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Abstract: Recently, various algorithms have been developed for generating appealing music. However, the style
control in the generation process has been somewhat overlooked. Music style refers to the representative and unique
appearance presented by a musical work, and it is one of the most salient qualities of music. In this paper, we
propose an innovative music generation algorithm capable of creating a complete musical composition from scratch
based on a specified target style. A style-conditioned linear Transformer and a style-conditioned patch discriminator
are introduced in the model. The style-conditioned linear Transformer models musical instrument digital interface
(MIDI) event sequences and emphasizes the role of style information. Simultaneously, the style-conditioned patch
discriminator applies an adversarial learning mechanism with two innovative loss functions to enhance the modeling
of music sequences. Moreover, we establish a discriminative metric for the first time, enabling the evaluation of the
generated music’s consistency concerning music styles. Both objective and subjective evaluations of our experimental
results indicate that our method’s performance with regard to music production is better than the performances
encountered in the case of music production with the use of state-of-the-art methods in available public datasets.
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1 Introduction

As an artistic form that expresses ideas, emo-
tions, and thoughts, musical composition has always
been highly regarded. Music can express a rich va-
riety of content, including emotional and aesthetic
as well as cultural, historical, and religious aspects,
through some elements such as melody, rhythm, har-
mony, and lyrics. Music generation has been an at-
tractive topic for scientists for a long time. From
rule-based generation to deep learning based gener-
ation, great progress has been made in automatic
music generation.

Researchers are committed to studying two fun-
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damental attributes in deep learning based music
generation: structural awareness and interpretive
ability (Wang L et al., 2023). Concerned with learn-
ing long musical sequences, the study of structural
awareness aims to train the model to recognize the
varying degrees of repetition and variation between
notes (Huang CZA et al., 2019; Ren et al., 2020; Yu
et al., 2022; Zhang XY et al., 2022). The study of in-
terpretive ability aims to explore how the model can
be controlled (Luo et al., 2020), facilitating the style
transfer (Brunner et al., 2018) and style-conditioned
generation (Wang WP et al., 2022).

Music style is the representative and unique ap-
pearance presented by a musical work, and it is one
of the most salient qualities of music. Introducing
style information into music generation can not only
improve the quality and diversity of generated music
(Hung et al., 2021; Wang WP et al., 2022), but also
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provide users with more personalized and customized
music experiences. For example, the affective aspect
of music, which can be seen as a kind of music style,
has been studied in emotion-based music generation
(Sulun et al., 2022). To generate music with the de-
sired emotion, some researchers combined music the-
ory at music generation and adjusted music elements
generated by the model (Mou et al., 2023). Some re-
search extracts additional information like rhythms
and chords from music to enable style-based genera-
tion (Choi et al., 2020; Jiang et al., 2020; Huang YS
and Yang, 2020). With the introduction of additional
information, the quality of the generated music has
improved. However, the vague definition of style lim-
its the interpretive ability of such methods. By de-
signing additional modules, some studies introduce
style information in the model latent space (Mao
et al., 2018; Roberts et al., 2018; Lim et al., 2020)
to enhance the interpretive ability. However, since
these methods are mostly based on style transfer,
they can generate only short music rather than full
music from scratch. Recently, researchers have intro-
duced style information in data representation, thus
enabling the generation of full music from scratch
(Hung et al., 2021; Wang WP et al., 2022). In these
works, the addition of control tokens to the music
sequence results in an improvement in the quality
and diversity of the generated music. Nevertheless,
the style information is not used in the output layer
of the model, resulting in the generated music not
expressing obvious style characteristics. Therefore,
without combining research on interpretive ability
with structural awareness, the performance of exist-
ing models is limited.

In this paper, we focus on the combination of
interpretive ability and structural awareness of the
model, and further on conditioning with style-related
tokens and generating full music from scratch. A
style-conditioned linear Transformer is proposed to
embed music style information in the top layer of
the linear Transformer to adjust the output. Con-
sidering the structural awareness of the model, the
style-conditioned patch discriminator with two novel
losses is proposed to enhance the modeling of mu-
sic sequences through an adversarial learning mech-
anism under the guidance of style information. We
also design a specific objective metric to evaluate the
generation effect of the model with style control. Our
main contributions are as follows:

1. We propose a model for music genera-
tion under style control, namely style-conditioned
Transformer-GANs (SCTG). Style information is ef-
fectively used to enhance the interpretive ability of
the model and a style-conditioned patch discrimina-
tor is designed to consider structural awareness.

2. We design a style-conditioned linear Trans-
former in SCTG, which models musical instrument
digital interface (MIDI) event sequences and empha-
sizes the role of style information. It embeds style
information in the output module as a solution.

3. A style-conditioned patch discriminator is
proposed behind the linear Transformer in SCTG,
which introduces an adversarial learning mecha-
nism under style condition to enhance the struc-
tural awareness and interpretive ability. Two spe-
cific losses, the music style category loss Loss

Cls
(for

interpretive ability) and the music style information
adversarial loss Loss

Gan
(for structural awareness),

are variously designed in the discriminator.
In addition, we define a metric to evaluate the

stylistic similarity between the generated music and
the music in the original dataset. Unlike conven-
tional metrics that are calculated across the entire
dataset, our newly proposed metric emphasizes the
style consistency.

We perform experiments on two publicly avail-
able datasets and the experimental results demon-
strate that our model achieves the best results in
both objective and subjective evaluations.

2 Related works

2.1 Rule-based music generation

A rule-based music generation model is a non-
adaptive model that generates music based on the-
oretical knowledge. The performance of rule-based
generative models depends heavily on the creativ-
ity of the researcher, the depth of understanding
of musical concepts, and how the musical structure
is expressed according to the corresponding vari-
ables (Kaliakatsos-Papakostas et al., 2020; Wang L
et al., 2023). Supper (2001) proposed a syntactic
rule-based formula for generating musical rhythms
that focuses on the structure and redundancy of
the music and controls some global structure of the
rhythmic sequence of notes. Delgado et al. (2009)
used rules based on musical knowledge, introduced
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users’ emotional input, and proposed a bottom–up
approach to design a two-level structure for music
generation in a modular way. In addition, other re-
searchers designed music generation systems based
on similarity rule constraints (Leach and Fitch, 1995)
and rhythm rule constraints (Herremans and Chew,
2019).

Rule-based music generation models can effec-
tively restrict the exploration region; however, music
is organized by many levels of abstract structures
and rules. These models cannot effectively capture
deeper levels of knowledge. In addition, rule-based
music generation models limit the diversity of out-
puts to some extent. When the number of rules
increases, the ambiguity of the model increases.

2.2 Deep learning methods for music genera-
tion

With the development of deep learning, many
deep learning models are being gradually used in
music generation. Unlike rule-based music genera-
tion models, deep learning based music generation
models can learn the distribution and relevance of
samples from an arbitrary music corpus and generate
music that represents the music style of the corpus
by prediction (e.g., predicting the pitch of the next
note of a melody).

Generative adversarial nets (GANs) (Goodfel-
low et al., 2020) perform well in generating high-
quality images, and some researchers have used
them in music generation (Yang et al., 2017; Liu
and Yang, 2018; Trieu and Keller, 2018; Jham-
tani and Berg-Kirkpatrick, 2019). Among them,
MuseGAN (Dong et al., 2018) learns piano-roll for
multi-track music and proposes the construction of
connections between tracks to accomplish indepen-
dent generation within tracks, global generation be-
tween tracks, and composite generation. However,
this method is prone to produce over-fragmented
notes. BinaryMuseGAN (Dong and Yang, 2018)
introduces binary neurons as input to the genera-
tor, which makes the discriminator to learn decision
boundaries more easily to reduce over-fragmented
notes. Although GANs can learn polyphonic piano-
roll well, they are difficult to employ when it comes
to training and modeling musical score sequences.

Variational auto-encoder (VAE) is essentially
a compression algorithm for encoders and decoders
that has been able to analyze and generate informa-

tion. This model can be used in music generation
to analyze pitch distribution and rhythmic variation
information (Jiang and Wang, 2019; Lousseief and
Sturm, 2019; Rivero et al., 2020). MIDI-VAE (Brun-
ner et al., 2018) constructs pitch, intensity, and in-
strument sequences for musical compositions with
three pairs of encoder/decoder sharing a potential
space. MusicVAE (Roberts et al., 2018) uses hierar-
chical decoders to effectively improve the modeling of
long sequences and enhance the structure of the gen-
erated music. MIDI-Sandwich2 (Liang et al., 2019)
improves the refinement method of BinaryMuseGAN
(Dong and Yang, 2018) to transform the binary in-
put problem into a multi-label classification problem.
Using the Kullback–Leibler (KL) divergence, VAE-
based models can be forced to follow any probability
distribution, and thus they provide greater flexibility
in choosing the prior distribution of latent variables.
However, there are some difficulties involved in em-
ploying these models to model long sequences, and
they require splitting up the complete music.

Based on the attention mechanism, Transformer
(Vaswani et al., 2017) is good at modeling long se-
quences, widely used in the field of natural lan-
guage processing. In recent years, Transformer has
been widely used in music generation (Huang CZA
et al., 2019; Yu et al., 2022). Unlike GAN-based
music generation which treats music as piano-roll,
Transformer-based music generation is usually de-
signed to encode music as a MIDI event sequence first
(Huang YS and Yang, 2020; Hsiao et al., 2021), which
restricts music to a symbolic domain and enhances
the structure. Considering the structural awareness,
Transformer-based models can learn multiple levels
of features of MIDI event sequences well (Wu XC
et al., 2020; Shih et al., 2022), thus generating higher-
quality music clips. At the same time, some studies
have noticed that the training approach that relies
solely on the model to predict the next token can-
not guarantee the overall coordination of the gener-
ated music fragments. Therefore, to further empha-
size the structural awareness, some research proposes
the introduction of adversarial mechanisms into this
task (Muhamed et al., 2021; Zhang N, 2023). Such
methods are based on the Gumbel-Softmax tech-
nique (Jang et al., 2017) to accomplish the sampling
of the discrete output of the Transformer generator,
and employ the design of an inverse temperature pa-
rameter that decreases with training time to ensure
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the stability of the training (Nie et al., 2019).
However, these models do not consider music

style information and do not include the interpretive
ability as one of the focuses of their studies. We
emphasize the importance of music style information
and combine the study of structural awareness with
the interpretive ability.

2.3 Style-based music generation

Style information is important in music mod-
eling and automatic generation. In the study of
interpretive ability, some researchers consider emo-
tion as a type of style and use emotion information
to control the music generation process. There are
studies that constrain emotional classification in hid-
den layers (Ferreira and Whitehead, 2021) to enable
the generation of music with a specific emotion. In
Emopia (Hung et al., 2021), music emotion labels
are added in the header of MIDI event sequences to
distinguish variations in the symbol domain. Using
a linear layer, Sulun et al. (2022) concatenated music
emotion embedding with the original note sequence
to affect the model. At the same time, research shows
that labeling music style information through similar
methods effectively enhances the similarity between
the generated music and the music in the training
data (Wang WP et al., 2022). Although these works
proved that the introduction of style information can
help the model learn effectively, they did not con-
sider the structural awareness of the model. Thus,
we consider both interpretive ability and structural
awareness, effectively using the style information for
automatic music generation. We conduct our study
based on both emotion style and composer style, and
experimentally demonstrate the effectiveness of this
combination.

3 Method

Music style information plays a crucial role in
the model’s ability to learn specific styles. We intro-
duce our music generation model SCTG in this sec-
tion. We design the style-conditioned linear Trans-
former to embed style information in the output
module of the generation model. We also propose the
style-conditioned patch discriminator, which calcu-
lates the discriminant loss and distinguishes the style
of the generated music under the guidance of style la-
bels. Our style-conditioned linear Transformer and

style-conditioned patch discriminator both empha-
size the use of music style information, resulting in
the generated music that follows the data distribu-
tion in the note sequence and effectively expresses the
corresponding style. The overall architecture of our
SCTG model is shown in Fig. 1. As seen in Fig. 1, “to-
kens with labels” represents how we introduce style
information into MIDI events, and will be described
in Section 3.1. The style-conditioned generator is our
style-conditioned linear Transformer that generates
complete musical composition from scratch based on
a specified target style, and will be described in Sec-
tion 3.2. The “discrete MIDI scores” shows how we
discretize tokens related to MIDI scores. The style-
conditioned patch discriminator introduces adversar-
ial learning mechanisms to enhance the interpretive
ability and structural awareness of the model, and
will be described in Section 3.3. The [CLS] stands
for the special [CLS] token, like in BERT (Devlin
et al., 2019).

3.1 Data representation

To model symbolic music generation, we need a
data representation method for MIDI format. There
are many representation methods discussed in pre-
vious works (Waite et al., 2016; Wu SL and Yang,
2020; Liao et al., 2022). Since there has been no
standard thus far, we design an event-based data rep-
resentation method with inserted style information
(Fig. 2). The details of our representation vocabu-
lary are shown in Table 1. This design includes the
following key points:

1. Group musical information
Our token sequences contain the musical infor-

mation in MIDI scores (Oore et al., 2020) and con-
sider the idea of “token grouping” in CP (Hsiao et al.,
2021) to reduce the length of token sequences. Par-
ticularly, as shown in Fig. 2b, there are four score-
related tokens ([Bar], [Position], [Pitch], and [Dura-
tion]) containing information about musical compo-
sition, including beat advancement information, note
pitch change information, and note duration. The
relevant elements of descriptive information pertain-
ing to these tokens are shown in Table 1.

2. Introduce style information
Our token sequences contain not only the musi-

cal information but also the style information. Par-
ticularly, we have two special tokens ([Class] and
[CP]) in our representation, which are shown in
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Fig. 1 Overall architecture of our music generation model SCTG

Table 1 Information about tokens used in SCTG

Token type Description Vocabulary size Embedding size Used in discriminator or not

[Bar] Begin/Continue a bar 2+1 32 Yes
[Position] Position in a bar 16+1 128 Yes
[Pitch] MIDI note numbers 86+1 256 Yes

[Duration] Duration time 64+1 256 Yes
[CP/Class] CP or class 2 32 No

[Style] Emotion/Composer label 4+1/8+1 64 No

Duration 
    120

Position 
   2/16

Duration 
    120

Duration 
    120

Duration 
    120

Duration 
     60

Style PAD

PAD

PAD

PAD

PAD

PAD PAD

Class CP CP CP
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Fig. 2 Our method for introducing music style in-
formation into a MIDI event sequence: (a) original
MIDI events; (b) MIDI events with style informa-
tion. References to color refer to the online version
of this figure

purple in Fig. 2b. They represent the current com-
pound word that includes the music style informa-
tion or MIDI score information. According to the
method in compound word with style (CPS) (Wang
WP et al., 2022), we introduce music style informa-
tion in the header of each token sequence, as shown
in Fig. 2. We insert the style token [Style] in the
header and the rest tokens are set to [PAD], while
the style token is set to [PAD] in the later.

Therefore, our data representation has the abil-
ity to introduce style information as input to our
later generator and discriminator.

3.2 Style-conditioned linear Transformer

The interpretive ability of the model is a focus
of automatic music generation research. Our goal
is to develop a model that can accurately represent

the sequence information, while demonstrating inter-
pretive ability. We introduce the style-conditioned
linear Transformer to address the limitations of ear-
lier research on music style-conditioned generation.
Based on the linear Transformer (Katharopoulos
et al., 2020), we embed style information in the out-
put module as a solution. Unlike previous models
that put only special tokens in the sequence, we em-
bed style information directly into the hidden space
of the model. Concatenated with output features of
the model, the style information feature can modu-
late the output of the whole sequence. The structure
of our model is shown in Fig. 3. The input sequence
is our MIDI events with style information, described
in Section 3.1. The tokens on the output module
represent the output events at current moment t.

1. Input data representation
As input to the Transformers, tokens in a se-

quence are represented by an embedding vector xt ∈
R

d, and then a positional embedding vector is added
(Ke et al., 2021). We combine the embedding vectors
et of the compound word sequence wt, then obtain
the input vectors xt by a projection matrix Win, and
finally add the positional embedding vector to obtain
the input of the sequence. The details are given in
the following:
⎧
⎨

⎩

et,k = Embeddingk(wt,k), k = 1, 2, . . . ,K,

xt = Win [et,1 ⊕ et,2 ⊕ . . .⊕ et,K ] ,
−→x t = Positional encoding(xt),

(1)

where Embeddingk involves the use of lookup tables.
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In essence, the input here can be considered as the
compressed information representing the compound
word sequence. This compressed information can ag-
gregate the music information in different dimensions
and facilitate the modeling of the whole sequence.
Different embedding sizes are used according to the
vocabulary size of the token type, as shown in Ta-
ble 1.

2. Style condition module
In the output module of the Transformer, to

control the output features, we first embed the mu-
sic style information ws into a style vector es, then
combine it with the hidden vector of the model, and
finally use different feedforward headers for the out-
put. Specifically, at the tth time step, the output
process can be summarized as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ht = Self-attn
(−→x t−1

)
,

es = Embeddingstyle(ws),

hout
t = Wout [ht ⊕ es],

ŵt,k = Samplek(softmax (Wkh
out
t )),

k = 1, 2, . . . ,K,

(2)

where W1–WK represent the K feedforward heads
that output the K tokens in the compound word,
and Self-attn(·) stands for the causal self-attention
layers. Therefore, the style information in this out-
put process will influence the whole sequence, ulti-

mately making the generated music express the style
characteristics.

3. Discretize output for discriminator
We insert a discriminator after the generator

in the training process as a tool to guide our style-
conditioned generator, to mitigate the effects of ex-
posure bias (Muhamed et al., 2021; Zhang N, 2023)
and enhance the structural awareness of the model.
However, the output of the generator in the train-
ing phase is continuous, while the discriminator in-
put needs to be discrete. If we directly discretize
the output of the generator, the gradient of the dis-
criminator loss is forbidden from propagating to the
generator. Therefore, it is notoriously difficult to
generate discrete sequences from a continuous out-
put. Several studies have proposed strategies to
solve this problem, such as Gumbel-Softmax (Jang
et al., 2017). The Gumbel-Softmax method uses k

Gumbel distributions with location 0 and scale 1, gi
(i ∈ {1, 2, . . . , k}), and draws samples y from the
categorical distribution using

y = one-hot
(

argmax
i

(gi + log πi)

)

, (3)

where each πi is a categorical distribution that we
want to discretize. Then, we can obtain a continu-
ous differential approximation to the categorical dis-
tribution parameterized by the softmax function:

y = softmax((1/τ)(π + g)), (4)

where τ is a temperature parameter that regulates
how close y is to the categorical (lower τ) versus to
the uniform distribution (higher τ). We let this pa-
rameter decay during the training process to main-
tain the stability of the training, which is the same
as the approach adopted in Muhamed et al. (2021).

3.3 Style-conditioned patch discriminator

In this subsection, we propose a style-
conditioned patch discriminator based on the linear
Transformer. We innovatively introduce adversar-
ial training mechanisms and style information into
the model to enhance structural awareness and in-
terpretive ability. We also propose two novel losses
in our discriminator, the music style category loss
Loss

Cls
and the music style information adversarial

loss Loss
Gan

. Loss
Gan

is used to enhance the struc-
tural awareness and Loss

Cls
is used to enhance the

interpretive ability.
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In the task of automatic music generation, we
aim for the model to generate music of a specific style
according to our needs while ensuring high-quality,
smooth transitions. A Transformer decoder models
the entire sequence by learning the correlation be-
tween tokens within the sequence as follows:

p (xt | x<t) , (5)

where xt is the element of a sequence to be pre-
dicted at time step t, and it is predicted based on all
the previous information. The process is then per-
formed using maximum likelihood estimation (MLE)
(Williams and Zipser, 1989) for constraint. However,
this training approach usually performs poorly in
the face of long sequences like music sequences and
suffers from exposure bias (Muhamed et al., 2021;
Zhang N, 2023), and it thus cannot be optimized in
terms of the dimensionality of the entire music se-
quence. This problem can be effectively alleviated
by introducing the discriminative object of a GAN
(Goodfellow et al., 2020). Therefore, we propose
the style-conditioned patch discriminator, which in-
troduces the GAN object under the style condition.
Our discriminator enhances the structural awareness
of the music generation model and the interpretive
ability as well. The structure of the discriminator is
shown in Fig. 4.

1. Adversarial training mechanisms
Specifically, we extract the sequence of four to-

kens related to MIDI scores from the output of the
generator, obtained through the Gumbel-Softmax
technique. The types of tokens to be input into the
discriminator are detailed in Table 1. Taking inspira-
tion from the visual Transformer (Dosovitskiy et al.,
2021), we first separate the sequence into patches of
a certain length, with each patch undergoing conver-
sion into a single feature vector pk. Next, similar
to BERT (Devlin et al., 2019), we concatenate the
vectors with the [CLS] token and input them into
the same attention module used by the generator
model. To be specific, the input to the discriminator
undergoes the following processing steps:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ed,k = Embeddingk(wg,k), k = 1, 2, . . . ,K,

cd,t = Win[ed,1 ⊕ ed,2 ⊕ . . .⊕ ed,K ],

pk,t = Patch(cd,t),

xd,t = pk,t ⊕Clsv,

(6)

where wg,k represents the output token of the
generator.

2. Two losses with style
At the output of the discriminator, we variously

construct the music style category loss Loss
Cls

and
the music style information adversarial loss LossGan,
where the output vector Clsv of the [CLS] token
passes through a music style classification layer to
obtain the music style category loss. Clsv com-
bines with the style information feature and passes
through a linear layer to obtain the music style infor-
mation adversarial loss. Finally, the overall objective
for the discriminator in this training stage is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

LossD = αLossDCls +β LossDGan,

LossDCls = −Ex∼pdata(x)[logP (ystyle|x)]
−Ez∼pz(z)[logP (ystyle|G(z))],

LossDGan = −Ex∼pdata
(x)[logD(x)]

−Ez∼pz(z)[log(1−D(G(z)))],

(7)

where α and β control the ratio of the two losses (we
analyze their roles in Section 5), ystyle is the music
style label, and G and D represent our generator and
discriminator respectively. The overall objective for
the generator in this training stage is
⎧
⎪⎨

⎪⎩

LossG = LossMLE +αLossGCls +β LossGGan,

LossGCls = −Ez∼pz(z)[logP (ystyle|G(z))],

LossGGan = −Ez∼pz(z)[logD(G(z))],

(8)

where Loss
MLE

is the maximum likelihood.

3.4 Style-conditioned evaluation metrics

We use some existing objective metrics to eval-
uate the effectiveness of the music generation model.
Moreover, we propose a novel metric named style dis-
tance (SD) to evaluate the stylistic consistency of the
generated music to the music in the original dataset.

1. Surface-level objective metrics
To evaluate the generated music, we use some

conventional objective metrics (Dong et al., 2018;
Yang and Lerch, 2020), i.e., pitch range (PR), num-
ber of unique pitch classes used (NPC), and scale
consistency (SC), which are computed by MusPy
(Dong et al., 2020). These metrics are computed
for both real (training set) data and generated data.
Then we calculate the differences between the met-
rics of the generated data and real data, and use
|PR|, |NPC|, and |SC| to represent them. The
smaller the values, the higher the similarity to the
music in the datasets that the generated music is
characterized by.
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2. Style distance
A metric to evaluate the style consistency of the

generated music is not available from the existing
methods discussed in the literature. Thus, we pro-
pose the metric SD to evaluate the consistency of the
generated music in terms of music style.

The surface-level objective metrics (|PR|,
|NPC|, and |SC|) mentioned above can calculate only
the similarity between the original music in datasets
and all generated music (regardless of the style) as
a whole. It is impossible to observe through these
metrics whether the generated music maintains style
consistency. However, we find that the values of PR,
NPC, and SC vary according to the style classes. For
example, in this study, we choose two datasets with
music style labels, EMOPIA (with emotion style la-
bel) (Hung et al., 2021) and Pianst8 (with composer
style label, https://zenodo.org/record/5089279). As
shown in Tables 2 and 3, the average values of music
in different classes are different in these metrics. In
the EMOPIA dataset, music from group (Q1, Q2)
can be distinguished by comparing PR with (Q3,
Q4), while (Q2, Q4) can be distinguished by com-
paring NPC and SC with (Q1, Q3). In the Pianst8
dataset, music from Yiruma has the highest PR while

Table 2 Surface-level objective metrics of music in
the EMOPIA dataset

Emotion style PR NPC SC

Q1 (HVHA) 55.79 8.50 0.963
Q2 (LVHA) 56.56 8.74 0.939
Q3 (HVLA) 44.59 7.96 0.962
Q4 (LVLA) 44.23 8.13 0.969

All data 50.34 8.34 0.958

PR: pitch range; NPC: number of unique pitch classes used;
SC: scale consistency; HVHA: high valence high arousal;
HVLA: high valence low arousal; LVHA: low valence high
arousal; LVLA: low valence low arousal

Table 3 Surface-level objective metrics of music in
the Pianst8 dataset

Composer style PR NPC SC

Richard Clayderman 57.20 7.06 0.999
Yiruma 69.34 9.93 0.941
Herbie Hancock 46.91 8.16 0.979
Ludovico Einaudi 66.89 11.95 0.781
Hisaishi Joe 58.13 7.35 0.998
Ryuichi Sakamoto 59.07 10.66 0.921
Bethel Music 56.29 10.63 0.895
Hillsong Worship 55.78 10.29 0.919

All data 59.89 9.78 0.911

PR: pitch range; NPC: number of unique pitch classes used;
SC: scale consistency

Herbie Hancock’s has the lowest.
Therefore, we propose that the numerical differ-

ence between the generated music and the training
data on these metrics should be calculated separately
based on music style, followed by adding them up as
an evaluation metric. We name this metric SD. With
the three objective metrics (PR, NPC, and SC) men-
tioned above, the details of SD are as follows:

SD =

N∑

n=1

3∑

d=1

|Metricd,n − metricd,n|, (9)

where N represents the total number of music styles,
Metricd,n represents the value of the dth metric of the
nth music style in the original datasets, and metricd,n
represents the value of the generated music. The
smaller the values, the greater the similarity to the
music in the datasets characterizing the generated
music.

3. Style-related objective metrics
To quantify how effectively the generation result

is influenced by the style condition, we use a pre-
trained music style classification model, MidiBERT-
Piano (Chou et al., 2021), for evaluation. We first
use our trained model to generate samples per class
and use the assigned style labels as the target class of
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the samples. Then the classification model is used to
make style prediction on the generated samples. The
higher the classification accuracy (CA), the better
the generated music.

4 Experiments and results

4.1 Datasets

In our experiments, we choose two datasets
for music style-conditioned generation training,
EMOPIA (Hung et al., 2021) and Pianst8. EMOPIA
is widely used in music emotion research and is well
suited for emotion-based music generation. Pianst8,
on the other hand, is rich in composer styles and is
often used in music understanding. Here, it is very
suitable for composer-style-based music generation.

1. Emotion-style dataset
EMOPIA is originally built for the study of

musical emotions, and it has a total of 1087 clips
of four emotion classes. It conceptualizes emotion
in a two-dimensional space defined by valence and
arousal. Considering a simple four-class taxonomy
corresponding to the four quadrants (4Q) of Russell’s
Circumplex Model of Affect (Zhong et al., 2019), the
four emotion classes are high valence high arousal
(HVHA), high valence low arousal (HVLA), low va-
lence high arousal (LVHA), and low valence low
arousal (LVLA). In this study, we consider each emo-
tion as a music style.

2. Composer-style dataset
Pianst8 consists of original piano music per-

formed by eight composers. They are Richard Clay-
derman, Yiruma, Herbie Hancock, Ludovico Ein-
audi, Hisaishi Joe, Ryuichi Sakamoto, Bethel Music,
and Hillsong Worship. The dataset contains a total
of 411 pieces, with the number of pieces per composer
being fairly balanced. In this study, we consider each
composer as a music style.

4.2 Experimental setting

In this study, we compare our model with two
state-of-the-art models (Hung et al., 2021; Sulun
et al., 2022). These models are all implemented
based on linear Transformer (Katharopoulos et al.,
2020). All generator models are with 8 attention
heads and 12 attention layers, while our patch dis-
criminator is with 8 attention heads and 8 attention
layers. The maximum input length of our genera-

tor is set to 513, and the head labels are cut at the
output and fed into the discriminator; thus, the max-
imum input length of the discriminator is set to 512.
The patch size is set to 16. In addition, the two hy-
perparameters of the discriminator, α and β, are set
to 0.75 and 1.25, respectively. All experiments are
conducted on a GeForce RTX 2080 Ti graphics card
with 11 GB.

In the data pre-processing stage, we first trans-
form all the data of EMOPIA and Pianst8 into the
MIDI score format and insert music style labels in
the header, as described in Section 3. After segmen-
tation by the abovementioned fixed sequence length,
we obtain, as our training data, a total of 924 seg-
ments of EMOPIA and 1186 segments of Pianst8.

4.3 Results

4.3.1 Objective evaluation

We generate many pieces of music from music
generation models to perform the objective evalua-
tion. In the emotion-style-based generation experi-
ment, we generate 100 pieces of music for each emo-
tion style, amounting to a total of 400 pieces. In
the composer-style-based generation experiment, we
generate 50 pieces of music for each style, amounting
to a total of 400 pieces.

1. Music generation based on emotion style
We consider emotion as a kind of music style

and compare our model with the two emotion-
conditioned music generation models (Hung et al.,
2021; Sulun et al., 2022). The experiments are con-
ducted on the EMOPIA dataset. For result evalua-
tion, we use the conventional objective metrics |PR|,
|NPC|, |SC|, and CA, and our newly proposed met-
ric SD, as described in Section 3.4. The results are
presented in Table 4.

As shown in Table 4, our model obtains a su-
perior performance in comparison with the existing
models. Although the model proposed in Sulun et al.
(2022) achieves higher CA than Emopia (Hung et al.,
2021) by using sentiment control input augmenta-
tion, there is also a large gap between the generated
music for each sentiment and the original dataset
with a higher SD. In comparison, our model exhibits
the best performance in all metrics, which means
that the music generated by our model is not only
similar to the original data in terms of surface-level
objective metrics (|PR|, |NPC|, and |SC|), but also
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Table 4 Performance comparison of objective evaluation

Dataset Model |PR| ↓ |NPC| ↓ |SC| ↓ SD ↓ CA ↑

EMOPIA
Emopia (Hung et al., 2021) 2.07 1.54 0.0012 16.62 52.5%
Sulun et al. (2022)’s 4.52 1.63 0.0044 24.89 63.0%
SCGT (ours) 0.95 1.34 0.0012 12.45 69.5%

Pianst8
Emopia (Hung et al., 2021) 1.39 0.88 0.043 33.47 29.5%
Sulun et al. (2022)’s 1.44 1.41 0.038 39.05 54.0%
SCGT (ours) 1.30 0.90 0.036 29.37 67.0%

Best results are in bold. |PR|: difference in pitch range; |NPC|: difference in the number of unique pitch classes used; |SC|:
difference in scale consistency; SD: style distance; CA: classification accuracy

conforms to the corresponding emotion with a high
CA.

Moreover, in the analysis of musical emotions,
the arousal of music can be easily observed based
on note density and note length (Livingstone et al.,
2010). The note density is defined as the number
of notes per beat, and the note length is defined
as the average note length in the beat unit. As
shown in Figs. 5a and 5b, the note lengths are gen-
erally longer in the low-arousal group (Q3, Q4), and
the high-arousal group (Q1, Q2) has more dynamic
(higher values in note density) than the low-arousal
group. Thus, the high-arousal group (Q1, Q2) and
low-arousal group (Q3, Q4) in the original dataset
can be effectively distinguished. Similarly, in Figs. 5c
and 5d, the music generated by our model is similar
to the original dataset in terms of note density and
note length, thus facilitating effective distinguishing
between the high-arousal and low-arousal groups.

Furthermore, to evaluate the emotional ex-
pression ability of the music generated by these
models, we use the pre-trained classification model
MidiBERT-Piano to classify the generated music
into four emotion classes. The classification results
are shown in Figs. 6a–6c. As can be seen, the mu-
sic generated by our method basically obtains higher
classification accuracy on each emotion style, with an
overall CA of 69.5%, meaning that the music we gen-
erate can better express the specific music emotion.

2. Music generation based on composer style
We also conduct experiments on the Pianst8

dataset for music generation based on composer
styles. Similarly, we compare the results with those
corresponding to the two existing models.

As shown in Table 4, our model still achieves a
better performance than the other two models. Our
model has the best results in all metrics except for
the 0.02 difference in |NPC| compared to the exist-

ing model. Similar to the results on the EMOPIA
dataset, although the results derived in Sulun et al.
(2022) show an improvement in the CA of the gen-
erated music, the derived music is characterized by
a higher SD, and performs poorly on the |NPC| and
|PR|. Our model outperforms it by 13% in term of
CA, and is closer to the original dataset in terms of
other metrics. In addition, although our model dose
not perform optimally on |NPC|, it achieves signifi-
cantly higher performance on our proposed SD, in-
dicating that SD is better at effectively measuring
style consistency.

To evaluate the composer style of music gener-
ated by these models, we classify the generated music
into eight composer classes. The details of the clas-
sification results are given in Figs. 6d–6f. The music
generated by our method basically obtains a higher
classification accuracy on each composer style, with
an overall CA of 67.0%. Furthermore, the results
show that as the number of music styles increases,
Emopia is not able to generate the music of a spec-
ified style well and the overall CA is only 29.5%.
Sulun et al. (2022)’s model also has a significant re-
duction in CA, while our model reduces it by only
1.5%. As the number of music styles increases, our
model is still able to generate music with good dif-
ferentiation. This indicates that our model can be
applied to generate music with more styles, and the
number of styles is not an important factor affecting
the performance of our model.

The study of interpretive ability aims to turn
complex models into controllable interfaces for in-
teractive music performance (Jiang et al., 2020). In
this study, our model offers a friendly style control
interface, demonstrating a strong interpretive abil-
ity. As shown in Table 4, our model obtains the
highest CA values, 69.5% with the EMOPIA dataset
and 67.0% with the Pianst8 dataset. These results
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indicate that our model can better control the style
of the generated music.

4.3.2 Subjective evaluation

We conduct a user study to further analyze our
method. We setup the subjective evaluation of our
model as Emopia (Hung et al., 2021). Participants
are asked to evaluate models for both emotion-style-
based and composer-style-based music generation.
Specifically, for emotion-style-based models, there
are 12 randomly generated samples, with one per
model for each of the emotion classes. Similarly,
there are 24 samples for composer-style-based mod-
els. Each participant is asked to rate the samples
on a five-point Likert scale with respect to: (1) hu-
manness (H, how well it sounds like a piece played
by human); (2) richness (R, is the content interest-
ing); and (3) overall musical quality (O). In total,
10 subjects participate in the survey.

We present the average scores of participants
given to each model in Table 5. As shown in Table 5,
the music generated by our model is preferred by par-
ticipants, from which it would be reasonable to infer
that it outperforms the existing models, implying a
potential for its practical use.

Table 5 Performance comparison of subjective
evaluation

Dataset Model H R O

EMOPIA
Emopia (Hung et al., 2021) 3.13 3.39 3.25
Sulun et al. (2022)’s 3.46 3.17 3.52
SCTG (ours) 3.65 3.60 3.75

Pianst8
Emopia (Hung et al., 2021) 3.22 3.34 3.15
Sulun et al. (2022)’s 3.39 3.45 3.44
SCTG (ours) 3.92 3.81 3.96

Best results are in bold. H: humanness; R: richness; O: overall
musical quality

5 Ablation experiments

Based on the CP-Transformer (Hsiao et al.,
2021), we innovatively embed style condition and
implement a style-conditioned patch discriminator.
We also design two losses related to the style condi-
tion in the discriminator. In this section, we perform
ablation experiments to study their roles.

5.1 Without style-conditioned generator or
discriminator

Based on the CP-Transformer (Hsiao et al.,
2021), we implement our style-conditioned gener-
ator through embedding the style condition. We
also design a style-conditioned patch discriminator
to guide the generator. To study their roles, we sep-
arately implement them with style-conditioned gen-
erator and style-conditioned patch discriminator rep-
resentatives, respectively. We conduct experiments
on both EMOPIA and Pianst8 datasets, and the re-
sults of each metric are shown in Table 6.

As shown in Table 6, when we replace CP-
Transformer with our style-conditioned generator,
the CA of the generated music improves significantly.
This indicates that the music style information in the
model successfully helps it discriminate music styles
and enables it to generate music of a specific style.
After we add the style-conditioned patch discrimina-
tor, the generated music has a better generality and
is more similar to the music in the original dataset.
Except for |NPC| and |PR|, the complete SCTG per-
forms the best on all metrics, especially on SD and
CA far better than others. This means that our
SCTG is effectively at generating music with good
style consistency.

Table 6 Results of ablation experiments for each module in SCTG

Dataset Model |PR| ↓ |NPC| ↓ |SC| ↓ SD ↓ CA ↑

EMOPIA

CP-Transformer 2.07 1.54 0.0012 16.62 52.5%
Style-conditioned generator 3.36 1.73 0.0039 20.66 65.3%
CP-Transformer + style-conditioned patch discriminator 1.31 1.46 0.0051 13.92 57.5%
SCTG (ours) 0.95 1.34 0.0012 12.45 69.5%

Pianst8

CP-Transformer 1.39 0.88 0.043 33.47 29.5%
Style-conditioned generator 5.22 0.78 0.043 46.61 54.0%
CP-Transformer + style-conditioned patch discriminator 1.18 0.79 0.044 29.80 35.5%
SCTG (ours) 1.30 0.90 0.036 29.37 67.0%

Best results are in bold. |PR|: difference in pitch range; |NPC|: difference in the number of unique pitch classes used; |SC|:
difference in scale consistency; SD: style distance; CA: classification accuracy
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5.2 WithoutLossCls orLossGan in the discrim-
inator

In our style-conditioned patch discriminator, we
design two losses related to style condition. We sep-
arately remove them to study their roles. Similarly,
we conduct experiments on both the EMOPIA and
Pianst8 datasets. The results are shown in Table 7.

As shown in Table 7, the model performs poorly
with the removal of either loss. Higher |PR| and
higher |SC| indicate that the similarity between the
generated music and the original dataset decreases.
Higher SD and lower CA indicate that the style
consistency of the generated music becomes worse.
Therefore, for our style-conditioned patch discrimi-
nator, both losses are important for the performance.

6 Conclusions

Music, as a form of artistic expression, is part
of human culture and history. Automatic music gen-
eration based on style will explore the richness of
human-created music and generate music with rich
emotions and distinctive style characteristics. In this
paper, we have proposed a novel music generation
model, SCTG, which can generate a complete mu-
sical composition from scratch based on a specified
target style. We innovatively embedded style in-
formation in our proposed style-conditioned linear
Transformer. We also designed a style-conditioned
patch discriminator with two innovative losses to en-
hance the interpretive ability and structural aware-
ness of the model. In addition, to evaluate the style
consistency, we defined a discriminative metric for
the first time. Extensive experiments on two public
datasets showed the effectiveness of our approach.
Our model achieved the best in the objective evalu-
ation, especially in the two metrics for measuring

the style consistency (SD and CA). Furthermore,
the results of the subjective evaluation proved that
the music generated by our model was preferred by
participants.

Moreover, as a kind of music style, emotion
has been widely studied in previous research. Our
method can also be used directly in this field to
generate music with specific emotion. Furthermore,
unlike most studies dealing with style transfer, our
method allows users to specify styles and completely
generate a full song from scratch. The benefit de-
riving from the introduction of style information in
each module of the model is that our model can ef-
fectively control the style characteristics of the gen-
erated music.

However, there are relatively few music datasets
with style information. We will build a richer
dataset in the future and continue to explore style-
conditioned music generation. In addition, we will
further investigate the influence of style information
on the inference stage of the model and introduce
music style information in this stage.
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Dataset Model |PR| ↓ |NPC| ↓ |SC| ↓ SD ↓ CA ↑

EMOPIA
Without LossCls 2.45 1.57 0.0022 16.35 67.8%
Without LossGan 3.08 1.73 0.0051 19.57 68.0%
SCTG (ours) 0.95 1.34 0.0012 12.45 69.5%

Pianst8
Without LossCls 3.58 0.88 0.036 31.42 61.3%
Without LossGan 3.46 0.56 0.051 32.11 56.5%
SCTG (ours) 1.30 0.90 0.036 29.37 67.0%

Best results are in bold. |PR|: difference in pitch range; |NPC|: difference in the number of unique pitch classes used; |SC|:
difference in scale consistency; SD: style distance; CA: classification accuracy
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shared in https://github.com/li-car-fei/SCTG.
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