards the best position closely and quickly. 
Thus, these strategies guarantee that the proposed ap‐
proach has the property to improve the search accuracy 
and efficiency of local optimization of HS in the later 
iterations.

At the global exploration stage of HS, new indi‐
viduals are randomly generated, which causes some de‐
fects, such as weak global search ability and poor 
population diversity. To enhance the global search 
ability and population diversity of HS, the CS opera‐
tor is employed in the random generation of new har‐
mony (1−HMCR) to expand and update the solution 
vector of harmony. In addition, the CS operator is used 
to select candidate individuals from the poor HM, 
which enlarges the number of alternative solutions 
and avoids the HS from falling into the stagnation 
state of a local optimum during updating HM, thus 
further improving the accuracy of HS.

To strengthen the adaptability of HS, HMCR 
and PAR are adjusted adaptively. The former increases 
linearly and the latter decreases linearly as the number 
of iterations increases. This ensures that HS can qui‑
ckly search the global optimal solution in the search 
region and enriches the adaptability of HS in the search 
process.

Furthermore, to provide the feasibility and ro‐
bustness of the proposed HS-CS algorithm (a modi‐
fied HS with a hybrid CS operator), three theorems 
are presented and proved to reveal that HS-CS is a 
global convergence meta-heuristic algorithm.

Finally, two experiments are conducted to verify 
the feasibility and robustness of HS-CS. Twelve clas‐
sic functions are selected as benchmarks to reveal the 
highlights of the proposed HS-CS algorithm. As in 
our previous work, HS-CS is also used to extract the 
weighted fuzzy production rules from a given data‐
set to demonstrate some highlights of the proposed 
HS-CS, such as high convergence speed, high preci‐
sion, and self-adaptation ability.

2  Standard HS and CS algorithms

The inspiration, critical operations, and imple‐
mentations of the standard HS and CS are discussed 
in detail in this section.

2.1  Standard HS algorithm

HS is a meta-heuristic algorithm that simulates 
the process of musicians to create the most beautiful 
music through repeatedly adjusting the tones of dif‐
ferent musical instruments. The core operation is to 
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obtain the next generation of harmony solution vectors 
based on HMCR, PAR, and random selection. The pri‐
mary thinking of the entire HS could be summarized 
as follows:

First, harmony solution vectors which keep the 
same volume as harmony memory size (HMS) will 
be created randomly and be stored in HM. Moreover, 
the harmony solution vectors will be selected from 
HM with the probability of HMCR, and the new 
harmony solution vectors will be generated with the 
probability of 1−HMCR.

Second, the selected harmony solution vector 
from HM will be tweaked by the probability of PAR 
to generate a new harmony solution vector. Mean‐
while, the selected harmony solution vector in HM 
will not be processed with the probability of 1−PAR.

Finally, a judgment will be used to evaluate the 
new harmony solution, whether the vector is better 
than the worst harmony solution vector in HM or not. 
If yes, the worst harmony solution vector will be re‐
placed by the new harmony solution vector. Other‐
wise, the HM will be unchanged until it fulfills the 
termination condition.

According to the above three main strategies, 
the implementation steps of the standard HS can be 
classified into the following five main steps:

Step 1: definition
In this step, the minimum optimization problem 

function is first defined as 

min  f ( x) , (1)

where x = ( x1, x2, …, xn ) T∈ Rn is the decision vector 

in the n-dimensional decision space. In addition, four 
parameters are defined in this step. These parame‐
ters and the corresponding meanings are listed in 
Table 1.

Step 2: initialization
In this step, the HM will be initialized using 

Eq. (2):
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where Xi is the ith harmony in HM, and xi, j represents 
the j-dimensional vector ( j=1, 2, …, n) of the ith har‐

mony vector ( i=1, 2, …, HMS).

HM is a matrix for storing HMS solutions. In 
HM, each vector can be considered as a solution, and 
each harmony vector is composed of n variables. HMS 
harmony variables should be generated to form the 
initial HM within the scope of the feasible solution 
space through the principle of random generation or 
under certain rules.

Step 3: improvisation
In this step, new solutions will be created to en‐

sure that the current solution will approach the poten‐
tial optimal solution step by step by operating the fol‐
lowing sub-steps:

Step 3.1: memory consideration and random se‐
lection. Generate a random number r1∈[0,1]. If r1⩽ 
HMCR, then a harmony solution vector will be ran‐
domly selected from HM. Otherwise, if r1>HMCR, a 
new harmony solution vector will be randomly gener‐
ated and move to step 4.

Step 3.2: pitch disturbance adjusting. Generate a 
random number r2∈[0,1]. If r2⩽PAR, a harmony solu‐
tion vector will be randomly selected from HM to im‐
plement the fine-tuning of the perturbation based on 
the value of bandwidth (bw) for generating a new 
harmony solution vector. Otherwise, no modification 
is made.

The pitch disturbance adjusting formula is shown 
in Eq. (3):

X t
new={X t

i ±rand ( )·bw,    r2⩽PAR,

X t
i ,                            r2> PAR.

(3)

Step 4: update
In this step, the objective function of each har‐

mony calculation is used as the criterion to decide the 

Table 1  Four main parameters and the corresponding 
meanings in harmony search (HS)

Parameter
Harmony memory size 

(HMS)
Harmony memory consider- 

ation rate (HMCR)
Pitch adjusting rate (PAR)

Bandwidth (bw)

Meaning
The number of harmony 

solution vectors
The probability of taking a 

harmony from HM
The probability of fine-tuning 

a harmony taken from HM
The magnitude of a local 

disturbance
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further operation of the newly obtained harmony. If 
the new one is better than the worst one ( f (Xnew)<

f (Xworst)) in HM, the new one will be used, instead of 

the worst one in HM. Otherwise, the new one will be 
discarded.

Step 5: adjustment
In this step, an evaluation will be executed to 

check whether it fulfills the termination condition. If 
the termination condition of the maximum iteration 
is fulfilled, the algorithm will be automatically termi‐
nated and the result will be generated. Otherwise, we 
move to step 3 for implementing one more iteration.

2.2  Standard CS algorithm

Yang and Deb (2009) proposed CS to simulate 
cuckoos’ breeding behavior of laying eggs in other 
birds’ nests.

The core operation of CS is to randomly simu‐
late the female cuckoo laying her eggs in the host’s 
nest. The female cuckoo employs an aggressive strat‐
egy of brood parasitism and then lets the host bird 
hatch her chicks. If the host bird recognizes an alien 
egg in the nest, it either rejects the egg or abandons 
the nest and builds a new nest somewhere else to raise 
another brood. Based on that, the implementations of 
the standard CS can be classified into the following 
five main steps:

Step 1: set parameters (including population size, 
search domain, dimension, and a maximum number 
of iterations), initialize the position of the bird’s nest 
randomly, and define the objective function.

Step 2: calculate and compare the fitness value 
of each bird’s nest position to obtain the current opti‐
mal fitness value.

Step 3: update the population position by calcu‐
lating the fitness value using the Levy flight. The 
function of the fitness value is used to compare with 
the position of the bird’s nest of the previous genera‐
tion, update the position with a better fitness value, 
and keep it to the next generation.

The Levy flight is defined as follows:

xt + 1
i = xt

i + α ⊗ Levy ( λ) , i ∈ [ ]1, N , (4)

where xt +1
i  and xt

i represent the positions of the ith indi‐
vidual in the (t+1)th and tth generations respectively, 
α is defined as the step size scaling factor, ⊗ means 

entrywise multiplication, and Levy(λ) is a Levy dis‐

tribution function which describes the step length 
of a random walk. The expression of Levy(λ) is shown 

in Eq. (5):

Levy ( λ) ~ u = t−λ, 1<λ⩽3. (5)

Step 4: generate a uniformly distributed random 
number r∈[0,1] and compare it with the discovery 
probability pa. If r>pa, the bird’s nest position xt+1

i  is 

randomly updated, and vice versa. Then the position 
of the newly obtained nest is compared with that of 
the previous generation, and the global optimal posi‐
tion pb*

i  will be selected.

Step 5: check whether f (pb*
i ) fulfills the termi‐

nation condition. If yes, pb*
i  is outputted as the global 

optimal solution gb; otherwise, move to step 3 for ex‐

ecuting a new iteration.

3  Proposed HS-CS algorithm

Due to the drawbacks of falling into a local ex‐
tremum in the improvisation stage, the standard HS 
is difficult to jump out of the current state, which will 
further affect the overall convergence performance. 
By combining the CS operator with the tuning pitch 
adjustment operator, an improved HS-CS algorithm 
is proposed to overcome this shortage. The modifica‐
tion strategies can be summarized based on the fol‐
lowing aspects:

1. Because the Levy distribution is a heavy-
tailed distribution, and its tail is wider than that of a 
Gaussian distribution, the algorithm which uses the 
Levy flight mechanism will have a stronger global 
search ability and robustness disturbance while a large 
step size is generated occasionally, or a small step size 
is generated by rotating 90° suddenly in the search 
process. Therefore, the Levy flight is selected to update 
the population for enhancing the global search ability 
of the HS-CS algorithm.

2. Three main strategies are employed to streng‑
then the ergodicity and the search ability of HS; 
these are to select the harmony solution vector ran‐
domly by the constructed inertia weight operator in 
HM with the probability of HMCR, to select the new 
harmony solution vector randomly in the solution 
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space with the probability of 1−HMCR, and to update 
the harmony solution vector using the Levy flight 
strategy in the CS operator.

3. The CS operator is used to find potential indi‐
viduals from HM as candidate individuals, expand 
the population density, and improve the efficiency 
of HS for avoiding easy-to-premature convergence 
and falling into a stagnant state in the final stage of 
the standard HS.

3.1  Implementation steps and the corresponding 
flowchart of the HS-CS algorithm

Based on the above modifications, the proposed 
hybrid HS-CS algorithm can be separated into the 
following seven steps:

Step 1: set the related parameters of the pro‐
posed HS-CS algorithm, including constraints, the 
maximum number of iterations Tmax, current iteration 
number t, and search space [LB, UB].

Step 2: initialize HM. Randomly generate the 
harmony solution vectors of the HMS group within 
the scope of the search space and create the harmony 
solution vectors by Eq. (6):

HMi,j = LBi + (UBi − LBi ) · rand ( ), 

i ∈ [1, HMS] ,  j∈[1, n] , (6)

where LB and UB are the lower and upper limits 
of HMi, j respectively, and rand ( ) ∈ [ 0, 1] is a ran‐

dom number.
Step 3: improvisation
Step 3.1: generate a random number r1∈[0, 1]. If 

r1>HMCR, move to step 3.2; otherwise, the latest solu‐
tion can be obtained by Eq. (7) through selecting the 
values in HM:

X t + 1
new ( i ) = HMworst, t

i + ω·( HMbest, t
i − HMworst, t

i ),  (7)

where HMbest, t
i  and HMworst, t

i  are the best and worst 
values of the ith HM in the tth generation respectively, 
X t+1

new ( i ) represents the ith new solution in the (t+1)th 
generation, and ω is the inertia weight which is related 
to the solution in HM. Moreover, the current optimal 
solution in HM is better, and the corresponding value 
of ω is greater. Here, ω can be calculated using Eq. (8):

ω =
ì
í
î

( )ω2 − ω1 / ( )2ω2 − ω1 ,     if  2ω2 − ω1 ≠ 0,

rand (0, 1),                          otherwise,
(8)

where ω1=min (HMbest, t
i , HMworst, t

i ) and ω2=max(HMbest, t
i ,

)HMworst, t
i .

Step 3.2: generate a random number r2∈[0, 1]. 
If r2>PAR, move to step 4. Otherwise, assign the 
best harmony in HM to the current new solution by 
Eq. (9) and move to step 5:

X t+1
new ( i ) = HMbest, t

i . (9)

Step 4: transmit the newly generated harmony 
obtained in step 3.1 to the CS operator for updating 
the harmony solution vector. The new harmony solu‐
tion vector can be calculated by Eq. (10):

X t+1
new = HMbest, t + α (HMbest, t − HMworst, t )⊗ Levy ( λ) ,

(10)

where α= | α0 (2rand ( ) − 1) |, α > 0, and α0 > 0.

Step 5: determine whether the newly generated 
harmony solution vector Xnew is better than the worst 
solution Xworst in HM. If yes, move to step 6; other‐
wise, move to step 7.

Step 6: update HM and the HM population by 
Eq. (11):

( X t +1 
new )' = HMworst, t + α ( HMbest, t − HMworst, t )

⊗Levy ( λ) . (11)

Step 7: determine whether the termination con‐
dition is fulfilled or not. If yes, output the optimal so‐
lution; otherwise, dynamically adjust the probabilities 
of HMCR and PAR using Eqs. (12) and (13) respec‐
tively, and move to step 3.

HMCR ( t ) = HMCRmin + (HMCRmax − HMCRmin )

·t/Tmax, (12)

PAR ( t ) = PARmax − (PARmax − PARmin )t/Tmax,  (13)

where HMCRmax and HMCRmin represent the maxi‐
mum and minimum values of HMCR respectively, 
and PARmax and PARmin represent the maximum and 
minimum values of PAR respectively. 

3.2  Time complexity of the HS-CS algorithm

In heuristic algorithms, the calculation of the ob‐
jective function takes most of the time of the whole al‐
gorithm. Assuming that the dimension of the objective 
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function f is Dim and that the population number is 
HMS, the time complexity of the HS-CS algorithm 
can be analyzed below:

In the initial population stage, the time complex‐
ity is O(HMS×Dim), and the time complexity of eval‐
uating the objective function of the individual in the 
population is O( f(Dim)).

In the “pitch adjusting and selecting the best” 
stage of the improvisation process, the time complex‐
ity is O(HMS×Dim), and the “memory consideration” 
stage is known from Eq. (11), the corresponding time 
complexity of which is O(HMS× (Dim+O(Levy))), 
where O(Levy) represents a random number subject 
to the Levy distribution and its magnitude of com‐
putational complexity is a constant order.

In the population update stage, the time com‐
plexity is O(HMS×(Dim+O(Levy))).

According to the corresponding time complexity 
of each stage, the worst-case time complexity of the 
HS-CS algorithm can be calculated below, while the 
number of the current iterations is one:

O(HMS×Dim)+O(HMS×(Dim+f(Dim)))+O(HMS×
(Dim+f(Dim))) +O(HMS×(Dim+f(Dim))) ≈O(HMS×
(Dim+f(Dim))).

Therefore, when the HS-CS algorithm reaches 
the maximum number of iterations Tmax, the time 
complexity is O(Tmax×HMS×(Dim+f(Dim))).

3.3  Convergence analysis of HS-CS

Convergence is one of the most important prop‐
erties for ensuring the performance of a meta-heuristic 
algorithm. To provide the feasibility and robustness 
of the proposed HS-CS algorithm, three theorems are 
presented and proved to reveal HS-CS as a global 
convergence meta-heuristic algorithm based on the 
following methodologies. At first, a differential 
equation is used to protect that the limit exists in the 
iterative process of HS-CS. Then, stochastic functional 
analysis is used to prove the convergence in the itera‐
tive process of the solution of the HS-CS algorithm. 
At the same time, global convergence is finally proved 
using random functional analysis and the character‐
istics of the HS-CS algorithm. Moreover, to confirm 
it, the update mechanism of HS-CS (Eq. (10)) is con‐
sidered as a linear dynamic system, and a second-
order linear differential equation is used to analyze 
the change of the global optimal position.

Assuming that Eq. (10) is a one-dimensional 
second-order linear differential equation, Eq. (14) can 
be obtained by iterative recursive calculation:

X t+2
new + ( )α ⊗ Levy ( )λ X t+1

new − ( )1 − ( )α ⊗ Levy ( )λ
⋅X t

new = 2 ( )α ⊗ Levy ( )λ HMbest. (14)

Eq. (14) conforms to the expression of the second-
order constant-coefficient homogeneous linear differ‐
ential equation. Since the variable α ⊗Levy ( λ) is a 

random number, a characteristic of Eq. (15) can be 
obtained to normalize the equation and to ensure 
X t+2

new = β2, α⊗Levy ( )λ =ε:

β2 + εβ − (1 − ε) = 0. (15)

The discriminant of Eq. (15) can be calculated 

as Δ=(ε − 2) 2⩾0. To obtain the general solution of 

Eq. (15), two cases are discussed below.
Case 1    When Δ>0, there are two different real roots 
β1, β2 (β1≠β2), and the general solution of Eq. (15) can 

be obtained as y = eβ2té
ë
êêêê ù

û
úúúú

c1

β1 − β2

e( )β1 − β2 t + C2 + y* =

C1eβ1t + C2eβ2t + y* using the general solution of the 

first-order differential Eq. (16) below:

y = eβ2té
ë
êêêêC1∫e( )β1 − β2 t dt + C2

ù
û
úúúú , (16)

where C1=
c1

β1 − β2

, C1 and C2 are arbitrary constants, 

and the characteristic roots are β1=−1 and β2=1−ε. If 
and only if β2<0, there exist limit y and lim

t → ∞
C1eβ1t+

C2eβ2t+y*→y*. Hence, Δ⩾0 could be gained while 

ε∈ (0, 1). Furthermore, the sequence {X t+1
new} of Eq. (11) 

could converge while t → ∞.
Case 2    When Δ=0, there are two same real roots β1  

and β2 (β1=β2). The general solution of Eq. (15) can 

be calculated as y=C1eβ1t+C2eβ2t+y*=eβ1t(C1+C2) +y*. 

If and only if ε=2, there exist limit Δ=0 and β1≡−1. 

Therefore, the requirement for the existence of the 
limit lim

t → ∞
y → y* is satisfied under this condition.

To sum up, the existence of the limits of the 
constant-coefficient differential equations which are 
transformed from HS-CS is verified. According to the 
conditions of known limit existence, the convergence 
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of HS-CS in each process of iterative search can be 
proved step by step below.

The iterative process of solving HS-CS can be 
regarded as a mapping of the solution space. Due to 
this mapping relationship, the global and local search 
convergence properties of HS-CS may be analyzed 
using the stochastic functional analysis theory based 
on Solis and Wets (1981).
Theorem 1    Assuming that set A is a non-empty set, 

there exists X= ( X1, X2, …, Xn ) ∈A for any Xj∈ [LB j,

UB j] ⊂ A. Notion d is a mapping from Cartesian 

products to non-negative real functions, d: A×A → R. 
Then d can be expressed as

d ( Xi, Xj) = |
|
|||| ( z − f ( Xi) ) − ( z − f ( Xj) ) ||||||

= | f ( Xi) − f ( Xj) | ,
    (17)

where ∀Xi, Xj ∈ A, z is an integer large enough.
Hence, ( A, d ) is a complete and separable metric 

space.
Proof    First, it is necessary to prove that ( A, d ) is a 

metric space. According to the definition of metric 
space, A is a non-empty set and d is a real function 
on A×A.

∀Xi, Xj, Xz∈A, d ( Xi, Xj) is needed to fulfill the 

following requirements:

(1) ∀Xi, Xj ∈ A, there exists d ( Xi, Xj)=0 if and 

only if Xi=Xj. Meanwhile, there is Xi≠Xj while 

d ( Xi, Xj) >0. The positive-definite condition is met.

(2) ∀Xi, Xj ∈ A, there exists d ( Xi, Xj) = |
|
|||| ( z −

f ( Xi) ) − ( z − f ( Xj) ) |||||| = |
|
|||| ( z − f ( Xj) ) − ( z − f ( Xi) ) ||||||

= d ( )Xj, Xi . The symmetry condition is fulfilled.

(3) ∀Xi, Xj, Xz ∈ A , there exists 

d ( )Xi, Xj = |
|
|||||

|
|||| ( )z − f ( )Xi − ( )z − f ( )Xj

= |
|
|||| ( )( )z − f ( )Xi − ( )z − f ( )Xz

+
|
|
||||( )( )z − f ( )Xz − ( )z − f ( )Xj

 ⩽ || ( )z − f ( )Xi − ( )z − f ( )Xz

                      + |
|
|||||

|
|||| ( )z − f ( )Xz − ( )z − f ( )Xj

  = d ( )Xi, Xz + d ( )Xz, Xj .

The triangle inequality conditions are also fulfilled.

When d ( Xi, Xj) meets the three mentioned con‐

ditions, it is concluded that ( A, d ) is a metric space.

Next is to prove that ( A, d ) is a complete metric 

space. Assume that A is a finite state space. Then each 
individual and the number of states in A are finite. 
According to the characteristics of greedy algorithm 
optimization and boundary constraints in the HS-CS 
iteration process, the position of the population 
individual in the current generation is relatively opti‐
mal compared to the position of the population indi‐
vidual in the previous generation, and the position of 
each individual cannot exceed the boundary in each 
iteration operation. The optimal individual in the cur‐
rent population is represented by the Cauchy se‐

quence {Xn} using the greedy algorithm and the 

property of boundary constraints. Furthermore, sup‐

pose that the point sequence {Xn} is any Cauchy 

point column in A. Then ∀η>0, ∃N∈N (N is the set of 

natural numbers), such that there is d ( Xn, Xm )<η 

while n, m>N. Let f ( Xn ) and f ( Xm ) be denoted by 

an and am, respectively. Then, {an} is a Cauchy point 

column in R and is convergent, marked as X: lim
n → ∞

an=

X̂∈R; that is, lim
n → ∞

f ( )Xn =X̂.

∀X̂, there is Xj0
∈ A to fulfill f ( Xj0 ) = X̂. Accord‐

ing to the population global search iterative formula
∀X0 ∈ R, X t+1

new = HMbest, t + ( )α ⊗ Levy ( )λ
·( )HMbest, t − HMworst, t , 

0 < α ⊗ Levy ( )λ < 1, t = 0, 1, …
and supposing that there is an operator T t in R and 
T t X = HMbest + (α ⊗ Levy ( λ) )·(HMbest − HMworst),
the converted population global search iterative for‐
mula can be demonstrated as

∀X0 ∈ R, X t + 1 = T t X t, t = 0, 1, …. (18)

With the iterative progress of HS-CS, the global 
search efficiency of the population gradually changes, 
i.e., from strong search to a new strategy (the global 
search ability is weakened while the local optimization 
ability is enhanced). The value of the variable α⊗Levy ( λ ) 

will also tend to decrease when the global search ability 
is weakened in the later iterations and the value of 
α⊗Levy ( λ ) is close to 0. It indicates that T t X→ 
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HMbest (t→∞). In addition, according to the properties 
of the Cauchy point sequence, the position of the 
current population is composed of n-dimensional de‐

cision variables X 1
j = ( X 1

j1
, X 1

j2
, …, X 1

jn ) in HS-CS, the 

calculation of the position of the next generation is 
based on the position of the previous generation, and 

so on. Hence, a set of matrices Xj=( X 1
j , X 2

j ,…, X n
j ) 

that conforms to the Cauchy point column property 
could be obtained, and all iteratively computed po‐
sitions are within the given boundary constraints [LB j, 

UB j]⊂ A. Using the global search updating strategy 
(Eq. (10)) and the boundary constraints, X t +1

j0
 can be 

represented as

X t + 1
j0

=

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïïï
ï

ï

ï

UB j, if  ( )T t X t

j0

>UB j,

LB j, if  ( )T t X t

j0

<LB j,

HMbest, t +α (HMbest, t − HMworst, t )⊗Levy ( )λ ,

otherwise,                                                    

and X t + 1
j0

, X t
j0
∈ [ LB j, UB j ] ⊂ A. f ( )Xj0

=X̂ ∈ R is ful‐

filled; that is, lim
n → ∞

f ( Xn ) = f ( Xj0 ). It also indicates 

that Eq. (18) fulfills d ( )Xn,  Xj0
= |
| f ( Xn ) − f ( Xj0 ) ||→ 0,

n→∞. Hence, Xn → Xj0
 is obtained. It further 

proves that (A, d) is a complete metric space.

The last task is to prove that (A, d) is a separable 

metric space. Assuming V = ∪k = 1
∞ ∪ i = 1

Nk X ( )k
i , it is 

easy to conclude that V is a countable set and V⊂A. 

For any Xn ∈ A, because B1=∪ i = 1

N1 B ( X ( )i
i ,1) ⊃A, X ( )i

i1
 

is chosen to ensure Xn∈B ( )X ( )i
i1

,1 , where i1 is a num‐

ber from 1 to N1. Due to B2⊃A, select X ( )i
i2

 to ensure 

Xn∈B ( )X ( )i
i2

, 1/2 . Using the same approach, an infinite 

sequence {X ( )k
ik

}∞

k=1
 can be gained to make d ( )Xn, X ( )k

ik
<

1/k. Furthermore, X ( )k
ik
→Xn (k→∞) might be concluded 

because k→∞ and because of the positive definite‐
ness of d. V is a dense subset in A. It also proves that 
(A, d) is a separable metric space. To sum up, (A, d) 

is a complete and separable metric space.
Definition 1    The random operator φ: Ω × A → A 

is called a random compression operator if there is a 
non-negative real random variable such that the fol‐
lowing condition is satisfied:

ρ ({δ: d (φ (δ, Xi) , φ (δ, Xi+1) )⩽H (δ) d ( Xi, Xi+1)}) = 1,

Xi, Xi+1 ∈ A. (19)

Theorem 2    Map φ formed by each iteration update 

is a random compression operator in the fine-tuning 
and optimization (local search) stage of HS-CS.
Proof    HS-CS may produce better individual condi‐
tions than the previous generation in each iteration 
because of the appropriate fine-tuning selection oper‐
ator and greedy selection strategy that are adopted. 
There is a non-negative real random variable H(δ ) 
which fulfills

| f ( Xi+1) − f ( Xi+2) |⩽ H (δ ) | ( z − f ( Xi) )
− ( z − f ( Xi+1) ) | , 0 ⩽ H ( )δ < 1.

Furthermore, 

    d ( )φ ( )δ, Xi , φ ( )δ, Xi+1

= d ( )Xi+1, Xi+2

= || ( )z − f ( )Xi+1 − ( )z − f ( )Xi+2

= || f ( )Xi+1 − f ( )Xi+2

⩽ H ( )δ || ( )z − f ( )Xi − ( )z − f ( )Xi+1

= H ( )δ d ( )Xi, Xi+1 ,

Ω0={ }δ: d ( )φ ( )δ, Xi , φ ( )δ, Xi+1 ⩽H ( )δ d ( )X i,  Xi+1 ⊆
 Ω, and ρ ( )Ω0 = 1.

Hence, the mapping φ: Ω×A→A formed by each 

iteration update is a random compression operator.
According to Theorems 1 and 2, the convergence 

of the proposed HS-CS algorithm is further verified 
using a convergence proof framework of the stochas‐
tic optimization algorithm proposed by Solis and Wets 
(1981).

The following two assumptions are given at first:
Assumption 1    Assuming that if conditions 

f ( )D ( )z, ξ ⩽f ( )z  and ξ ∈ S(Rn, B, μk ) hold, then 

f ( )D ( )z, ξ ⩽f ( )ξ , where D is the function that gener‐

ates the solution of the problem, ξ is a random variable 

generated from the probability space (Rn, B, μk ), S⊆Rn 

represents the constraint space of the problem, μk is 

the probability measure on B, and B is the σ domain 
of Rn subsets.
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Assumption 2    For any Borel subset T of S, if the 

measure v (T )>0, then ∏k = 0

∞ ( )1−μk (T ) = 0 holds, 

where v(T) is the n-dimensional closure in the subset 
T and μk(T) is the probability of T obtained by μk .

Theorem 3    Assuming that the objective function f 
to be solved by the HS-CS algorithm is a measurable 
function, that its solution space S is a measurable 

subset, and that {HMbest, t}∞

t = 0
 is the solution sequence 

generated by the algorithm, then lim
k → ∞

P [HMbest, t ∈Rε ]=
1 is established, where P [HMbest, t ∈ Rε ] is the proba‐

bility of HMbest, t∈ Rε and Rε is the set of global opti‐
mal points.
Proof    The iterative function D of HS-CS can be de‐
fined below:

D (HMbest, t, X t
i ) =

ì
í
î

ïï
ïï

HMbest, t, if  f ( )HMbest, t ⩽f ( )X t
i ,

X t
i ,           otherwise.

It is easy to prove that the iterative function sat‐
isfies Assumption 1.

To satisfy Assumption 2, the union of the sam‐
ple space of a harmonic library of size N must con‐
tain S, which is S ⊆ ∪ i = 1

N M t
i , where M t

i  is the sup‐

port set of the sample space of the tth generation. Ac‐
cording to the HS-CS algorithm under the two evolu‐
tionary equations (Eqs. (7) and (10)), all individuals 
in the population will converge to the optimal posi‐
tion, but it may not be the global optimal position.

Taking Eq. (10) as an example, because of 

Xi → HMworst / ( )1 + α ⊗ Levy ( )λ , lim
t → ∞

M t
i = 0 when

t → ∞. As the iteration t grows, the closures v [M t
i ] 

of each M t
i  and v [∪ i = 1

N M t
i ] of its union ∪ i = 1

N M t
i  

both gradually decrease. Therefore, ∃t1 such that 

v [∪ i = 1
N M t

i ∩ S ]<v(S) while t>t1. That is, Eq. (10) 

does not satisfy Assumption 2.
Therefore, under the condition that Assumption 2 

is not satisfied, HS-CS regenerates new individuals 
by setting a perturbation strategy. If a candidate solu‐
tion is selected in a poor set of individuals, then there 
must be an integer t2. It further indicates that β ⊇S 
while t>t2, where β is the union of support sets that 

generate individuals after the perturbation strategy. 
Then, for the HS-CS algorithm, ∃t' such that ∪N

i = 1 M t
i ∪

β ⊇ S while t>t'.

To sum up, assuming that the Borel subset of S is 

D=M t
i , there exist v [ D ] > 0 and μ t[ D] =∑i = 1

N μt
i[ D] =

1. It is further obtained that ∏t = 0

∞ ( )1 − μ t( )D = 0. It 

is easy to conclude that HS-CS fulfills Assumption 2, 

so that lim
k → ∞

P [HMbest, t ∈ Rε ] = 1.

Hence, the HS-CS algorithm converges to the 
global optimal solution with probability 1.

4  Function optimization problem using HS-CS

To verify the feasibility and robustness of the 
proposed HS-CS algorithm, two experiments are per‐
formed from two different aspects. One is the func‐
tion optimization using 12 benchmark functions, and 
the other is the weighted fuzzy production rule ex‐
traction by the HS-CS algorithm and BPNN over 
IRIS.

These experiments are run under the environ‐
ment of Intel® CoreTM I5-10200H CPU @2.40 GHz, 
16 GB memory, and the Windows 10 operating system. 
The programming language is Python 3.7.

4.1  Function optimization

In this experiment, 12 classical benchmark func‐
tions, including Sphere, LevyN13, Alpine, Rastrigin, 
Griewank, Ackley, Step, Schwefel 2.22, Bohachevsky, 
Quartic, Rosenbrock, and Schwefel (http://www.sfu.ca/~
ssurjano/) are selected to test the performance of 
the proposed HS-CS algorithm. These benchmark func‐
tions can be divided into two classes: unimodal func‐
tions and multimodal functions. The details of these se‐
lected benchmark functions are listed in Table 2.

4.2  Parameter design and experimental results

In this experiment, the HS-CS algorithm is com‐
pared with three other HS algorithms and three CS 
algorithms. The three other HS algorithms are global 
optimal adaptive harmony search algorithm (AGOHS) 
(Li et al., 2020), improved differential harmony search 
algorithm (IDHS) (Wang L et al., 2019), and harmony 
search with differential mutation based on pitch ad‐
justment (HSDM) (Qin AK and Forbes, 2011). The 
three CS algorithms are novel enhanced cuckoo search 
algorithm (ECS) (Kamoona and Patra, 2019), modified 
cuckoo search (MCS) (Ong and Zainuddin, 2019), and 
cuckoo search (CS) (Yang and Deb, 2009). In addition, 
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to ensure the fairness of all algorithms in the experi‐
ment, the population size and the maximum number of 
iterations are set to 100 and 5000, respectively. The re‐
lated parameter setting of these algorithms is shown in 
Table 3.

To reduce the randomness and maintain the fair‐
ness of the algorithms, the optimization operation of 
each function is independently run 30 times (Num=30).

Figs. 1 and 2 show part of the experimental re‐
sults. Furthermore, the entire experimental results and 
corresponding analysis are given in the supplementary 
materials.

As a unimodal function, the Step function is usu‐
ally used to test the convergence accuracy and speed 
of the algorithm. The HS-CS algorithm is integrated 

with Levy flight to broaden the search scope of the 
population, enhance the position update strategy, and 
improve the global exploration ability. As shown in 
Fig. 1, no matter whether the Step function is with 
dimension 30 or 50, the proposed algorithm always 
exhibits the best convergence curve. When the di‐
mension is 30, although the convergence accuracies 
of AGOHS and ECS are similar to that of the proposed 
algorithm, they require more iterations. When the di‐
mensionality of the test function increases, AGOHS re‐
quires more iterations to achieve the same convergence 
accuracy as the HS-CS algorithm. In the set number of 
iterations, ECS fails to achieve appreciable results. 
Therefore, the HS-CS algorithm also has certain advan‐
tages over the selected algorithms in terms of stability.

Table 2  Twelve benchmark functions

Name

Sphere

LevyN13

Alpine

Rastrigin

Griewank

Ackley

Step

Schwefel 2.22

Bohachevsky

Quartic

Rosenbrock

Schwefel

Function

F1 =∑
i = 1

D

x2
i

F2 = sin2( )3πx1 + ( )x1 − 1
2[ ]1 + sin2( )3πx2

+ ( )x2 − 1
2[ ]1 + sin2( )2πx2

F3 =∑
i = 1

D

|| xi sin ( )xi + 0.1xi

F4 =∑
i = 1

D

[ ]x2
i − 10cos ( )2πxi + 10

F5 =∑
i = 1

D x2
i

4000
− ∏

i = 1

D

cos ( xi

i ) + 1

F6 =−20exp ( )−0.2
1
D∑i = 1

D

x2
i

−exp
é

ë
êêêê

ù

û
úúúú

1
D∑i = 1

D

cos ( )2πxi + 20 + e

F7 =∑
i = 1

D

( )xi + 0.5
2

F8 =∑
i = 1

D

|| xi + ∏
i = 1

D

|| xi

F9 = ∑
i = 1

D − 1

[ x2
i + 2x2

i + 1 −0.3cos ( )3πxi

]−0.4cos ( )4πxi + 1 + 0.7

F10 =∑
i = 1

D

ix4
i + rand ( )

F11 =∑
i = 1

D
é
ë

ù
û100 ( )xi + 1 − x2

i

2
+ ( )xi − 1

2

F12 = 418.9829D −∑
i = 1

D

xi sin ( )|| xi

Dim

D

D

D

D

D

D

D

D

D

D

D

D

Search space

[−5.12, 5.12]

[−10, 10]

[−10, 10]

[−600, 600]

[−600, 600]

[−32, 32]

[−100, 100]

[−10, 10]

[−100, 100]

[−100, 100]

[−30, 30]

[−500, 500]

f*

0

0

0

0

0

0

0

0

0

0

0

0

Class

Unimodal

Multimodal

Multimodal

Multimodal

Multimodal

Multimodal

Unimodal

Unimodal

Unimodal

Unimodal

Unimodal

Multimodal

f *: theoretical global optimal solution of the current function; Dim: dimension of the test function; D: value of the variable dimension. D is set as 
10, 30, or 50. The purpose of setting different values of dimension is to verify whether these algorithms can jump out of the local search 
state quickly and effectively while falling into a local extremum in a high-dimensional solution problem
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As a multimodal function, the Griewank func‐
tion is usually used to test the ability of the algorithm 
to jump out of local optima. As shown in Fig. 2, when 
the dimension of the test function is low, since the 
search mechanism of Levy flight of CS is adopted by 
ECS and HS-CS, the convergence efficiencies of these 
algorithms are similar. AGOHS requires more itera‐
tions to obtain similar convergence accuracy to the 
HS-CS algorithm. As the dimension of the test function 
increases, the convergence efficiencies of AGOHS and 
ECS decrease significantly. In the search process, the 

HS-CS algorithm indicates the direction of “pitch ad‐
justing and selecting the best.” The Levy flight in the 
CS operator is adopted to find candidate individuals 
when updating HM, which increases the number of 
alternative solutions and strengthens the disturbance 
to avoid falling into stagnation prematurely in the 
search process. Thus, the HS-CS algorithm still main‐
tains a good convergence efficiency.

Further analysis of the experiment using the Wil‐
coxon rank-sum test, the mean value (MEAN), and 
the standard deviation (SD) is given in detail in the 

Fig. 2  Optimizing the convergence curve of the Griewank function with dimension 30 (a) and 50 (b)

Table 3  Parameter settings of the examined algorithms*

Algorithm

HS-CS

AGOHS

IDHS

HSDM

ECS

MCS

CS

Parameter(s)

HMCRmin=0.8, HMCRmax=0.9, PARmin=0.1, PARmax=0.9, α0=0.01

HMCRmin=0.8, HMCRmax=0.9, PARmin=0.1, PARmax=0.9, F=N(0.5, 0.3)

HMCRmin=0.8, HMCRmax=0.9, PARmin=0.1, PARmax=0.9

HMCR=0.98

α=0.01, Pa=0.25, λ=1.5

α=0.01, Pa=0.25, λ=1.5

α=0.01, Pa=0.25, λ=1.5

* Population: 100; maximum number of iterations: 5000

Fig. 1  Optimizing the convergence curve of the Step function with dimension 30 (a) and 50 (b)
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supplementary materials. Combining the analysis above 
and that in the supplementary materials, the HS-CS 
algorithm exhibits good performance in dealing with 
high-dimensional optimization problems, proving that it 
has good convergence efficiency and self-adaptability.

5  Weighted fuzzy production rule extraction 
model based on HS-CS

To further verify the practicability of the HS-CS 
algorithm, another typical application-weighted fuzzy 
production rule extraction from the IRIS dataset 
using HS-CS and BPNN is demonstrated here. The 
entire extraction process can be separated into the fol‐
lowing main modules: (1) data fuzzification, (2) BPNN 
generation, and (3) BPNN framework optimization 
using the HS-CS algorithm, the importance index ma‐
trix obtained from the trained BPNN, and the weighted 
fuzzy production rule extraction.

5.1  Experimental data

In the IRIS plant classification dataset, there are 
three classification problems: setosa, versicolor, and 
virginica. Each category contains 50 samples, thus a 
total of 150 samples. Moreover, each sample contains 
four attributes, i.e., sepal length (SL), sepal width 
(SW), petal length (PL), and petal width (PW). The 
measurement unit of each attribute is cm.

5.2  Implementation analysis of weighted fuzzy 
production rule extraction

According to Li et al. (2020), the entire extrac‐
tion process includes the following key steps:

First, the IRIS dataset is fuzzified. For each ex‐
ample attribute of the IRIS dataset, three fuzzy sets 
(semantic attribute values) are used to mark each ex‐
ample attribute, which are large (LGR), medium 
(MED), and small (SM).

Second, the corresponding BPNN is established by 
the IRIS dataset. In this module, 12 semantic attribute 
values of the IRIS dataset are used to generate rule 
preconditions, and the three classification results are 
used to build 12 input nodes of the input layer, three 
output nodes of the output layer, one hidden layer, 

and four hidden nodes generated by experience. 
The sigmoid function is used to obtain BPNN as an 
activation function. Meanwhile, the fuzzy dataset is 
randomly divided into two parts, in which 80% of the 
examples are used as the training set and the remain‐
der as the test set.

Third, HS-CS is employed to optimize the related 
parameters and the objective function of the obtained 
BPNN. The parameters of HS-CS are set as follows: 
HMS=100, HMCRmax=0.9, HMCRmin=0.8, PARmin=
0.1, PARmax=0.9, α=0.01, the dimension of each har‐
mony D=12 (reflecting the number of input nodes), 
the learning rate is 0.02, the penalty factor is 0.001, 
and the momentum is 0.9. Furthermore, the threshold 
value is set as 0.5 after BPNN training is completed 
by the HS-CS algorithm. The connection weights con‐
nected to the threshold are “pruned” for removing re‐
dundant paths and obtaining a simple BPNN structure.

Fourth, the corresponding importance index ma‐
trix Wn×m=OWn×k·IWk×m can be gained while the 
BPNN optimization and training are completed, among 
which OWn×k represents the connection weight matrix 
between the hidden layer and output layer in BPNN, k 
represents the number of nodes in the hidden layer, n 
represents the number of output nodes in the output 
layer, IWk×m represents the connection weight ma‐
trix from the input layer to the hidden layer, and m 
represents the number of input nodes.

Through the above steps, the importance index 
matrix of the obtained BPNN by HS-CS is given in 
Eq. (20).

In W3×12, three rows and 12 columns represent 
three categories and 12 semantic attribute values cor‐
responding to IRIS, respectively. Moreover, an attri‐
bute value does not play a role in IRIS classification 
if the corresponding values in a column are all 0.

In the importance index matrix, the classification 
results corresponding to each row may follow the same 
rule or multiple rules. If the attribute value element 
of the unified attribute is not 0, multiple rules will be 
generated; that is, there is no OR in the preceding 
one. If the attribute value element is negative, the 
corresponding NOT antecedent is generated.

W3×12 = ( )0 −0.72 −10.92 0 0 0.44 21.81 −1.25 −1.36 11.49 − 20.79 −1.4
0 −6.53 5.95 0 0 4 −12.89 22.29 −22.77 −0.66 29.8 −12.79
0 5.75 9.82 0 0 −3.52 −16.26 −14.82 34.18 −4.11 −16.48 11.26

. (20)
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Based on the above requirements, the weighted 
fuzzy production rules can be automatically extrac‑
ted from the importance index matrix. In this paper, 
we list only the first row of the matrix, producing 18 
classification rules as Iris-setosa (Table 4). The entire 
generated local weighted fuzzy production rules could 
be found in the supplementary materials.

To highlight the advantages of the proposed HS-
CS algorithm, two other algorithms, i.e., standard HS 
(Geem et al., 2001) and AGOHS (Li et al., 2020),  
are used to extract the weighted fuzzy production 
rules from the IRIS dataset under the same experi‐
mental environment.

The extracted rules are classified and verified, 
and then applied to the training set and test set for 
comparison. The related data are listed in Table 5.

Table 5 indicates that the proposed HS-CS algo‐
rithm has higher accuracy than AGOHS and HS while 
optimizing BPNN and extracting the weighted fuzzy 
generation rules from BPNN. Meanwhile, the accuracy 
obtained using HS-CS on the test set reaches 97.37%. 
It further verifies that the HS-CS algorithm has the ad‐
vantage of enhancing the learning and generalization 
ability of BPNN. On the other hand, the execution 
time of implementing the IRIS classification of HS, 

HS-CS, and AGOHS is 35.51, 40.15, and 370.23 s, re‐
spectively. Although the execution time of HS is less 
than that of HS-CS, the accuracy of HS in data classi‐
fication is lower than that of HS-CS. Within a reason‐
able execution time range, HS-CS can achieve a better 
classification effect.

5.3  Comparisons of the loss degree and precision 
curves of the optimized BPNN

Figs. 3 and 4 show the convergence curve and 
convergence precision curve of the loss function of 
BPNN optimized by different HS algorithms in the 
training process of the IRIS dataset, respectively.

From the convergence diagram and convergence 
precision diagram of the loss degree function above, 
it is further indicated that the convergence speed and 
loss value of the BPNN optimized by the proposed 
HS-CS algorithm have obvious advantages compared 
with AGOHS and the standard HS algorithm. It is 
also illustrated that the HS-CS algorithm plays a cer‐
tain role in the training process of the optimized BPNN.

To sum up, in the process of weighted fuzzy rule 
extraction using the HS-CS algorithm, the BPNN 
optimized by HS-CS extracts the weighted fuzzy pro‐
duction rules from the IRIS dataset in a relatively short 

Table 4  Classification rules as Iris-setosa

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

IF

SL is NOT MED [0.72], SW is LGR [0.44], PL is SM [21.81], and PW is SM [11.49]

SL is NOT MED [0.72], SW is LGR [0.44], PL is SM [21.81], and PW is NOT MED [20.79]

SL is NOT MED [0.72], SW is LGR [0.44], PL is SM [21.81], and PW is NOT LGR [1.4]

SL is NOT MED [0.72], SW is LGR [0.44], PL is NOT MED [1.25], and PW is SM [11.49]

SL is NOT MED [0.72], SW is LGR [0.44], PL is NOT MED [1.25], and PW is NOT MED [20.79]

SL is NOT MED [0.72], SW is LGR [0.44], PL is NOT MED [1.25], and PW is NOT LGR [1.4]

SL is NOT MED [0.72], SW is LGR [0.44], PL is NOT LGR [13.36], and PW is SM [11.49]

SL is NOT MED [0.72], SW is LGR [0.44], PL is NOT LGR [13.36], and PW is NOT MED [20.79]

SL is NOT MED [0.72], SW is LGR [0.44], PL is NOT LGR [13.36], and PW is NOT LGR [1.4]

SL is NOT LGR [10.92], SW is LGR [0.44], PL is SM [21.81], and PW is SM [11.49]

SL is NOT LGR [10.92], SW is LGR [0.44], PL is SM [21.81], and PW is NOT MED [20.79]

SL is NOT LGR [10.92], SW is LGR [0.44], PL is SM [21.81], and PW is NOT LGR [1.4]

SL is NOT LGR [10.92], SW is LGR [0.44], PL is NOT MED [1.25], and PW is SM [11.49]

SL is NOT LGR [10.92], SW is LGR [0.44], PL is NOT MED [1.25], and PW is NOT MED [20.79]

SL is NOT LGR [10.92], SW is LGR [0.44], PL is NOT MED [1.25], and PW is NOT LGR [1.4]

SL is NOT LGR [10.92], SW is LGR [0.44], PL is NOT LGR [13.36], and PW is SM [11.49]

SL is NOT LGR [10.92], SW is LGR [0.44], PL is NOT LGR [13.36], and PW is NOT MED [20.79]

SL is NOT LGR [10.92], SW is LGR [0.44], PL is NOT LGR [13.36], and PW is NOT LGR [1.4]

SL: sepal length; SW: sepal width; PL: petal length; PW: petal width; LGR: large; MED: medium; SM: small
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execution time and achieves a better classification 
effect. The main functions of HS-CS are to improve 
the convergence speed of BPNN and reduce the loss 
during training.

6  Conclusions

In this paper, a modified HS-CS algorithm is 
presented to solve the problems of the standard HS 

which is easily trapped into local optima and is weak 
in global search ability. In particular, the HS-CS algo‐
rithm uses Levy flight to explore the solution space, 
which further enriches the population density of the 
HS algorithm, enhances the global search ability, and 
avoids the algorithm getting trapped in local optima. 
On the other hand, “pitch adjusting and selecting the 
best” in the improvisation stage and the inertial weight 
operator are constructed and the degree of the internal 
individuals in HM is selected to improve the efficiency 
and convergence accuracy of the basic HS algorithm.

Two experiments are implemented to verify the 
effectiveness of the proposed HS-CS algorithm. First, 
the existence of the limit of the proposed algorithm is 
proved by differential equations, and the global opti‐
mal algorithm is verified by random functional analy‐
sis and random search theory. Second, HS-CS and six 
other algorithms are used to settle the function optimi‐
zation issue of the 12 selected classical benchmark 
functions in different high dimensions. The results 
show that the HS-CS algorithm can still maintain the 
speed and precision of rapid convergence in the pro‐
cess of solving the optimization of high-dimensional 
functions and has strong robustness. Finally, HS-CS is 
applied to the IRIS classification for extracting the 
weighted fuzzy production rules. Through data analy‐
sis, it is easy to find that weighted fuzzy production 
rules obtained by combining BPNN and HS-CS have 
a high precision because the HS-CS algorithm can 
enhance the learning and generalization abilities of 
BPNN effectively.

This research is intended mainly to optimize the 
solution of a single objective problem for HS-CS 
without comprehensive consideration of the impact of 
multiple factors on the accuracy of the algorithm. 
Therefore, the influence of multiple factors will be 
considered in HS in future work, and the characteris‐
tics of the Pareto solution and HS will be used to solve 
the real-life multi-objective optimization problems, 
such as obstacle avoidance for multiple unmanned 
aerial vehicles in coordinated formation.
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Table 5  Comparison of IRIS classification accuracy results

Method

BPNN trained by HS-CS

BPNN trained by AGOHS

BPNN trained by HS

Accuracy (%)

Training set

96.45 (95.54)

96.32 (66.07)

96.39 (65.72)

Test set

97.37 (97.37)

97.36 (68.42)

97.36 (68.42)

Values in brackets indicate the corresponding accuracies of the obtained 
weighted fuzzy production rules

Fig. 3  Convergence curve of the loss function of BPNN 
with different HS algorithms (BPNN: back propagation 
neural network; HS: harmony search)

Fig. 4  Convergence precision curve of the loss function 
of BPNN with different HS algorithms (BPNN: back 
propagation neural network; HS: harmony search)
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