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Abstract: In many robot operation scenarios, the end-effector’s attitude constraints of movement are indispensable for the task 
process, such as robotic welding, spraying, handling, and stacking. Meanwhile, the inverse kinematics, collision detection, and space 
search are involved in the path planning procedure under attitude constraints, making it difficult to achieve satisfactory efficiency and 
effectiveness in practice. To address these problems, we propose a distributed variable density path planning method with attitude 
constraints (DVDP-AC) for industrial robots. First, a position–attitude constraints reconstruction (PACR) approach is proposed in 
the inverse kinematic solution. Then, the distributed signed-distance-field (DSDF) model with single-step safety sphere (SSS) is 
designed to improve the efficiency of collision detection. Based on this, the variable density path search method is adopted in the 
Cartesian space. Furthermore, a novel forward sequential path simplification (FSPS) approach is proposed to adaptively eliminate 
redundant path points considering path accessibility. Finally, experimental results verify the performance and effectiveness of the 
proposed DVDP-AC method under end-effector’s attitude constraints, and its characteristics and advantages are demonstrated by 
comparison with current mainstream path planning methods.
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1  Introduction

Autonomous path planning of industrial robots 
is of great significance for improving their ease of 
use and making them meet the requirements of dif‐
ferent tasks. When considering task requirements and 
constraints, the path planning of industrial robots in 
real applications becomes more complicated and chal‐
lenging. First, the path planning of mobile robots is 
generally carried out in the two-dimensional space, but 
the search space of six-degree-of-freedom (6-DOF) 
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industrial robots is three-dimensional or higher. Sec‐
ond, the constraint relationship between the links 
must be considered, and the whole robot cannot be 
regarded as a point, so collision detection is much more 
complex. In addition, the inverse kinematic solution 
of the robot will cause additional computation costs. 
This study will focus on efficient path planning in the 
Cartesian space.

Collision-free path planning has been widely used 
in automatic driving, unmanned aerial vehicle (UAV) 
navigation, game development, and other fields, and 
some classical theories and algorithms have been pro‐
posed, e.g., A* (Hart et al., 1968), rapidly-exploring 
random tree (RRT) (LaValle, 1998), and Dijkstra’s 
algorithm (Dijkstra, 1959). On this basis, some new 
algorithms have been derived. Koenig and Likhachev 
(2005) proposed the D* lite algorithm based on the 
lifelong planning A* (LPA*) (Koenig et al., 2004) al‐
gorithm. Its main feature is incremental search, and 
the current position is regarded as the starting posi‐
tion after the environment changes, so as to ensure 
that the path is the shortest. On this basis, Sun et al. 
(2010) proposed an improved D* lite algorithm for 
moving targets, which makes up for the deficiency of 
the D* algorithm in moving target search. Grid-based 
search in the Cartesian space is a feasible method, 
but the traditional grid-based search limits the search 
direction of each step. Ferguson and Stentz (2006) 
therefore proposed the field D* algorithm, which ad‐
justs the search direction based on linear interpola‐
tion and solves the problem of an excessive number 
of grids with multi-resolution grids. Inspired by the 
RRT algorithm, Persson and Sharf (2014) combined 
the classic A* algorithm with sampling and proposed 
sampling-based A* (SBA*), which improves the plan‐
ning success rate. However, this method still requires 
many samples to ensure the planning success. Collision-
free path planning based on artificial potential field 
methods is also an important direction (Adeli et al., 
2011; Baziyad et al., 2021).

Based on the basic algorithm research and con‐
sidering the characteristics of the industrial robot path 
planning problem, some related studies have been 
carried out. Ademovic and Lacevic (2014) proposed 
an evolutionary algorithm based on trees of bubbles 
of free C-space. This algorithm improves the reliabil‐
ity, but the redundant path is long. Fu et al. (2018) 

improved pre- and post-processing based on SBA*. 
It could improve the planning efficiency and solve 
the problem of redundant path points, but the plan‐
ning efficiency may be reduced when post-processing 
does not work. Xie et al. (2020) found the defect of the 
distorted configuration space (DCS) method and pre‐
sented an optimized IDCS method to shorten the gen‐
erated path, but this method is not available in some 
cases. Qureshi and Ayaz (2016) combined RRT* with 
an artificial potential field to reduce memory utiliza‐
tion and improve the convergence rate. In view of 
the impact of collision detection on planning effi‐
ciency, Han et al. (2018) proposed an adaptive dis‐
crete collision detection method, which adjusts the 
collision model in the Cartesian space according to 
the distance between robots and obstacles to improve 
efficiency and accuracy. Hernández et al. (2014) pro‐
posed an improved adaptive A* (AA*) algorithm, 
named multipath adaptive A* (MPAA*), which can 
reuse paths found by previous A* searches. The path 
is proved to be optimal, and the search is carried out 
in the Cartesian space. Abele et al. (2016) defined mul‐
tiple working points in the Cartesian space, solved the 
traveling salesman problem based on the A* algo‐
rithm, and realized time-optimal path point sequence 
planning.

To sum up, there are three main factors that af‐
fect planning efficiency: inverse kinematics, colli‐
sion detection, and planning algorithm design. The 
current path planning research for industrial robots 
confronts the following problems in three aspects:

End-effector’s attitude control: Most of the cur‐
rent mainstream motion planning algorithms, such as 
covariant Hamiltonian optimization for motion plan‐
ning (CHOMP) (Zucker et al., 2013), RRT-connect 
(Kuffner and LaValle, 2000), and stochastic trajectory 
optimization for motion planning (STOMP) (Kal‐
akrishnan et al., 2011), are solved in the configura‐
tion space, which makes it difficult to directly control 
the attitude of the end-effector. To cope with end-
effector’s attitude constraints in the Cartesian space, the 
conventional inverse kinematic analytical method is 
generally complicated and will generate multiple solu‐
tions, and the selection of solutions is time-consuming.

Excessive collision detection: Collision detection 
of industrial robots has a high time complexity. 
Besides, to ensure that the continuous trajectory is 
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reachable, it will be repeated in the planning process, 
resulting in a large computational load.

Unnecessary twists: The grid-based path search 
will generate unnecessary twists in the path, and 
a significant number of inverse kinematic solutions 
and collision detections are needed to perform path 
simplification to remove redundant path points, which 
has a great impact on efficiency.

In this paper, a variable density path-planning 
and simplification method based on a distributed signed-
distance-field (DSDF) is proposed. The major work 
and contributions of this study are as follows:

Inverse kinematics: In tasks that require attitude 
constraints, accurate positioning is needed only at the 
starting and ending points, but not in the process of 
motion. Therefore, a position–attitude constraints re‐
construction (PACR) inverse kinematic solution ap‐
proach is proposed, which can satisfy the attitude con‐
straints in the intermediate process and improve the  
efficiency of solving inverse kinematics.

Collision detection: For efficient collision detec‐
tion, the models of DSDF and single-step safety sphere 
(SSS) are proposed. DSDF solves the problem of low 
reconstruction efficiency of the original SDF, and SSS 
can help reduce the number of collision detections 
during single-step search and path simplification.

Path simplification: Aiming at the inherent de‐
fect of grid-based search, a novel forward sequential 
path simplification approach (FSPS) is proposed to 
eliminate the redundant path points and speed up the 
process of path simplification.

2  Problem statement

We consider the handling task of a 6-DOF in‐
dustrial robot with attitude constraints, which is very 
common in robot applications, such as industrial sce‐
narios and scientific research, as shown in Fig. 1.

In a material handling task, the robot motion 
planning needs to meet the following requirements:

1. The robot needs to be precisely positioned at 
the starting and ending points, so as to grasp and release 
materials with the appropriate position and attitude (PA).

2. Obstacle avoidance constraints and joint limita‐
tions should be considered in the intermediate move‐
ment process, which is the premise of the feasible path.

3. Since the objects being moved are not always 
in a closed state, as shown in Fig. 2, it is necessary to 
ensure that the material will not overturn or fall dur‐
ing the movement, so attitude constraints for the end-
effector are essential.

4. Unlike processing tasks, the intermediate pro‐
cess of handling tasks does not require precise posi‐
tioning, which provides more possibilities for improv‐
ing the efficiency of the planning algorithm.

For the above requirements, the attitude of the 
end-effector can be directly controlled based on inverse 
kinematics, which requires the construction and analy‐
sis of the kinematic model of the robot. According to 
the Denavit – Hartenberg (DH) parameters shown in 
Table 1, the robot kinematic model is defined (Fig. 3).

Fig. 2  Material handling without form closure

Fig. 1  Robot handling scenarios with attitude constraints: 
(a) material handling; (b) scientific research

Table 1  Denavit–Hartenberg (DH) parameters of 6-DOF 
industrial robots
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The path planning in the Cartesian space can be 
regarded as the planning of the PA sequence of the 
manipulator’s end-effector. The PA of the manipula‐
tor can be described by a homogeneous matrix:

, (1)

where the rotation matrix in the left dashed box de‐
fines the attitude of the end-effector, and the position 
vector in the right dashed box defines the position of 
the end-effector. According to the requirements of 
the transportation task analyzed above, two assump‐
tions are proposed:

1. Precise control of PA is necessary at the start‐
ing and ending points of the trajectory, while attitude 
control accuracy is more important than position 
control accuracy in the process of motion to avoid 
collision.

2. All the obstacles in the scene are rigid bodies.
Based on the above assumptions, the algorithm 

framework and details of this study are proposed and 
detailed in the following sections.

3  Methodology

3.1  Overview of DVDP-AC

The framework of the distributed variable density 
path planning method with attitude constraints 
(DVDP-AC) is inspired by D* lite. D* lite is a path 
planning algorithm with incremental search. It can use 

the information obtained from previous search steps to 
improve the efficiency of the subsequent planning 
(Koenig and Likhachev, 2005).

However, due to the limitations of grid-based 
search, the original D* lite suffers from two draw‐
backs. First, planning time increases dramatically as 
the number of grid cells increases. Second, the paths 
often have unnecessary twists, which makes the paths 
longer than desired. In addition, although great achieve‐
ments have been made in the research of collision de‐
tection, the conventional collision-free path planning 
methods still spend most of their calculation time on 
collision detection.

Considering the above problems and characteris‐
tics of industrial robots, the framework of DVDP-AC 
is constructed, and the kinematic solution, collision 
detection, search method, and path simplification 
method are all improved. The steps are as follows:

1. Initialize the orthogonal variable density search 
space and collision models.

2. The improved kinematic model, collision mod‐
els, and search space are used for path planning in 
the initial state.

3. If the robot does not reach the goal cell, search 
for the node with the lowest cost, then update the 
robot position, and the node information is updated 
according to the situation of obstacles.

4. If the robot reaches the goal cell, post-process 
the obtained path (path simplification) based on FSPS.

In Fig. 4, the yellow box represents the improve‐
ments adopted, which will be elaborated in the follow‐
ing subsections.

3.2  PACR inverse kinematics

At present, most industrial robots satisfy the 
Pieper criterion (Liu HS et al., 2015; Liu YY et al.,  
2021), which enables the inverse kinematic analyti‐
cal solution of the robot. However, solving the in‐
verse kinematics of a 6-DOF robot is still a complex 
problem, and since there are multiple solutions, it is 
necessary to consider how to choose the optimal one. 
In the planning process, inverse kinematics needs to 
be solved many times, so it is helpful to improve the 
efficiency. For a robot satisfying the Pieper criterion, 
it is generally believed that the end position is con‐
trolled mainly by the first three joints, and the end at‐
titude is controlled mainly by the last three joints. 

Fig. 3  Kinematic model of industrial robots
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Based on this characteristic, the PACR inverse kine‐
matic solution method is proposed.

3.2.1  Deconstruction and reconstruction of the 
homogeneous position and attitude matrix

In general, path planning in the Cartesian space 
involves planning the PAs of the end-effector, includ‐
ing solving the robot configuration based on inverse 
kinematics and carrying out collision detection. Solv‐
ing the inverse kinematics of a 6-DOF robot requires 
computing multiple solutions and selecting the opti‐
mal one. To improve the planning efficiency of inter‐
mediate path points, it is necessary to consider how 
inverse kinematics is applied in path planning.

As mentioned above, the end-effector homoge‐
neous matrix contains attitude information and posi‐
tion information, and the terminal PA sequence of the 
intermediate path points describes the movement pro‐
cess of the manipulator. However, according to the 
assumption described in Section 2, the end position 
in the intermediate process does not require high pre‐
cision, and only the PAs of the starting point and the 
ending point need to be highly accurate. Therefore, 

for the starting and ending points of the path, the in‐
verse kinematics needs to be solved by the traditional 
method, while for the intermediate path points, the 
homogeneous matrix can be reconstructed, and the 
reconstructed matrix can be used to describe the 
movement process of the manipulator:

, (2)

where 0
6TD∈R4×4, the rotation matrix in the left dashed 

box still describes the attitude of the end-effector, 
while the position vector in the right dashed box is 
changed to describe the wrist position of the robot, 
which means that in the middle waypoint planning, 
each point in the search space corresponds to the wrist 
rather than the end-effector. Thus, the position vector 
is related only to the first three joint angles:
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where θ1, θ2, and θ3 are the first three joint angles.

As for attitude constraints, the rotation matrix is 
affected by all the joint angles as high precision con‐
trol is still required:
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where

θ = [ θ1 θ2 θ3 θ4 θ5 θ6 ]
T
, (6)

where θ4, θ5, and θ6 are the last three joint angles.
For the above PA constraints, a novel PACR in‐

verse kinematic solution method is proposed. Specifi‐
cally, the robot applicable to the PACR method should 
conform to the Pieper criterion, and its structure and 
DH parameters are shown in Fig. 3 and Table 1, re‐
spectively. The principles of PACR are explained in 
detail below.

Fig. 4  Framework of DVDP-AC (References to color refer 
to the online version of this figure)
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3.2.2  PACR: solving the first three joint angles based 
on the wrist position constraint

Since the wrist coordinates (x, y, z) are known 
during the search, the solution process of the first three 
joints can be greatly simplified and complex matrix 
operations can be saved. In other words, it can be 
solved with a geometric method. Note that there are 
two sets of the first three joint angles that allow the 
wrist to reach the same position, as shown in Fig. 5. 
However, considering the practical situation, the con‐
figuration of Fig. 5b is generally not adopted. There‐
fore, only the calculation method for the configura‐
tion of Fig. 5a is given.

The first three joint angles are calculated as 
follows:

θ1 =
ì
í
î

θ1_1,   if abs (θ1_1 - θ1pre ) ⩽ abs (θ1_2 - θ1pre ),

θ1_2,   if abs (θ1_2 - θ1pre ) < abs (θ1_1 - θ1pre ),

(7)

θ2 = arctan ( D, E·sign ( Ex cos θ1 + Ey sin θ1 ) )

+arccos ( )B2 + C 2 - A2

2BC
-

π
2

,
(8)

θ3 = -1 ⋅ {π - arccos[ ]( A2 + B2 - C 2 )/ ( 2AB )

-arctan (d4, a3 )}. (9)

In Eq. (7), θ1pre is the previous value of θ1, and θ1_1 
and θ1_2 are possible solutions of θ1, which is chosen ac‐
cording to the principle of minimum joint movement. 
θ1_1 and θ1_2 are calculated as follows:

ì
í
î

θ1_1 = arctan ( y, x ) ,

θ1_2 = -1 ⋅ sign (θ1_1 ) ⋅ ( π - abs (θ1_1 ) ).
(10)

In Eqs. (8) and (9), A to E are defined as shown in 
Fig. 5a, and Ex and Ey are components of E along x and 

y axes, respectively. The calculation formulae of A to E 

are shown in Table 2. In addition, considering the 

initial value of the second joint, π/2 should be added 

when θ2 is involved in subsequent steps.

3.2.3  PACR: solving the last three joint angles based 

on the attitude constraint of the end-effector

According to the attitude of the end-effector of 

the starting and ending points, the attitude interpola‐

tion can be carried out in the form of a quaternion, 

and then the quaternion can be converted into a ma‐

trix form to solve the angles of the last three joints.

Since the angles of the first three joints are 

known, the homogeneous matrix of these joints can 

be calculated according to

i-1
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The homogeneous matrix of the above joints is 

shown in Fig. 6. Then the homogeneous matrix of 

the last three joints is obtained:

3
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(12)

Thus, θ5 can be calculated as follows:

Fig. 5  Two configurations corresponding to the same 
position: (a) common situation; (b) special situation

Table 2  Brief introduction of each group

Symbol

A

B

C

D
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Expression
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3 + d 2

4
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( x - a1cos θ1 )2 + ( y - a1 sin θ1 )2 + ( z - d1 )2

z - d1

( x - a1cos θ1 )2 + ( y - a1 sin θ1 )2

x - a1cos θ1

y - a1sin θ1
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θ5 =
ì
í
î

θ5_1,   if abs (θ5_1 - θ5pre ) ⩽ abs (θ5_2 - θ5pre ),

θ5_2,   if abs (θ5_2 - θ5pre ) < abs (θ5_1 - θ5pre ),

(13)

where θ5pre is the previous value of θ5, and θ5_1 and θ5_2 

are possible solutions of θ5, which is chosen accord‐

ing to the principle of minimum joint movement. θ5_1 
and θ5_2 are calculated as follows:

{θ5_1 = arccos 3
6T3,3 + π/2,

θ5_2 = -arccos 3
6T3,3 + π/2.

(14)

Similar to the second joint, -π/2 should be added 

when θ5 is involved in subsequent steps.

Since matrix operations take more time, 3
6T3,3 is 

usually computed by

3
6T3,3 = aexcos θ1sin (θ2 + π/2 + θ3 ) + aeysin θ1sin (θ2

+π/2 + θ3 ) - aezcos (θ2 + π/2 + θ3 ), (15)

where aex, aey, and aez are the elements of the matrix 
in Eqs. (2) and (5). 3

6T1,1, 
3
6T2,1, 

3
6T1,3, 

3
6T2,3, 

3
6T3,1, and 

3
6T3,2 can be calculated similary, and the specific 
equations will not be described here. If 3

6T3,3 = ±1, 
the wrist of the manipulator is in a singular state, and 
thus θ4 and θ6 are calculated as follows:

θ4 = θ4pre, (16)

θ6 =
ì
í
î

 arctan ( 3
6T2,1, 3

6T1,1 ) - θ4,   if 3
6T3,3 = 1,

-arctan (- 3
6T2,1, - 3

6T1,1 ) + θ4,   if 3
6T3,3 = -1,

(17)

where θ4pre is the previous value of θ4.
In general, θ4 and θ6 can be solved according to θ5:

θ4 = arctan ( )3
6T2,3

sin (θ5 - π/2 )
,

3
6T1,3

sin (θ5 - π/2 )
, (18)

θ6 = arctan ( )3
6T3,2

sin (θ5 - π/2 )
, -

3
6T3,1

sin (θ5 - π/2 )
.(19)

Since the motion process is required to be con‐
tinuous, it is feasible and necessary to select the 
solution in advance when calculating θ1 and θ5. The 
multi-solution problem can be solved by using a 
pre-selection solution and posing a constraint separa‐
tion, because other solutions will cause an abrupt atti‐
tude change of the end-effector, resulting in the mate‐
rial falling in the process of transportation. The pro‐
posed PACR method not only meets the practical re‐
quirement, but also reduces the calculation needed to 
find solutions and select the optimal one.

3.3  Collision detection acceleration based on DSDF 
and SSS

Collision detection takes up much time in the 
planning process. In recent years, collision detection 
methods based on triangular mesh have been continu‐
ously improved. For example, collision detection 
based on bounding volume hierarchy (BVH) mesh 
screening is the current mainstream (Li et al., 2018; 
Tan et al., 2020). In addition, for path planning, there 
is a more efficient collision detection approach, 
which is based on SDF. Generally, the sphere-chain 
collision model is built for robots and SDF is built 
for the surrounding environment:

1. The original model of the robot is abstracted 
into a collision model formed by a sphere chain. The 
initial sphere chain is generated based on an oriented 
bounding box (Gottschalk et al., 1996), and the radii 
and center coordinates of all balls are adjusted based 
on the genetic algorithm (Harik et al., 1999) to mini‐
mize the total volume of all bounding spheres. The 
value of Cc can be defined according to the radius of 
the smallest sphere of the sphere chain.

2. Collision models of obstacles are constructed 
based on SDF. SDF consists of a series of sampling 
point clouds, and each point of SDF has a signed 
number, whose absolute value is the shortest distance 
from the obstacles. If the sampling point is outside 
the obstacle, the signed number is positive; otherwise, 
it is negative. In this way, collision detection can be 

Fig. 6  Transformation matrices of the joints

542



Wang et al. / Front Inform Technol Electron Eng   2023 24(4):536-552

carried out quickly by comparing the value of the 
sampling point with the radius of the collision sphere.

An obvious problem with traditional SDF is that 
it needs to be rebuilt when the surrounding obstacles 
change, and the reconstruction process is often time- 
consuming, making SDF-based collision detection 
difficult to apply in a dynamic scenario. To solve this 
problem, the concept of DSDF is proposed, based on 
the second assumption in Section 2. The principle is 
that DSDF is constructed in advance for the obstacle, 
and when the obstacle moves or rotates, its DSDF 
moves and rotates accordingly. Because the obstacles 
are rigid bodies, complex reconstruction is avoided.

The range of DSDF is enlarged by de on the 
basis of axis-aligned bounding boxes (AABB) (Xing 
et al., 2010). de is the radius of the maximum sphere 
of the moving parts, as shown in Fig. 7. The collision 
models of robot and obstacle are shown in Fig. 8. 
Some papers have proposed the method of construct‐
ing SDF (Huo et al., 2014; Klingensmith et al., 2015), 
so the construction process will not be repeated here.

In this paper, the collision detection of a robot is 
carried out based on its collision spheres. First, it is 
determined whether the center of the collision sphere 
is within the sampling range of DSDF. If not, the 
robot is deemed to be collision-free; if so, the coordi‐
nates of the nearest point from the center of the ball 
can be found with

ì

í

î

ï

ï
ïïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

xs = xmin + round ( )xc - xmin

d i

⋅ d i,

ys = ymin + round ( )yc - ymin

d i

⋅ d i,

zs = zmin + round ( )zc - zmin

d i

⋅ d i,

(20)

where (xc, yc, zc) is the center of the bounding ball, 
(xs, ys, zs) is the sampling point closest to the center 
of the ball, (xmin, ymin, zmin) is the point with the small‐
est coordinate values in all directions among the sam‐
pling points of DSDF, and di is the sampling interval. 
If the signed number of the sampling point is greater 
than the radius of the bounding box, it is deemed to 
be a collision.

In addition, to improve the efficiency of single-
step search and reduce the computation of continuous 
collision detection, a safety zone model named SSS 
is proposed, as shown in Fig. 9.

In Fig. 9, A is the collision sphere before move‐
ment, B is the collision sphere after movement, d is 
the displacement, RSN is the signed value of the sam‐
pling point closest to the center of the collision 
sphere, and it is also the radius of the SSS. The prin‐
ciple of continuous collision detection acceleration is 
to directly judge whether the single-step movement 
is collision-free, by evaluating whether the sweep 
area of the collision sphere is covered by SSS. If the 
single-step sweep area of the collision ball cannot 
be covered by SSS, continuous collision detection is 
required.

To ensure accurate judgment, there are two spe‐
cial cases that need to be considered, as shown in 
Fig. 10. Fig. 10a presents the situation in which the 
collision sphere breaks through the SSS at the end of 
the single step, and Fig. 10b presents the situation in 

Fig. 7  Scope of DSDF for a single obstacle

Fig. 8  The robot collision model based on sphere chain (a) 
and obstacle collision model based on DSDF (b)

Fig. 9  Diagram of safe state determination
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which the collision sphere breaks through the SSS 
during the intermediate stage of the single step. In 
Fig. 10, the green line is the path of the end flange, 
and the blue curve is the moving track of the center 
of the elbow collision sphere.

For the first case, it can be inferred from inequal‐

ity (21) whether the motion trend of the sphere at the 
end segment is safe:

dn-1 ⩽ d, (21)

where dn-1 represents the distance between the penul‐
timate interpolation point of the single-step trajectory 
and the center of the sphere in state A. If the above 
formula does not hold, continuous interpolation is 
required.

For the second case, Algorithm 1 can be used to 
deduce whether the intermediate stage is safe.

With the exception of the above two cases, most 
cases are shown in Fig. 11, in which the single-step 
movement of wrist is linear and the step size is small. 
Then the single-step safety state can be determined by

d + R < RSN. (22)

If inequality (22) is true, the single-step search is safe.
Specifically, for DSDF, the collision sphere is safe 

under the following conditions:

Algorithm 1    Safety state discrimination based on 
DSDF-SSS
Input: collision sphere radius, R; configurations of the start‐
ing and ending points of a local path; radius of SSS, RSN

1:

2:
3:
4:
5:

6:

7:
8:

9:
10:
11:
12:

13:

14:
15:
16:
17:
18:

According to the preset interpolation interval, the local 
path of single-step motion is interpolated, and the number 
of interpolation points is n;
if n⩽6
 return false;
end
According to the configurations of the first three points, 
the center coordinates of the collision spheres (PA, P2, 
P3) are calculated;
According to the configurations of the last three points, 
the center coordinates of the collision spheres (Pn-2, 
Pn-1, PB) are calculated;
Compute vectors 

    
PA PB, 

    
PA P2, 

    
P2 P3;

Calculate the angle θA1 between 
    
PA PB and 

    
PA P2 as 

well as θA2 between 
    
PA PB and 

    
P2 P3;

if θA1⩽θA2 or θA1>π/2
 return false;
end
Compute vectors 

    
PB PA, 

      
PB Pn-1, 

       
Pn-1 Pn-2;

Calculate the angle θB1 between 
    
PB PA and 

      
PB Pn-1 as 

well as the angle θB2 between 
    
PB PA and 

       
Pn-1 Pn-2;

if θB1⩽θB2 or θB1>π/2
 return false;
else
 return true;
end

Fig. 11  The safe state of single-step movement (a) and  
corresponding motion process in general (b)

Fig. 10  The unsafe state at the end (a) and intermediate 
(b) segments of single-step movement (References to color 
refer to the online version of this figure)
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1. The sphere is outside DSDF and the distance 
from DSDF is greater than R.

2. Before the single-step motion, the sphere is in 
DSDF and the signed number of the sampling point 
closest to its center is greater than the safe distance 
(d+R).

3.4  Variable density path-planning

In robot working scenarios, the distribution of 
obstacles is usually uneven. That is to say, there are 
densely distributed areas and sparsely distributed areas. 
To ensure security, it is necessary to increase the mesh 
density of the search space. However, for the area 
where obstacles are sparsely distributed, an over-
dense grid will reduce the search efficiency. Therefore, 
in this study we adopt a search space generation method 
that adaptively adjusts the mesh density according 
to the distribution of obstacles. Its principle is intro‐
duced below.

The octree is generated based on the robot work‐
space and the search space is initially established. 
When the manipulator is close to the obstacles, more 
precise planning is needed to ensure that collision is 
avoided. Therefore, the collision clearance Cc and the 
minimum scale in the planning process should first 
be defined. Then the AABB of the obstacles is con‐
structed which can delineate the area of an obstacle at 
a low computational cost. The grid cells intersecting 
with AABB should be further refined until the size of 
the leaf node is not greater than the collision clear‐
ance Cc, as shown in Fig. 12.

The subdivided area is called the intensive area, 
and the grid cells without collision are defined as 
safe area cells. Thus, the construction of the variable 

density search space is preliminarily completed. In 
the subsequent planning process, if a collision occurs 
in the unrefined areas, the robot will return to the 
state of the previous step and search after the mesh 
is refined. Due to the presence of variable density 
areas, it is infeasible to search at a constant step size, 
so the search is carried out in a segmented way. Ac‐
cording to the grid density, the search space can be 
divided into a safe area and an intensive area. No mat‐
ter whether the next step is in the safe area or the inten‐
sive area, Eq. (23) can be used to quickly calculate 
the location of the center point:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

x's = x'min + round ( )xm - x'min

ds

⋅ ds,

y's = y'min + round ( )ym - y'min

ds

⋅ ds,

z's = z'min + round ( )zm - z'min

ds

⋅ ds,

(23)

where (xm, ym, zm) are the coordinates after moving 
one step, ( x'min, y'min, z'min ) is the point with the small‐

est coordinate values in all directions among the 
sampling points in the area in which (xm, ym, zm) falls, 
and ds is the search step size. Note that using vari‐
able density search sometimes results in longer paths 
because large grids may lengthen local paths, as shown 
in Fig. 13.

To solve this problem, according to the positions 
of the child nodes, additional path points are added 
to the local paths that pass through only the grid 
nodes of the safe area, and then the path is further 
simplified. In the next subsection, a novel approach 
will be introduced.

Fig. 13  The difference of paths caused by uniform density 
search (a) and variable density search (b)

Fig. 12  Variable density grid based on octree
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3.5  Forward sequential path simplification

Since the path planning in this study is based on 
grid-based search, there are redundant bends in the 
path. To achieve optimal planning results, it is neces‐
sary to remove the redundant path points. Existing 
methods tend to start with the farthest nodes in terms 
of connection relationships, such as the method of Fu 
et al. (2018):

1. Define node pi at the starting point.
2. Establish the local paths between pi and sub‐

sequent non-adjacent path points pj.
3. Find the collision-free local path which con‐

tains node pj with the maximum subscript j, use pi‒pj  
to replace the corresponding segment of the initially 
planned path, and then assign j to i.

4. If there is no collision-free local path, i=i+1.
5. Repeat steps 2‒4 until pj reaches the last point.
It can be seen that the simplification order in Fu 

et al. (2018) is from back to front, and the simplifica‐
tion method proposed in this study is improved in two 
aspects:

First, the method of FSPS is proposed. The de‐
tails are as shown in Algorithm 2.

The above process is shown in Fig. 14. The red 
dashed lines are the local paths with collision, the 
green dashed lines are the local paths without colli‐
sion, and the solid green lines are the local paths 
adopted. The novel simplification method can effectively 
reduce the number of redundant path points. More‐
over, the time complexity is O(n) in the worst case, 
which is lower than that of the existing method, 

O(n2). In addition, this method can reduce collision 

detection of long local paths, such as linear paths 

from the starting point to the goal point. The longer 

the distance, the more times collision detection is per‐

formed, and avoiding collision detection of long paths 

can further improve efficiency. Therefore, the pro‐

posed method has smaller time fluctuation in different 

situations and can improve efficiency. In addition, the 

idea of variable density can be used for collision de‐

tection and reachability detection, that is, to reduce 

the number of interpolation points of the local path 

in the safe area.

Second, some redundant points can be elimi‐

nated by checking whether they are collinear, which 

takes little time to reduce the number of collision de‐

tections, as shown in Fig. 14d. In addition, to solve the 

problem shown in Fig. 13, a condition needs to be 

added: if only the collinear redundant path points are 

eliminated in a certain step, and the path is not short‐

ened, this step of path simplification should be rejected, 

and the process should continue from the next point.

Algorithm 2    Forward sequential path simplification 
(FSPS)
Input: the initial path, interpolation interval (IFSPS)

1:

2:

3:

4:

5:

6:

7:

8:

9:

Define a pair of nodes (NA and NB), and at first NB is 
defined at the first node, and NA is two nodes ahead of 
NB;

while NA does not reach the goal node do

    NA traversal forward;

 if the local path NA‒NB is collision-free do

Replace the corresponding segment of the
initially planned path with NA‒NB;

 else

  Move NB to the previous node of NA;

 end

end

Fig. 14  The process of forward sequential path simplifica‐
tion: (a) original path; (b) finding the second path point; 
(c) finding the third path point; (d) finding the fourth path 
point; (e) finding the fifth path point; (f) completing the 
simplification (References to color refer to the online version 
of this figure)
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4  Validation and discussion

4.1  Ablation study

For a preliminary analysis of the effect of the 
proposed DVDP-AC method, a series of simulation 
cases were set up for testing. The computer used for 
the simulation was equipped with an AMD Ryzan 
3600 CPU with 16 GB memory, whose base frequency 
was 3.6 GHz, and a GTX1070 GPU was used to ac‐
celerate the construction of DSDF. The simulation 
environment was built based on C++ and OpenGL in 
Windows 10. Six groups were set for each case to 
analyze the contribution of different measures, as 
shown in Table 3.

MSVM uses the DVDP-AC method proposed in 
this study, and OBUO uses the original D* lite algo‐
rithm (Koenig and Likhachev, 2005). The simulation 
cases consist of a robot, a conveyor belt, and two 
shelves, simulating the processes of taking out the 
workpiece from the shelf and placing it on the con‐
veyor belt, as illustrated in Fig. 15. Based on this, the 
starting point, ending point, and positions of obsta‐
cles are changed to form 10 different scenes. The cal‐
culation time and the length of the cases are shown 
in Table 4.

To verify the effectiveness of the proposed algo‐
rithm in the real environment, tests were carried out 
in a static scenario (case 1) and a dynamic scenario 
(case 2). The setups of these two cases are shown in 
Fig. 16. The path planning was repeated 10 times in 
each case to reduce the error. In case 1, there is a 
robot, a computer numerical control (CNC) milling 
machine, a couple of aluminum brackets (obstacles), 
and a table. The robot was ABB IRB120, required to 
avoid obstacles and move to the CNC milling machine 

(Fig. 16a). In case 2, the robot was required to com‐
plete loading and unloading actions. The robot was 
xArm 6, which does not satisfy the Pieper criterion, 
so the simplified kinematic model was not adopted. 
In this case, five groups were reset for each path, as 
shown in Table 5, where the meanings of the letters 
are the same as those in Table 3. While waiting for 
processing, an obstacle was added so that the manipu‐
lator cannot return along the original path (Fig. 16b). 
According to the framework of DVDP-AC, if the ob‐
stacles were found to be changed, the search space 
will be rebuilt and the planning will be carried out 
again. The calculation time and path length are shown 
in Tables 6 and 7.

Table 3  Brief introduction of each group

Group

OBUO
OSUO
OSVO
MSVO
MSVM
MSVN

Inverse
kinematics

O
O
O
M
M
M

Collision
detection

B
S
S
S
S
S

Search 
space

U
U
V
V
V
V

Post-
processing

O
O
O
O
M
N

O: original; M: modified; B: bounding volume hierarchy (BVH) 
based; S: signed-distance-field (SDF) based; U: uniform; V: variable; 
N: none

Fig. 16  The setups of case 1 (a) and case 2 (b)

Fig. 15  Motion process of the simulation cases

Table 4  Performance comparison in the simulation cases

Group

OBUO

OSUO

OSVO

MSVO

MSVM

MSVN

Average 
time (ms)

38.24

32.65

30.69

26.18

19.99

17.79

Maximum
time (ms)

65.65

53.92

50.43

45.57

31.04

28.24

Minimum
time (ms)

28.74

26.13

24.94

19.67

14.74

14.27

Average length
(mm)

751.31

756.17

756.17

761.43

737.11

917.17
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Since four paths need to be planned in case 2, 
the path length in Table 7 is the sum of the four paths, 
and the average time, maximum time, and minimum 
time are all calculated based on the total planning 
time. In Tables 6 and 7, there is a big difference in plan‐
ning time, which is related mainly to the path length, 
obstacle distribution, robot structure, and other factors. 
Among them, the path length will affect the number 
of search steps, the obstacle distribution will affect the 
time required for collision detection, and the robot 
structure will affect the efficiency of an inverse kine‐
matic solution. In addition, as mentioned before, 
Table 7 shows the total planning time of the four paths, 
and thus the gap is further increased.

4.2  Baseline comparison

CHOMP (Zucker et al., 2013), RRT-connect 
(Kuffner and LaValle, 2000), and Bi-Fast-Marching-
Tree algorithm (BFMT*) (Starek et al., 2015) were 

chosen as the benchmarks to measure the performance 

of the proposed DVDP-AC. CHOMP and RRT-connect 

are both mainstream algorithms in the field of manipu‐

lator motion planning. CHOMP can efficiently plan 

a reachable path in a configuration space based on 

covariant Hamiltonian optimization. RRT-connect is 

known for its bidirectional search, which can effec‐

tively improve the efficiency of an RRT algorithm. 

RRT-connect can solve the feasible path not only 

with a high success rate in a narrow search space, but 

also with a high efficiency in a wide search space. 

BFMT* is a bidirectional version of FMT*, which 

can quickly solve complex motion planning problems 

in high-dimensional configuration spaces (Janson 

et al., 2015). In this study, BFMT* needs only to find 

variable paths, so additional optimization will be re‐

duced to further improve its efficiency. The hardware 

conditions of this test were the same as the previous 

ones. The simulation environment was built based on 

ROS Noetic, which ran on an Ubuntu 20.04 operat‐

ing system.

To demonstrate the performance of the above 

algorithms in terms of planning efficiency and end-

attitude constraints, a 6-DOF manipulator was adopted, 

which operated in a scene that included some obsta‐

cles such as cups and tables, as shown in Fig. 17. In 

case 3, the robot was instructed to deliver four cups to 

points 1 to 4 in sequence. Since cups usually contain 

liquid, attitude control is necessary. For the above al‐

gorithms, the parameters are taken as follows.

4.2.1  DVDP-AC

The parameters of DVDP-AC and their intro‐

duction are shown in Table 8.

Table 6  Performance comparison of case 1

Group

OBUO
OSUO
OSVO
MSVO
MSVM
MSVN

Average 
time (ms)

196.37
111.10
100.57

92.74
78.37
55.57

Maximum
time (ms)

206.83
115.33
104.39

97.06
82.04
58.18

Minimum
time (ms)

180.54
108.91

98.62
89.54
75.67
53.95

Length
(mm)

1006.08
1006.08
1006.08
1172.55
1049.53
1295.52

Table 5  Brief introduction of each group in case 2

Group

OBUO

OSUO

OSVO

OSVM

OSVN

Inverse
kinematics

O

O

O

O

O

Collision 
detection

B

S

S

S

S

Search 
space

U

U

V

V

V

Post-
processing

O

O

O

M

N

O: original; M: modified; B: bounding volume hierarchy (BVH) based; 
S: signed-distance-field (SDF) based; U: uniform; V: variable; N: none

Fig. 17  The setup of case 3: (a) simulation environment; 
(b) experimental environment

Table 7  Performance comparison of case 2

Group

OBUO

OSUO

OSVO

OSVM

OSVN

Average 
time (ms)

2748.51

2001.04

1990.14

1739.87

1356.66

Maximum
time (ms)

2764.42

2009.75

1998.12

1754.54

1367.09

Minimum
time (ms)

2719.25

1994.36

1975.50

1722.70

1337.79

Length
(mm)

2233.58

2219.94

2219.94

2221.03

3174.12
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4.2.2  CHOMP

The parameters of CHOMP and their introduc‐
tion are shown in Table 9.

4.2.3  RRT-connect

The parameters of RRT-connect and their intro‐
duction are shown in Table 10. The larger the sr, the 
higher the exploration efficiency. However, when sr 
is too large, the trajectory quality and success rate 
will also be affected. The smaller the sr, the finer the 
trajectory, but the lower the exploration efficiency. 

Since the obstacles of case 3 are sparse, a larger sr 
can be adopted to improve efficiency.

4.2.4  BFMT*

The parameters of BFMT* and their introduc‐
tion are shown in Table 11. Ko is used to determine 
the conditions for the end of the algorithm. When Ko 
is true, the algorithm ends when the best path is found; 
otherwise, the algorithm ends when the first viable 
path is found.

To enhance the reliability of the conclusions, 
the planning of each path was repeated 10 times, and 
the experimental data were recorded and processed, 
as shown in Table 12. According to Table 12, the 
DVDP-AC method showed high efficiency under vari‐
able and known obstacle distribution, and performed 
better in both planning efficiency and end-attitude 
controllability. In the process of planning the above 
four trajectories, the DVDP-AC algorithm reduced 
the average time by more than 39% compared with 

Table 11  Brief introduction of the parameters of BFMT*

Symbol

ns

Ko

rm

Meaning

Number of samples taken by the planner
Does it have to find the best path?
Multiplier used for the nearest neighbor 

search radius

Value

150
False

30

Table 9  Brief introduction of the parameters of CHOMP

Symbol
Ws

Wo

Rl

Cc

Tc

ni

nacf

Meaning
Weight of smoothness cost
Weight of obstacle cost
Learning rate
Minimum distance required to avoid 

obstacles
Threshold required to terminate the 

iteration according to the collision-
free condition

Maximum number of iterations
Maximum number of iterations after 

finding a feasible path

Value
0.1
1.0

0.01
0.2 m

0.07

200
5

Table 8  Brief introduction of the parameters of DVDP-AC

Symbol
Cc

smin

smax

IFSPS

Meaning
Minimum distance required to avoid 

obstacles
Step size in the dense grid search space
Step size in the sparse grid search space
Interpolation interval used for the

collision detection in path 
simplification

Value (m)
0.01

0.01
0.04

0.002

Table 12  Comparison of planning time

Path
1

2

3

4

Time (ms)
Average
Maximum
Minimum
Average
Maximum
Minimum
Average
Maximum
Minimum
Average
Maximum
Minimum

DVDP-AC
34.9
40.0
34.0
63.7
77.0
59.0
69.5
72.0
69.0
65.1
69.0
63.0

CHOMP
109.0
111.0
108.0
123.6
128.0
119.0
118.3
121.0
116.0
126.4
132.0
122.0

Decrease rate 1
67.98%
63.96%
68.52%
48.46%
39.84%
50.42%
41.25%
40.50%
40.52%
48.50%
47.73%
48.36%

RRT-connect
49.3
55.0
45.0

103.0
117.0
92.0
95.8

103.0
84.0

101.1
122.0

86.0

Decrease rate 2
29.21%
27.27%
24.44%
38.16%
34.19%
35.87%
27.45%
30.10%
17.86%
35.61%
43.44%
26.74%

BFMT*
48.8
52.0
45.0
88.9
96.0
82.0
76.3
82.0
70.0
71.2
78.0
67.0

Decrease rate 3
28.48%
23.08%
24.44%
28.35%
19.79%
28.05%

8.91%
12.20%

1.43%
8.57%

11.54%
5.97%

Table 10  Brief introduction of the parameter of RRT-
connect

Symbol

sr

Meaning

Step size in the configuration search space

Value

0.075 rad
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CHOMP. Specifically, in the scenario of the first path, 
DVDP-AC saved more time because of the sparse dis‐
tribution of obstacles, finding the feasible path within 
40 ms, while CHOMP took more than 100 ms. Com‐
pared with RRT-connect and BFMT*, DVDP-AC can 
maintain a significant efficiency advantage, reducing 
the average planning time by 8% to 38%. What is 
more, by observing the motion process, it can be found 
that the algorithms of the three control groups failed 
to maintain the proper attitude of the end-effector, as 
shown in Fig. 18.

4.3  Discussion

According to the above experimental results, in 
all test scenarios, the above improvement measures 
(DSDF, PACR, and FSPS) can improve the planning 
efficiency. The effects of the measures are discussed 
in detail below.

4.3.1  DSDF-based collision detection

Based on DSDF and SSS, DVDP-AC can quickly 
determine whether the local path is safe, which 

greatly reduces the number of collision detections, 
thus effectively improving the overall efficiency.

According to Tables 4, 6, and 7, in test cases, the 
average calculation time was reduced by 14.63% to 
27.20% by adopting DSDF and SSS. The analysis re‐
sults of the ablation study are shown in Fig. 19. In ad‐
dition, by using SSS to reduce the number of colli‐
sion detections, DVDP-AC achieved an efficiency im‐
provement in baseline comparison.

4.3.2  PACR inverse kinematics

As a basic improvement, PACR inverse kine‐
matics improved efficiency in all scenarios. Although 
the original analytical solution is already efficient, 
the inverse kinematic solution needs to be carried out 
many times in path planning, so simplified inverse ki‐
nematics can effectively improve the efficiency. In the 
test cases, the average calculation time was reduced 
by 7.79% to 14.68% by adopting the PACR method. 
The analysis results are shown in Fig. 20. Moreover, 
in baseline comparison, although DVDP-AC requires 
an additional inverse kinematic solution, which af‐
fects the computational efficiency, the PACR method 
can effectively reduce this impact.

4.3.3  FSPS

The effects of FSPS are as follows: first, it re‐
duces the computational complexity when there are  
few redundant path points; second, it directly elimi‐
nates the collinear path points; third, it reduces the 
number of feasibility detections of the safety zone. 
Therefore, the effect is clear when there are sparse 
obstacles, few redundant path points, or many collin‐
ear path points. In the test cases, the average calcula‐
tion time can be reduced by 12.58% to 23.64% due 
to FSPS, as shown in Fig. 21.

Fig. 19  Effect of DSDF-based detection

Fig. 18  Effect comparison among four methods of the 
attitude constraint: (a) DVDP-AC; (b) CHOMP; (c) RRT-
connect; (d) BFMT*
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5  Conclusions

In this paper, a distributed variable density path 
planning method named DVDP-AC is proposed. In 
our proposed method, the inverse kinematic solution, 
collision detection, and post-processing are modi‐
fied. First, collision detection based on distributed 
signed-distance-field (DSDF) and a single-step safety 
sphere (SSS) generally improves efficiency, especially 
in the scenarios where obstacles are densely distributed. 
In the ablation study cases, the computation time is 
reduced by 14.63% to 27.20% due to DSDF-based 
collision detection. Second, the position–attitude con‐
straints reconstruction (PACR) inverse kinematics 
can further improve efficiency while meeting the re‐
quirements of the handling task. In the ablation study 
cases, the computational time is reduced by 7.79% to 
14.68% due to PACR. Third, the adoptation of for‐
ward sequential path simplification (FSPS) further 
improves the quality and efficiency of path simplifi‐
cation. In the ablation study cases, FSPS reduces the 
computational time by 12.58% to 23.64%. In base‐
line comparison, DVDP-AC shows advantages in effi‐
ciency and attitude constraints compared with exist‐
ing mainstream algorithms.

The most important contribution of this study is to 
realize efficient path planning with terminal attitude 
constraints, which have important application value in 
industrial robot handling, stacking, spraying, and other 
tasks. The proposed method can be compiled into a 
planning tool and combined with three-dimensional 
modeling techniques to become an important part of 
offline programming software for industrial robots. 
We hope to implement these in future work.
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