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Abstract: Next point-of-interest (POI) recommendation is an important personalized task in location-based social networks 
(LBSNs) and aims to recommend the next POI for users in a specific situation with historical check-in data. State-of-the-art 
studies linearly discretize the user’s spatiotemporal information and then use recurrent neural network (RNN) based models for 
modeling. However, these studies ignore the nonlinear effects of spatiotemporal information on user preferences and spatiotemporal 
correlations between user trajectories and candidate POIs. To address these limitations, a spatiotemporal trajectory (STT) model 
is proposed in this paper. We use the long short-term memory (LSTM) model with an attention mechanism as the basic framework 
and introduce the user’s spatiotemporal information into the model in encoding. In the process of encoding information, an 
exponential decay factor is applied to reflect the nonlinear drift of user interest over time and distance. In addition, we design a 
spatiotemporal matching module in the process of recalling the target to select the most relevant POI by measuring the relevance 
between the user’s current trajectory and the candidate set. We evaluate the performance of our STT model with four real-world 
datasets. Experimental results show that our model outperforms existing state-of-the-art methods.
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1  Introduction

With the popularity of information technology 
and mobile Internet, location-based social networks 
(LBSNs) have developed rapidly, leading to the atten‐
tion of some services based on them, such as Brightkite, 
GyPSii, and Foursquare. A great amount of check-in 
data, such as time, location, and coordinates, is gener‐
ated in the process of users using these services, which 
lays the foundation for exploring users’ travel patterns 
and recommending the best point-of-interest (POI) for 
users. POI recommendation creates value for both users 
and enterprises. It can not only help users discover 
interesting locations and services in the city but also 

help enterprises in LBSNs advertise for users. There‐
fore, the potential value of POI recommendation has 
attracted extensive attention from the academic world.

However, unlike other types of recommendation 
systems (music, movies, etc.), the next POI recommen‐
dation process is faced with highly correlated user 
behavior data, and user preferences are more sensi‐
tive to spatiotemporal information (Gao et al., 2013; 
Yuan et al., 2013; Feng SS et al., 2015; Xu S et al., 
2020). To capture the sequentiality of user travel tra‐
jectories, some studies have improved the recommen‐
dation effect by integrating the sequential information 
of user trajectories. For example, factorized personalized 
Markov chain (FPMC) (Rendle et al., 2010) model 
obtained the sequential influence between consecutive 
check-in’s of users by combining matrix factorization 
and the Markov chain (MC). However, when consid‐
ering the correlation of users’ long-term sequential 

Frontiers of Information Technology & Electronic Engineering 

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com 

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
 ORCID: Xi SUN, https://orcid.org/0000-0002-6339-5498; Zhimin 

LV, https://orcid.org/0000-0002-7313-5796
© Zhejiang University Press 2023

1273



Sun and Lv / Front Inform Technol Electron Eng   2023 24(9):1273-1286

behavior, the Markov model performs poorly. Later, 
some recurrent neural network (RNN) based models 
and the memory mechanism were proposed to alleviate 
this problem, enabling the model to take into account 
both the long- and short-term interest evolutions of 
users (Liu Q et al., 2016b; Feng J et al., 2018; Ying 
et al., 2018). User travel trajectories are not only regular 
in sequence but also including some obscure periodic 
rules that can be further reflected by spatiotemporal 
information (Qian et al., 2019). Some studies have 
changed the structure of the sequence model to com‐
prehensively consider spatiotemporal information, im‐
proving the accuracy to a certain extent (Yang DQ 
et al., 2015). For the sparsity of spatiotemporal infor‐
mation, some studies (Lian et al., 2020; Yang DQ et al., 
2020; Zhao KZ et al., 2020) linearly discretized the infor‐
mation into several intervals and achieved good results.

The above studies indicate that there are still some 
key problems to be solved in the analysis of user 
travel patterns.

1. Temporal and spatial distance information has 
not been learned effectively in many studies due to 
the nonlinear effects on user preferences. From a 
temporal perspective, user’s travel trajectory is periodic 
in the short term, as shown in Fig. 1. Most users leave 
their residence every morning, work or relax in a spe‐
cific area during the day, eat nearby in the afternoon, 

and go home at night. User travel patterns also exhibit 
long-term periodicity, with variations in activity region, 
travel purpose, and duration between weekends and 
weekdays. Moreover, the decay of user interest over 
time is usually also a nonlinear process. From a spa‐
tial perspective, as shown in Fig. 2, user’s check-in’s 
are generally concentrated around one or more central 
locations, and the density decreases rapidly with increas‐
ing distance from the central location, indicating that 
user’s check-in preference is nonlinearly affected by 
geographical distance.

2. Previous models ignore the spatiotemporal cor‐
relation between user’s check-in trajectories and the 
candidate location sets. However, a user’s current pref‐
erence is not only related to his/her historical behavior 
but also limited by time and region. That is, users are 
more inclined to visit places that are closer to them, 
and the later the check-in time, the more likely they 
are to go to a closer location.

Therefore, this study proposes the spatiotempo‐
ral trajectory (STT) model to recommend the next POI 
for users. The STT model consists of three parts: the 
interest extractor layer generates the representation of 
user features, the interest evolution layer is used to 
learn user travel patterns, and the spatiotemporal match‐
ing (STM) layer matches the best POI for users. In 
summary, this paper contributes as follows:

Fig. 1  Spatiotemporal trajectory example showing user check-in rules
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1. We propose the STT model, an improved form 
of the long short-term memory (LSTM) model with 
an attention mechanism (AM), to fully consider the 
spatiotemporal information of user’s historical trajec‐
tories for aggregating relevant locations. In this model, 
we devise a new encoding method that helps the se‐
quence model learn the STT characteristics of users.

2. We introduce an information decay factor, 
which can be used as a weight in the process of spatio‐
temporal encoding. The decay factor can attenuate the 
information that is less relevant to the current spatio‐
temporal situation of the user, allowing the model to 
focus on more valuable information in a nonlinear 
fashion.

3. We design an STM architecture for the spatio‐
temporal correlation of user historical trajectories with 
all candidate locations. This architecture matches the 
latent feature of the user STT with all the spatial repre‐
sentations of the candidate sets, and thus, it can find 
the most suitable POIs.

4. We conduct experiments on three real datasets 
to demonstrate the superiority of our proposed STT 
model. The results show that the proposed STT is 
10.79% more accurate than state-of-the-art models 
on average.

2  Related works

In this section, we introduce some research on 
traditional POI recommendation and POI recommen‐

dation with spatiotemporal information. The next POI 
recommendation is essentially a specific sequential 
recommendation task.

2.1  POI recommendation

Traditional POI recommendations mostly use col‐
laborative filtering (CF) methods (Jiang et al., 2015; 
Yang C et al., 2017), among which matrix factorization 
is the most common application (Salakhutdinov and 
Mnih, 2007; Abdollahi and Nasraoui, 2016; He et al., 
2017; Xu CH et al., 2021). The matrix factorization 
method decomposes the “user–location” relationship 
matrix into two submatrices to represent the latent fea‐
tures of users and locations. However, the matrix fac‐
torization method does not consider the continuity of 
user behavior and thus is not suitable for modeling 
sequence information.

The next POI recommendation is an emerging 
recommendation mode, which is more challenging than 
traditional modes due to its sensitivity to sequence in‐
formation. The methods for the next POI recommen‐
dation are mainly divided into two categories: MC-based 
methods and RNN-based methods. MC-based meth‐
ods aim to predict the user’s next POI based on the 
past sequence of user behaviors. Due to the sparsity 
of the location check-in dataset, it is difficult for tradi‐
tional MC-based methods to learn the transition of 
intermittent check-in actions. To address this prob‐
lem, FPMC (Rendle et al., 2010) model was proposed 
to combine matrix factorization techniques with MCs 
to model user preferences and sequence information. 

Fig. 2  Heatmap of the geographic distribution of check-in’s by two real users
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Based on the FPMC model, Lian et al. (2013) pre‐
dicted the next check-in location according to the 
user’s long- and short-term tendencies. Generally, 
MC-based model is used to explore the transition proba‐
bility between consecutive actions. Recently, since 
neural network techniques have achieved promising 
results in many fields, such as language modeling 
(Mikolov et al., 2011) and machine vision (Ren et al., 
2022), RNN-based models have been considered to be 
the most effective method for learning nonlinear rela‐
tionships between users and locations, and they are 
more extensible than MC-based models. Liu Q et al. 
(2016b) proposed a spatiotemporal recurrent neural 
network (ST-RNN) method, which extends the RNN 
structure to capture more detailed sequence informa‐
tion. DeepMove (Feng J et al., 2018) uses an improved 
gate recurrent unit (GRU) network to capture mixed 
embeddings of multiple check-in information and de‐
signs a historical attention module to enhance the 
model’s perception of check-in sequence regularities. 
However, the success of RNN-based models in the field 
of natural language processing is because the recog‐
nition of text sequences generally does not need to 
consider temporal information, meaning that the dis‐
tance between each time step of RNN is equal by 
default. Therefore, RNN-based models do not corre‐
spond to human behavior patterns that are highly cor‐
related with spatiotemporal information, which makes 
RNN not perfect.

2.2  POI recommendation with spatiotemporal 
information

Spatial information is a key factor affecting users’ 
behavior, which limits users’ travel scope. Zeng et al. 
(2021) introduced a region factor into the CF algo‐
rithm to help the model find the most likely prefer‐
ences in the user’s vicinity. Liu Q et al. (2016a) added 
distance constraints on the basis of FPMC to 
achieve desirable results. Yin et al. (2017) pro‐
posed the spatial smoothing method to fully consider 
collective travel interests and individual travel inter‐
ests, which alleviates the problem of user check-in 
sparsity to a certain extent. Si et al. (2019), Zhao GS 
et al. (2020), and Wu et al. (2022) focused on the per‐
sonalized feature extraction of location attributes to 
analyze the specific trajectory of each user. Some 
studies consider the transfer spatial features between 

two POIs that users check consecutively. Cui et al. 
(2019) proposed the Distance2Pre model, which uses 
the GRU model for the first time to integrate the user’s 
preferences of different geographic distances to pre‐
dict the next POI, and proposed two structural models 
that integrate the user’s distance preference scores in 
linear and nonlinear ways. Long- and short-term prefer‐
ence modeling (LSTPM) (Sun et al., 2020) designs a 
geo-dilated RNN model to focus on users’ recent travel 
interests, but it completely ignores users’ long-term 
travel interests. Attentional recurrent neural network 
(ARNN) (Guo et al., 2020) uses the knowledge graph 
method to mine user associations based on geographic 
locations and uses association information as prior 
knowledge of RNN input to help the model converge 
better. Some studies address the sparsity problem of 
spatiotemporal information by discretely dividing the 
spatial areas into hierarchical grids (Lian et al., 2020; 
Yang DQ et al., 2020; Zhao KZ et al., 2020). However, 
they ignore the explicit modeling of geographic dis‐
tances because linear spatial partitioning does not cap‐
ture actual metric information well.

Temporal information is of great significance for 
mining user travel patterns due to the periodicity (Zhao 
SL et al., 2016), consecutiveness (Ye et al., 2010; Liu 
Q et al., 2016b), and interest drift (Wang et al., 2003; 
Fan, 2004) of user behavior. Yuan et al. (2013) pro‐
posed an improved CF model for POI recommenda‐
tion, which is the first POI recommendation research 
considering the time factor. Yuan et al. (2014) then 
proposed the geographical-temporal influences aware 
graph (GTAG) model to integrate check-in contextual 
information such as location and time to obtain more 
accurate recommendation results. Liu YC et al. (2016) 
proposed a Where and When to gO (WWO) recom‐
mendation system that uses time interval in users’ tra‐
jectories when modeling user behavior. Some deep 
learning based models have been proposed to capture 
temporal information in user check-in records. Zhao 
WX et al. (2018) proposed a TA-TEM model based 
on distributed representation learning to integrate 
multiple types of temporal information into the model 
using a unified approach. STRNN (Zhang et al., 2019) 
improves the RNN model by transferring temporal 
information between each time step of the RNN in the 
form of time-specific transition matrices. STGN (Zhao 
PP et al., 2022) further enhances the LSTM structure 

1276



Sun and Lv / Front Inform Technol Electron Eng   2023 24(9):1273-1286

by adding spatiotemporal gates to make better use of 
temporal information. Inspired by the sequence model 
SASRec (Kang and McAuley, 2018), TiSASRec and 
STAN convert timestamps into time intervals and apply 
the self-attention mechanism to further consider the 
temporal regularity of user check-in trajectories (Li 
et al., 2020; Luo et al., 2021).

However, the studies mentioned above do not 
consider the nonlinear attenuation of the effect of 
spatiotemporal information on user behavior. In addi‐
tion, they ignore the spatiotemporal correlation between 
user historical trajectories and candidate sets.

3  Preliminaries

We first introduce the problem statement and 
definitions in this paper. We define U ={u1, u2, … , uU}, 
V ={v1, v2, …, vV}, and T ={t1, t2, …, tT} as the sets of 
U users, V POIs, and T timestamps, respectively. Each 
user ui has a spatiotemporal check-in sequence of 
POIs represented as Tr(ui)={l1, l2, …, lmi}, where mi is 
the total check-in number of user ui. For each user 
check-in, we define it as (ui, vk, tk), which is a tuple 
containing three elements ui, vk, and tk representing 
the ith user, the kth location of ui, and the kth timestamp 
of ui. Then, we model temporal intervals and geo‐
graphical distances as the spatiotemporal correlation 
between two consecutive check-in’s of the user. Let 
the temporal interval sequence of user ui be ∆Ti={∆t1, ∆t2, …, ∆tmi − 1} and the spatial interval sequence of 

user ui be ∆Si={∆s1, ∆s2, …, ∆smi − 1}. The spatial inter‐

val of two locations can be calculated by the great 
circle distance method (Chen et al., 2012), which mea‐
sures the shortest route between two locations on  
Earth’s sphere. Consequently, the coordinates of lk 
are represented as (latk , lonk), and the spatial interval 
between lk and lk + 1 is calculated as

∆sk = 2R ⋅ arcsin (sin2( latk + 1 − latk

2 )              
+cos ( latk + 1 ) cos ( latk ) sin2( lonk + 1 − lonk

2 ) ) . (1)

In addition to the basic information of user his‐
torical POI visits, we consider explicit relevance be‐
tween the user trajectory sequence and the candidate 

locations in this paper. We denote a spatial distance 
matrix, which measures the spatial interval between 
each candidate POI p∈ [1, V] and each POI of the user 

trajectory q∈ [1, m] as Mp,q. The spatial interval matrix 

is represented as

M =

é

ë

ê

ê

ê
êê
ê
ê

ê ù

û

ú

ú

ú
úú
ú
ú

ú
M1,1 M1,2 ⋯ M1,m

M2,1 M2,2 ⋯ M2,m⋮ ⋮ ⋮
MV,1 MV,2 ⋯ MV,m

. (2)

Given the user trajectory {l1, l2, ⋯, lm}, the can‐
didate locations {v1, v2, ⋯, vV}, and the spatial inter‐
val matrix M, the goal of the next POI recommenda‐
tion is to predict the most likely upcoming location 
v∈lm + 1 for the user.

4  Framework overview

In this section, we detail the techniques and specific 
processes in the model, consisting of (1) the interest 
extractor layer that extracts the representation of user’s 
STT, (2) the interest evolution layer that learns sequen‐
tial preference by LSTM and AM, and (3) the STM 
layer that measures the correlation between user’s STTs 
and candidate sets and then calculates the softmax 
probability of user preference for candidate POIs. The 
technical modules and specific processes of the STT 
framework are shown in Fig. 3.

4.1  Interest extractor layer

4.1.1  Trajectory embedding

Trajectory features count a great deal in the POI 
recommendation task, consisting of two sparse features 
and a continuous feature. We use the common embed‐
ding technique (Cheng et al., 2016) to transform the 
large-scale sparse features into low-dimensional dense 
vectors to reduce computation and improve represen‐
tation. For sparse features, we denote the embedded 
representations of users and locations as eu∈Rd and 
ev∈Rd, respectively. For continuous features, we first 
divide continuous timestamps into T discrete intervals 
in hours and then denote their embedded representa‐
tions as et ∈Rd. Thus, the input dimensions of the embed‐
dings eu, ev, and et are U, V, and T, respectively. The 
embedding of each user check-in l is represented as 
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el=eu+ev+et ∈Rd. Consequently, for embedding the 
sequence of user historical POI visits, we denote it as 
Eu={e l1

, e l2
, ⋯, e lm

}.

4.1.2  Spatiotemporal interval encoding

Spatiotemporal factors play an important role in 
the evolution of people’s travel preferences. To enhance 
the model’s perception of spatiotemporal information, 
we introduce a spatiotemporal interval encoding method 
that uses the trigonometric function (Gehring et al., 
2017) to integrate temporal interval and geographic 
distance into the model in the form of dense vectors. 
Compared with traditional embedding methods, our 
proposed encoding method is more interpretable and 
can make the spatiotemporal features easier to learn by 
the sequence model.

First, to facilitate the subsequent calculation of 
matrices for continuous temporal and spatial intervals, 
we partition the temporal intervals ∆Ti and spatial 
intervals ∆Si into discrete bins. In the partitioning pro‐
cess, we introduce an information decay factor to 
reflect nonlinear information attenuation. The decay fac‐
tor uses an exponential function inspired by the Ebb‐
inghaus forgetting curve, which can reflect the decay 
rate of things with concept drift (Aggarwal et al., 2004) 

features such as human memory. The formula of the 
temporal decay factor (TDF) is as follows:

f (∆t ) = e
− ∆t

T0 . (3)

According to the above formula, TDF f(∆t) is posi‐
tively related to the temporal interval ∆t, and f(∆t)∈(0,1). 
T0 determines the rate at which user interest drifts over 
time, and it needs to be adjusted for the specific situa‐
tion. Therefore, temporal intervals can be properly 
partitioned into discrete temporal bins. The formula 
is as follows:

posT
u,q = é ùP T

num (1 − f (∆tu,q ) ) , (4)

where posT
u,q is the temporal bin index of temporal 

interval ∆tq for user u, P T
num indicates the upper limit of 

the temporal bin index, and it can be manually adjusted 
according to accuracy needs and time budget. The 
mathematical symbol é ù represents the ceiling opera‐

tion, which rounds a number up to the nearest integer. 
Accordingly, a high index of the temporal bin repre‐
sents a long temporal interval between user POI vis‐
its. Similarly, we can obtain the discrete spatial bins 
and the spatial decay factor (SDF) as follows:

Fig. 3  Spatiotemporal trajectory (STT) model (References to color refer to the online version of this figure)
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f (∆s) = e
− ∆s

S0 , (5)

posS
u,q = é ùP S

num (1 − f (∆su,q ) ) . (6)

Then, we calculate the high-dimensional repre‐
sentation of spatiotemporal intervals according to the 
bin index. Gehring et al. (2017) introduced several 
encoding methods for converting discrete values into 
dense vectors, in which we chose the position encoding 
of trigonometric functions. Thus, the spatiotemporal 
interval information of the user trajectory can be con‐
catenated to represent itself in the sequence model. 
For temporal interval encoding (TIE), the formulae 
are as follows:

TIE
( posT

u,q, 2i )
= sin ( )posT

u,q 1000
2i
dT , (7)

TIE
( posT

u,q, 2i + 1)
= cos ( )posT

u,q 1000
2i
dT . (8)

Similarly, we can obtain the spatial interval encod‐
ing (SIE) formulae:

SIE
( posS

u,q, 2i )
= sin ( )posS

u,q 1000
2i
dS , (9)

SIE
( posS

u,q, 2i + 1)
= cos ( )posS

u,q 1000
2i
dS , (10)

where d represents the dimension of the encoded vec‐
tor and i represents the dimension of the encoded 
vector. It can be seen from the calculation process 
that the odd-numbered dimension value and the even-
numbered dimension value of the encoded vector are 
calculated by the cosine function and the sine func‐
tion, respectively. Therefore, TIE

( posT
u,q, 2i )

 and SIE
( posS

u,q, 2i )
 

can be obtained by their linear dependencies with 
TIE

( posT
u,q, 2i + 1)

 and SIE
( posS

u,q, 2i + 1)
 according to the char‐

acteristics of trigonometric functions.
Finally, we obtain the TIE sequence TRT={TIE1, 

TIE2, … , TIEm} and the SIE sequence TRS={SIE1, 
SIE2, …, SIEm}, whose first items are both zero vec‐
tors. Therefore, the representation set of the user 
check-in sequence X={x1, x2, …, xm} can be obtained 
by concatenating the corresponding items in Eu, 
TRT, and TRS. Moreover, we use the same method 
to convert the spatial interval matrix M to the SIE ten‐
sor EM as follows:

EM =

é

ë

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú

úeM1,1
eM1,2

⋯ eM1,m

eM2,1
eM2,2

⋯ eM2,m

⋮ ⋮ ⋮
eMV,1

eMV,2
⋯ eMV,m

. (11)

4.2  Interest evolution layer

In the interest evolution layer, we extend AM to 
the LSTM model in our approach as our basic 
framework, which not only has excellent time-series 
data mining capabilities, but also facilitates additional 
extensions based on prior knowledge of the recom‐
mendation task.

4.2.1  LSTM

In the POI recommendation system, the user 
check-in behavior is the carrier of latent interest, and 
the user’s interest will change after he/she visits sev‐
eral POIs. In the interest evolution layer, we extract a 
series of interest states from the sequential user visit‐
ing trajectory. For the balance between efficiency and 
performance, we take LSTM to model the depen‐
dency between check-in’s, where the input of the LSTM 
is the latent representation of user check-in’s sorted by 
occurrence time. LSTM (Hochreiter and Schmidhuber, 
1997) overcomes the vanishing gradient problem of 
RNN and has achieved good results in time-series related 
studies. The update equations of LSTM are as follows:

i t = σ (Wi[h t − 1, x t ] + bi) , (12)

f t = σ (Wf[h t − 1, x t ] + bf ) , (13)

c͂ t = tanh (Wc[h t − 1, x t ] + bc ) , (14)

c t = f t⊙c t − 1 + i t⊙c͂ t ), (15)

o t = σ (Wo[h t − 1, x t ] + bo ) , (16)

h t = o t⊙tanh (c t ), (17)

where “⊙” is the elementwise product, σ is the sig‐
moid activation function, i t, f t, and o t are the input, 

forget, and output gates of the tth time step, aiming to 
constrain the information to store, forget, and output, 
respectively, x t is the tth input feature vector of LSTM, 
and represents the tth POI that the user checks in, h t 
is the tth hidden state, Wi, Wf, Wo, and Wc are the weight 
matrices for the input, forget, output, and candidate 
memory cells, respectively, and c t is the activated 
vector representing the cell state, which plays an 
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important role in information transfer between each 
time step in the LSTM.

4.2.2  Attention mechanism

However, due to the diversity of the user visiting 
patterns and the integrated spatiotemporal informa‐
tion, the last hidden state hm, which captures only the 
dependency between behaviors, cannot represent inter‐
est effectively in the long term. Therefore, we use 
AM to filter critical check-in information in the user’s 
long-term travel trajectories. The contribution of each 
check-in behavior is estimated as a normalized weight, 
which can be formulated as

α t =
exp ( h tWα )∑j

m exp ( h jWα )
. (18)

Then, the final representation vector of the tth 
check-in is calculated as follows:

g t = α th t, (19)

where α t is the attention score of the tth check-in of 
the user, and Wα∈RNH×1 is the transition matrix for the 
attention layer, where NH represents the dimension of 
the hidden state.

4.3  Spatiotemporal matching layer

The interest evolution layer above, similar to most 
other methods in the field of POI recommendation, 
focuses on mining users’ historical behavior patterns 
but ignores the features of candidate sets to a certain 
extent. Here, we propose the spatiotemporal match‐
ing layer to recall candidates with the highest proba‐
bility from V candidate POIs by measuring the spatio‐
temporal correlation between user trajectories and can‐
didate sets. Given the encoded temporal intervals TRT, 
the encoded spatial intervals TRS and the latent trajec‐
tory features G={g1, g2, ⋯, gm}, we obtain the user’s 
STT representation STEu = [est1

, est2
, …, estm

] by concat‐

enating them. Given the embedded candidate location 
matrix Ev=[ev1

, ev2
, …, evV

]∈RV×d and the encoded spatial 

interval tensor EM∈RV×m×ds, we obtain the encoding of 
the candidate spatial relation matrix EMS∈RV × m ×(ds + d ) 
by m repeated concatenating operations. Therefore, the 
spatiotemporal features of each user’s trajectory and 
the spatial distance information of each candidate loca‐
tion are well represented by STEu and EMS, respectively, 

which is important for discovering their spatiotemporal 
correlations. In this layer, we calculate the probability 
of each candidate POI being the next real check-in 
for user u as follows:

O (u) = softmax (WS Matching (EMS, STEu ) ) ,  (20)

with
Matching(A∈Ro×p×q, B∈Rp×q)

= [ A :,1,: B1,:, A :,2,: B2,:,⋯, A :,p,: Bp,: ]
T. (21)

Here, parameter matrix WS ∈Rm converts the dimen‐
sion of O (u) to RV. The key step to obtain the correla‐
tion between candidate sets and user trajectories is 
Matching, in which the updated check-in embeddings 
all contribute to the matching of each candidate POI.

5  Experiments

We use real datasets to experimentally demonstrate 
the effectiveness of the STT model for the next POI rec‐
ommendation in this section. First, we detail the data‑
sets, baseline methods, evaluation metrics, and settings 
for model training and testing. Next, we present our 
empirical results for a quantitative fair comparison 
with those of baseline models. Finally, we experimen‐
tally verify the effectiveness of different techniques in 
the model.

5.1  Datasets

We use real user check-in datasets from four 
regions of New York City (NYC), Tokyo City (TKY), 
Singapore (SIN), and Gowalla for model training and 
testing. Table 1 presents the basic statistics in each data‐
set. For the datasets, we first extract the check-in records 
in units of users. Each user’s check-in includes user 
ID, venue ID, latitude, longitude, and timestamp. Next, 
we filter out users with more than five records and 
locations visited more than five times. Then, we slice 

Table 1  Dataset statistics

Category

Users

POIs

Check-in’s

Number

NYC

1064

5136

147 939

TKY

2245

7872

447 571

SIN

2032

3662

179 721

Gowalla

53 008

121 944

3 302 414

NYC: New York City; TKY: Tokyo City; SIN: Singapore
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the trajectory of each user with a fixed-length win‐
dow. For each user that has m check-in’s, we divide a 
dataset into m−3 training sets, with the first m'∈[1, m−3] 
check-in’s as input and the (m' +1)th check-in as the 
label; we use the (m−1)th check-in as the validation label 
to tune parameters; the test label uses the last check-in 
of the trajectory to evaluate the performance of the 
proposed model.

5.2  Baseline models

We briefly introduce the following state-of-the-art 
methods for the next POI recommendation, which will 
be compared with our proposed model.

ST-RNN (Liu Q et al., 2016b) is a variant RNN 
model that incorporates spatiotemporal information 
by introducing a single transition matrix during the 
time step transition.

DeepMove (Feng J et al., 2018) is a novel approach 
that designs a historical attention module to assist the 
model in representing latent features of user behavior.

STGN (Zhao PP et al., 2022) innovates the gating 
mechanism of LSTM to facilitate the use of spatio‐
temporal information.

ARNN (Yin et al., 2017) is a state-of-the-art model 
that explores heterogeneous neighbors based on meta-
path random walks, and the model uses RNN with 
an AM for features in heterogeneous neighbors.

LSTPM (Sun et al., 2020) uses an improved GRU 
network with a historical attention module to enhance 
the model’s ability to represent latent features of user 
behavior.

TiSASRec (Li et al., 2020) is a state-of-the-art 
self-attention-based method considering time interval, 
and can simultaneously model the absolute position of 
items in the sequence and time interval between items.

GeoSAN (Lian et al., 2020) is a state-of-the-art 
method that uses a novel loss function optimization 
method based on importance sampling to address spar‐
sity by emphasizing the use of negative samples.

STAN (Luo et al., 2021) is a novel model that 
uses a self-attention mechanism to consider the inter‐
action between nonadjacent POIs and nonconsecutive 
check-in’s.

5.3  Evaluation matrices

To compare our model with baseline models and 
adjust parameters, we adopt the top-K recall rates that 

are commonly applied in previous works (Kingma and 
Ba, 2014; Liu Q et al., 2016b). Recall@K counts the 

rate of true positive samples in all positive samples, 
which in our case measures the presence of the correct 
POI among the top-K recommended POIs. It is calcu‐
lated as follows:

Recall@K= 
tpu

tpu + tnu

, (22)

where tpu represents the total number of POIs in both 

the future check-in trajectory of user u and the top-K 
results produced by our proposed model, and tnu rep‐
resents the number of POIs in the future check-in tra‐
jectory of the user but not in the top-K results.

5.4  Experimental setting

Here we detail the setting of the training param‐
eters. We use the balanced sampler in our model to 
reduce computing resources and follow STAN recom‐
mendation to set the embedding dimension for user, 
location, and time to 50 (Luo et al., 2021); the opti‐
mizer is the Adam optimizer with default betas (Kingma 
and Ba, 2014); the learning rate is set to 0.0003; the 
maximum of the bin index P T

num and P S
num is set to 100 

and 50, respectively; the training epoch is 50 and the 
fixed length for user’s check-in sequence is 100. To 
obtain a more reasonable experiment, we fine-tune 
some key parameters and test the stability against the 
number of negative samples using the validation set 
in Section 5.7.

5.5  Recommendation performance

We adopt Recall@5 and Recall@10 to evaluate 

the performance of the models. Table 2 shows the 
results of all baseline models on four datasets. To ensure 
the fairness of the experiment, we take the mean recall 
of 100 experimental results.

Our STT model outperforms all baselines on 
all datasets and gains 11.45% Recall@5 and 10.27% 
Recall@10 improvements on average against the stron‐
gest baseline STAN. Among the baseline models, 
self-attention-based models such as GeoSAN and STAN 
significantly outperform RNN variants. This is not 
surprising, as RNN-based models suffer from vanish‐
ing gradients, which toss long-term patterns. Note that 
we use an AM to help STT overcome gradient descent 
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so that STT can effectively capture the sequential regu‐
larity of spatiotemporal trajectories while considering 
the long-term pattern. Moreover, reasonable use of 
spatiotemporal information through the decay factor 
and full consideration of candidate sets make our model 
better than the other methods.

5.6  Ablation study

Since there are many components in our proposed 
architecture, we validate the contributions of different 
components through an ablation study. We briefly 
describe the role of each component of the model as 
follows:

TDF determines whether the information decays 
with time;

SDF determines whether the information decays 
with geographic distance;

TIE characterizes the temporal intervals as high-
dimensional vectors in the model;

SIE characterizes the spatial intervals as high-
dimensional vectors in the model;

AM helps STT capture the long-term behav‐
ioral characteristics of users through spatiotemporal 
information;

STM enables the model to consider the spatio‐
temporal relationship between user trajectories and can‐
didate sets when recommending to users.

We remove the modules mentioned above in turn 
and obtain some variants. The performance of variant 
STT models on all four datasets is shown in Table 3. We 
find that in the process of POI recommendation, spatial 
distances and temporal intervals have a strong role in 
promoting the sequence model, and they both improve 
the accuracy by nearly 2%. The introduction of TDF and 
SDF can help the model use the spatiotemporal infor‐
mation more reasonably and further improve the accu‐
racy of the model by almost 1%‒3%. AM is necessary 
for sequence models, especially in learning long-term 

Table 2  Evaluation of baseline models in terms of Recall@5 and Recall@10 on four datasets

Model

STRNN

DeepMove

STGN

ARNN

LSTPM

TiSASRec

GeoSAN

STAN

STT

Improvement*

Recall@5

NYC

23.65%

32.68%

24.39%

19.70%

27.91%

36.64%

40.06%

46.69%

62.42%

33.69%

TKY

18.36%

26.84%

19.40%

18.52%

25.68%

30.31%

29.57%

34.61%

37.28%

7.71%

SIN

17.91%

23.89%

22.92%

18.17%

25.79%

29.63%

33.97%

37.51%

37.83%

0.85%

Gowalla

16.64%

19.59%

15.28%

18.10%

20.15%

24.11%

27.64%

30.16%

31.23%

3.55%

Recall@10

NYC

28.02%

40.14%

30.15%

34.83%

35.64%

50.20%

52.67%

59.62%

72.88%

22.24%

TKY

27.91%

35.09%

27.10%

26.96%

33.10%

36.93%

37.40%

42.64%

46.41%

8.84%

SIN

20.16%

31.55%

27.27%

25.38%

33.27%

37.53%

39.43%

43.01%

45.42%

5.60%

Gowalla

25.67%

26.99%

24.22%

27.45%

27.01%

35.46%

36.45%

39.98%

41.74%

4.40%

NYC: New York City; TKY: Tokyo City; SIN: Singapore. * Recall@5 and Recall@10 of our STT model compared with those of STAN

Table 3  Ablation analysis (Recall@5 and Recall@10) on four datasets

Variant

Default

Remove TDF

Remove SDF

Remove TIE

Remove SIE

Remove AM

Remove STM

Recall@5

NYC

62.42%

62.01%

61.10%

59.78%

57.91%

54.69%

34.76%

TKY

37.28%

36.92%

33.27%

32.62%

30.98%

30.25%

13.43%

SIN

37.83%

37.72%

35.97%

35.18%

34.81%

31.55%

20.37%

Gowalla

31.23%

30.25%

30.19%

29.88%

27.94%

21.33%

15.44%

Recall@10

NYC

72.88%

71.24%

71.09%

69.67%

69.64%

63.33%

41.71%

TKY

46.41%

45.83%

45.10%

44.56%

43.34%

39.37%

17.92%

SIN

45.42%

44.26%

43.72%

43.46%

42.34%

39.38%

29.45%

Gowalla

41.74%

41.32%

41.20%

40.46%

38.05%

35.47%

26.56%

NYC: New York City; TKY: Tokyo City; SIN: Singapore
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patterns of user preferences, and it improves the recall 
rates by almost 1%‒6%. STM contributes the most to 
the model by helping the model use the relevant informa‐
tion of the candidate set, which brings approximately 
10%‒20% accuracy improvement to our model.

5.7  Stability analysis

1. The dimension of the hidden state h. To inves‐
tigate the impact of dimensionality on STT, we illus‐
trate the Recall@10 performance of STT on all datasets 

with varying dimensionality in Fig. 4. It is obvious that 
the performance of our STT is sensitive to h on all data‐
sets. We find that the recall value of STT stays stable in a 
large range on all datasets after a sharp increase, and the 
most suitable parameters can be selected as h=50 in 
NYC, h=60 in TKY, h=90 in SIN, and h=80 in Gowalla.

2. T0 and S0, which determine the temporal decay 
rate and the spatial decay rate, respectively. Accord‐
ing to our knowledge of the decay function, we vary 
the value of T0 from 0.5×105 to 5×105 with step 50 000 
and the value of S0 from 20 to 200 with step 20 in the 
STT on all datasets. Fig. 5 shows that T0=1×105 is 
the best value for NYC, T0=3.5×105 is the best value 
for TKY, T0=3×105 is the best value for SIN, and T0=
2.5×105 is the best value for Gowalla. This indicates 
that the travel interests of people living in different 
regions change at different speeds over time. For the 
parameter S0, our best result is to take 100 in the NYC 
dataset, 20 in the TKY dataset, 80 in the SIN dataset, 
and 140 in the Gowalla dataset, which is obvious in 
Fig. 6. We find that in different cities, people’s travel 
interests are different in sensitivity to distance, which 

Fig. 6  Effect of S0 on Recall@10: (a) New York City; (b) Tokyo City; (c) Singapore; (d) Gowalla

Fig. 5  Effect of T0 on Recall@10: (a) New York City; (b) Tokyo City; (c) Singapore; (d) Gowalla

Fig. 4  Effect of embedding dimension h on Recall@10: (a) New York City; (b) Tokyo City; (c) Singapore; (d) Gowalla
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is due to the different distribution of locations in dif‐
ferent cities.

3. The number of negative samples r. We use the 
validation set to test the performance of the model when 
r is set to 1, 10, 20, 30, 40, and 50, and the results are 
shown in Fig. 7. Obviously, an appropriate amount 
of negative sample sampling can promote the conver‐
gence of the training process. Moreover, larger datasets 
seem to accept more negative samples, but more than 
a certain number will be counter-productive.

6  Conclusions

In this paper, we propose a novel next POI rec‐
ommendation method called STT that effectively con‐
siders the nonlinear spatiotemporal influence on user 
trajectories. Specifically, we design an encoding method 
to introduce temporal and spatial interval sequences 
into our model. During the encoding process, we intro‐
duce a decay factor to help the model focus on valu‐
able spatiotemporal information in a nonlinear way. In 
the process of recalling the target, we propose a new 
spatiotemporal matching method exploring the best 
candidate for users. Moreover, we use an attention 
mechanism to help the model mine long-term pat‐
terns of users based on their spatiotemporal trajecto‐
ries. We perform comprehensive parameter filtering, 
ablation study, and comparisons with baseline models 
in the experimental section. Experimental results demon‐
strate that our STT model improves the accuracy to 
a great extent compared with state-of-the-art models. 
In practice, our results can bring commercial value to 
websites and applications based on personalized POI 
recommendation services.

There are also some valuable directions for our 
method that deserve further study. First, in addition to 

spatiotemporal information, other current state infor‐
mation is important for user’s interest, such as user 
age, weather, and season. Hence, we plan to exploit 
other user and environment state information in POI 
recommendation. Second, user preferences in a specific 
state are usually greatly influenced by POI types. 
Therefore, proper use of category information in rec‐
ommendation is promising.
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