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Estimation of Hammerstein nonlinear systems with noises using 

filtering and recursive approaches for industrial control*

Mingguang ZHANG1, Feng LI†‡1, Yang YU1, Qingfeng CAO2

1School of Electrical & Information Engineering, Jiangsu University of Technology, Changzhou 213001, China 
2College of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China

†E-mail: lifeng@jsut.edu.cn

Received Sept. 13, 2023; Revision accepted Dec. 3, 2023; Crosschecked Dec. 20, 2023; Published online Dec. 29, 2023

Abstract: This paper discusses a strategy for estimating Hammerstein nonlinear systems in the presence of measurement noises 
for industrial control by applying filtering and recursive approaches. The proposed Hammerstein nonlinear systems are made up 
of a neural fuzzy network (NFN) and a linear state–space model. The estimation of parameters for Hammerstein systems can be 
achieved by employing hybrid signals, which consist of step signals and random signals. First, based on the characteristic that 
step signals do not excite static nonlinear systems, that is, the intermediate variable of the Hammerstein system is a step signal 
with different amplitudes from the input, the unknown intermediate variables can be replaced by inputs, solving the problem of 
unmeasurable intermediate variable information. In the presence of step signals, the parameters of the state–space model are 
estimated using the recursive extended least squares (RELS) algorithm. Moreover, to effectively deal with the interference of 
measurement noises, a data filtering technique is introduced, and the filtering-based RELS is formulated for estimating the NFN 
by employing random signals. Finally, according to the structure of the Hammerstein system, the control system is designed by 
eliminating the nonlinear block so that the generated system is approximately equivalent to a linear system, and it can then be 
easily controlled by applying a linear controller. The effectiveness and feasibility of the developed identification and control 
strategy are demonstrated using two industrial simulation cases.
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1  Introduction

Recently, the accelerated advancements in the 

domains of computing, communication, and control 

have brought about substantial transformations in hu‐

man society. In the context of Industry 4.0 and intelli‐

gent manufacturing, industrial cyber-physical systems 

(ICPSs) are thriving due to their unique advantages. 
ICPSs concentrate on the seamless integration and 
synchronization of computing resources with physi‐
cal resources, primarily applied in various intelligent 
systems such as robotics (Huang J et al., 2022), smart 
grid (Wen et al., 2021; Ning et al., 2023), and smart 
transportation (Ge et al., 2022, 2023; Xie et al., 2023; 
Zhang XM et al., 2023). If effective optimization con‐
trol strategies cannot be formulated, the control strat‐
egy will inevitably affect the smooth operation of 
ICPS and even reduce the safety of the systems 
(Zhang H et al., 2018). Within the realm of control 
systems, almost all systems have certain nonlinear 
characteristics (Wang YJ and Yang, 2021). Amid the 
relentless advancement of contemporary technology, 
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the nonlinearity and complexity of control objects 
continue to increase, and many advanced control 
methods require mathematical models of nonlinear sys‐
tems (Xu et al., 2015; Xu, 2016; Zhang HY et al., 
2021).

Hammerstein systems are typical block-oriented 
models, the basic structure of which is a static nonlin‐
ear block connected to a dynamic linear block (Hou 
et al., 2023; Janjanam et al., 2023; Zhao et al., 2023). 
It has a simple structure and can describe various typ‐
ical nonlinear processes, such as the heating process 
(Hammar et al., 2019), the pH process (Li et al., 2023b), 
and the process of a continuous stirred tank reactor 
(Li et al., 2023a). Lately, some substantial estimation 
approaches have been proposed for the Hammerstein 
systems. These approaches can be broadly bifurcated 
into two classes—those that directly calculate each 
indeterminate parameter within the Hammerstein sys‐
tems (Filipovic, 2019; Ma JX et al., 2020; Wang DQ 
et al., 2020) and those that independently estimate each 
block parameter of Hammerstein systems by recon‐
structing the internal unmeasured variable (Chen and 
Chen, 2011; Kothari et al., 2020; Li et al., 2023c).

Noise generally exists in practical applications, 
and the noise in actual industrial processes is rarely 
white noise that conforms to a normal distribution. 
Consequently, exploring estimates of Hammerstein sys‐
tems under the influence of noise interference becomes 
paramount. Data filtering is usually used to get rid of 
the outliers and weaken the influence of noise in lin‐
ear and nonlinear systems, and has been applied to 
identify model parameters (Wang DQ et al., 2013; 
Ding et al., 2015; Ma JX et al., 2016; Ji et al., 2021; 
Shi et al., 2023). The principle of data filtering is to 
filter the input–output data of a system using a linear 
filter; it should be emphasized that this technique can 
change only the influence of output noises on the sys‐
tem but cannot change the structure of the system 
itself. To solve the multiple-input single-output Ham‐
merstein identification problem in the presence of 
autoregressive noises, Ji et al. (2021) introduced the 
multiple-stage Levenberg–Marquardt method based on 
the data filtering technique and the hierarchical iden‐
tification principle, which can decrease the influence 
of noise on parameter estimation. The investigation 
of Wang DQ et al. (2013) focused on a fresh parame‐
ter estimation method for Hammerstein systems with 

output noises, using a recursive least squares (RLS) 
algorithm with a key-term separation principle and 
data filtering technique. To enhance the convergence 
rate and the precision of parameter identification, a 
forgetting factor stochastic gradient method based on 
filtering technology was proposed by Ma JX et al. 
(2016). We would like to point out that the approach 
capability of the static nonlinear block by way of poly‐
nomial modeling or a piecewise function is limited for 
nonlinear discontinuous functions in Wang DQ et al. 
(2013), Ma JX et al. (2016), and Ji et al. (2021). To al‐
leviate the issues mentioned above, neural networks 
(Michalkiewicz, 2012; Cui et al., 2014) and fuzzy 
logic systems (Khalifa et al., 2021) have been exten‐
sively used in modeling nonlinear dynamic systems 
due to their adeptness at capturing nonlinearity 
with remarkable accuracy. Cui et al. (2014) used a 
function link artificial neural network to model a static 
nonlinear function, and independently determined 
parameters of linear and nonlinear blocks by employ‐
ing the least squares method and the Levenberg–
Marquardt algorithm, respectively. Khalifa et al. (2021) 
introduced the autoregressive moving average and 
fuzzy systems, and then an identification method based 
on the Lyapunov function was applied for Hammer‐
stein systems. While neural network models exhibit 
robust self-learning capacities, they fall short of emu‐
lating the reasoning abilities intrinsic to the human 
brain. Unlike neural network models, fuzzy systems 
lack self-learning capabilities and there are certain limi‐
tations to their practical implementation. As a result, 
a significant technique is to apply a neural fuzzy net‐
work (NFN) model that combines the fuzzy reason‐
ing ability of a fuzzy system and the self-learning of 
neural network models as the static nonlinear block 
in Hammerstein systems. It is essential to recognize 
that the identification process for the NFN-based Ham‐
merstein systems diverges significantly from that of a 
standalone NFN model. The primary distinction stems 
from the structural constraints dictated by the Ham‐
merstein systems. Clearly, the identification challenge 
that arises demands the concurrent consideration of 
nonlinear mapping and linear dynamics. Conversely, 
research on individual NFNs primarily centers on the 
identification of a singular, global nonlinear mapping.

Motivated by the aforementioned methods, a meth‐
odology for estimating neural fuzzy Hammerstein 
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nonlinear systems using data filtering technology and 
a recursive approach is developed in this study. Prac‐
tical application processes are often disturbed by ran‐
dom measurement noises, and thus it is extremely 
significant to consider the NFN-based Hammerstein 
systems with measurement noises. The parameter 
estimate scheme presented can be delineated in the 
subsequent two steps. In the first step, a nonlinear 
block and a linear block are separated by using the 
characteristic that step signals are unable to activate 
nonlinear blocks, which avoids decomposing parameter 
product terms in a synchronous estimate and improves 
the estimation accuracy. Using input and output data 
derived from step signals, the parameters of the dynamic 
linear block are determined through the recursive ex‐
tended least squares (RELS) approach. In the second 
step, based on input–output random signals, the clus‐
ter method is used to calculate the center and width 
of the NFN model. Concurrently, the weight of the 
NFN model is updated by employing the data-filtering-
based RELS technique.

The notable innovations of this study are evident 
in the following aspects:

1. A novel NFN-based Hammerstein system is 
proposed by combining the advantages of the struc‐
ture of Hammerstein systems and NFNs, and the mod‐
eling accuracy is improved compared with that of a 
single NFN or neural network (Cui et al., 2014).

2. Unlike synchronous estimation schemes (Ham‐
mar et al., 2019; Li et al., 2023b; Zhao et al., 2023), 
which contain the parameters’  product terms of the 
linear and nonlinear blocks, the strategy presented here 
decouples the parameter estimation of the nonlinear 
block from that of the linear block using designed 

hybrid signals, resulting in an enhancement of the esti‐
mation accuracy of the systems.

3. Data filtering is introduced to derive a filtering-
based RELS algorithm for the Hammerstein nonlin‐
ear systems with noises, which can reduce the impact 
of moving average noise and improve the precision 
of parameter estimation.

2  System model and problem formulation

The Hammerstein systems with measurement 
noises (Ding et al., 2015; Li et al., 2023b), shown in 
Fig. 1, are nonlinear systems defined by a sequential 
configuration of a static nonlinear block preceding a 
dynamic linear block.

The input–output relationships can be described 
as follows:

v ( t ) = f (u ( t ) ),    (1)

x ( t + 1) = Ax ( t ) + bv ( t ), (2)

g ( t ) = cx ( t ),         (3)

r ( t ) = D ( z )e ( t ),  (4)

  y ( t ) = g ( t ) + r ( t ), (5)

where the system input and output are described as 
u ( t ) and y ( t ), respectively, v ( t ) is the output of the 

static nonlinear block, g ( t ) is the output of the linear 

block, r ( t ) indicates colored noises, and e ( t ) repre‐

sents Gaussian noises. D ( z ) =1+ d1 z−1 + d2 z−2 +⋯ +

dn z−n is a linear combination of backward operators 
z−1. The state space model is represented by Eqs. (2) 
and (3). x ( t ) = [ x1 ( t ) , x2 ( t ) , ⋯, xn ( t ) ]T is the state 

vector. A, b, and c are the system parameter matrix or 

Fig. 1  Hammerstein nonlinear systems
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vectors. b= [ b1, b2, ⋯, bn ]T∈Rn × 1 ,  c =[1, 0, ⋯, 0 ] ∈
R1 × n,   and

           A=
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∈Rn × n.

In this paper, the nonlinear block is approxi‐
mated using the NFN (Li et al., 2023b), as illustrated 
in Fig. 1. Based on Fig. 1, the NFN can be described 
as follows:

v̂ ( t ) = f ̂ (u ( t ) ) =∑
l = 1

L

ϕ l(u ( t ) )wl, (6)

ϕ l(u ( t ) ) =
μ l( )u ( t )

∑
l = 1

L

μ l( )u ( t )

, (7)

μ l(u ( t ) ) = exp ( )− ( )u ( t ) − cl

2

σ 2
l

, (8)

where f ̂ (⋅) represents the estimation of the NFN, the 

center and width are denoted as cl and σ l, respective‐
ly, wl represents the weights, and L indicates the total 
count of fuzzy rules.

Defining ɛ as a constant threshold, the objective of 
the proposed parameter identification technique is to 
ascertain the indeterminate parameters of both static 
nonlinear and dynamical linear blocks. These param‐
eters must meet the subsequent criteria:

E ( f,̂ ĝ, D̂ ) =
1

2N∑t = 1

N

[ ]y ( t ) − ŷ ( t )
2 ⩽ε

s.t.     v̂ ( t ) = f ̂ ( )u ( t ) , (9)

ŷ ( t ) = ĝ ( t ) + D̂ ( z ) ê ( t ),

where ŷ ( t ) is the estimate of Hammerstein systems 

and N is the data length.

3  Parameter estimate of Hammerstein systems

We delineate the identification procedure for 
NFN-based Hammerstein systems in this section. The 
existing research indicates that hybrid signals, com‐
prising step and random signals, can achieve two-
stage identification of the Hammerstein systems inte‐

grated with the state–space model and the NFN 
model. Initially, the step response aids in the parameter 
estimate of the state–space model. Subsequently, the 
random input response is employed to compute the 
NFN parameters.

Kothari et al. (2020) elucidated that, with a step 
signal input to the Hammerstein systems, the nonlin‐
ear block becomes operational, leading to an ampli‐
tude variation for the consistent input. To specify, 
when the step input traverses a static nonlinear sys‐
tem, the resultant output is step signals, albeit with 
varying amplitudes, as illustrated in Fig. 2. Conse‐
quently, the intermediate variable is v(t) = βu(t). 
Hence, with the introduction of a step input, each 
block in the Hammerstein systems can be discerned 
autonomously.

3.1  Estimate of the dynamic linear block

When a step signal u1 ( t ) is used to identify param‐

eters of the linear block, based on Eq. (2), we obtain

xi ( t + 1) = xi + 1 ( t ) + biv ( t ) , i = 1, 2,⋯, n − 1, (10)

 
xn ( t + 1) =− an x ( t ) − an − 1 x ( t ) − ⋯

− a1 x ( t ) + bnv ( t ).
(11)

By multiplying z−i and z−n on both sides of 
Eqs. (10) and (11) separately, we have

ì

í

î
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ï
ïï
ï
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ï

x1 ( t ) = x2 ( t − 1) + b1v ( t − 1),

x2 ( t − 1) = x3 ( t − 2 ) + b2v ( t − 2 ),

⋮
xn − 1 (t − n + 2) = xn (t − n + 1) + bn − 1v (t − n + 1),

xn ( t − n + 1) =− an x1 ( t − n ) − an − 1 x2 ( t − n ) − ⋯
− a1 xn ( t − n ) + bnv ( t − n ).

(12)

Fig. 2  Relationship between u and v under step signals
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Simplifying Eq. (12), we obtain

x1 ( t ) =−∑
i = 1

na

ai xn − i + 1 ( t − na ) +∑
j = 1

nb

bjv ( t − j ).  (13)

Because of the relationship between u and v under 
step signals, replacing v(t) with βu1(t), we have

x1 ( t ) =−∑
i = 1

na

ai xn − i + 1 ( t − na ) +∑
j = 1

nb

b̄ju1 ( t − j ), (14)

where b̄j = βbj.

According to Eqs. (3) and (14), we can derive

g (t ) = x 1 (t ) =−∑
i = 1

na

ai xn − i + 1 (t − na ) +∑
j = 1

nb

b̄j u1 (t − j ).

(15)

Based on Eqs. (4), (5), and (15), the output y1 ( t ) 

can be written as

y1 ( t ) =  −∑
i = 1

na

ai xn − i + 1 ( t − na ) +∑
j = 1

nb

b̄j u1 ( t − j )

+∑
m = 1

nd

dme ( t − m ) + e ( t ).  (16)

Moreover, the output y1 ( t ) can be simplified as

y1 ( t ) = ψ T
1 ( t )θ1 + e ( t ), (17)

where ψ1 ( t )=[ϕ 1 ( t ) , e ( t − 1) , e ( t − 2 ) ,⋯, e ( t −
n d ) ]T

, θ1=[a1, a2,⋯, ana
, βb1, βb2,⋯, βbnb

, d1, d2,⋯, 

]dnd

T
, ϕ1 ( t )=[− xna

(t − na ), − xna −1 (t − na ),⋯, − x1 (t − 
]na ), u1 ( t − 1), u1 ( t − 2 ),⋯, u1 ( t − nb )

T
.

However, x(t) and e(t) are unidentified vari‐
ables; a viable approach entails the utilization of esti‐
mations x̂ ( t ) and ê ( t ) as substitutes for the unidenti‐

fied variables, and thus we have

ŷ1 ( t ) = ψ̂ T
1 ( t ) θ̂1 + ê ( t ), (18)

where ψ̂1 ( t )=[ ϕ̂1 ( t ) , ê ( t − 1) , ê ( t − 2 ) ,⋯, ê ( t −
nd )]T

, ϕ̂1 ( t )=[− x̂na
(t − na ), − x̂na −1 (t − na ),⋯, − x̂1 (t − 

]na ), u1 (t − 1), u1 (t − 2 ),⋯, u1 (t − nb )
T
.

Define and minimize the mean square criterion 
functions:

J ( θ̂1 ) =∑
t = 1

N

 y1 ( t ) − ψ̂ T
1 ( t ) θ̂1

2

. (19)

The identification of parameter θ1 is achieved 
using the RELS method as follows:

θ̂1 ( t ) = θ̂1 ( t − 1) + L ( t ) [ y1 ( t ) − ψ̂ T
1 ( t ) θ̂1 ( t − 1) ],

(20)

L ( t ) = P ( t − 1)ψ̂ T
1 ( t ) [1 + ψ̂ T

1 ( t ) P ( t − 1)ψ̂1 ( t ) ]−1
,

(21)
P ( t ) = [ I2n − L ( t )ψ̂ T

1 ( t ) ] P ( t − 1), (22)

ê ( t ) = y1 ( t ) − ψ̂ T
1 ( t ) θ̂1 ( t − 1),     (23)

x̂ ( t + 1) = Â ( t ) x̂ ( t ) + b̂ ( t )u1 ( t ).             (24)

Thus, the parameters pertaining to the linear block 
are determined.

3.2  Estimate of the static nonlinear block

According to the previous analysis, the parame‐

ters âi and b̂j have been identified. In this subsection, a 
group of random signals u2 ( t ) and output y2 ( t ) is 

applied to nonlinear element estimation. The center 
cl and width σ l of NFN can be acquired by a cluster 
algorithm (Li et al., 2022), which is expressed by

cl = cl +
λ

NL + 1 (u2(t ) − cl), (25)

σ l = min
j = 1,2,…,NL

       j ≠ l

|| ci − cj

ρ
,            (26)

where NL is the number of clusters belonging to L, 
λ∈ [0, 1] is an adjustable parameter, and ρ∈ [1, 2] de‐
notes an overlapping parameter.

After that, the primary challenge lies in identify‐
ing the weight coefficients wl.

According to Fig. 1, we can obtain a noise variable

r ( t ) = D ( z )e ( t ) = φT
e ( t )θe + e ( t ), (27)

where φe ( t ) = [ ]e ( t − 1) , e ( t − 2 ) , ⋯, e ( t − nd )
T
 

and θe= [ ]d1, d2, ⋯, dnd

T
.

Based on Eqs. (5) and (27), we obtain

y2 ( t ) = g ( t ) + r ( t )

= φT
s ( t )θs + φT

e ( t )θe + e ( t )

= ψ T
2 ( t )θ2 + e ( t ) , (28)
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where ψ2 ( t )=[φs ( t ) , φe ( t ) ]T
, θs=[a1, a2,⋯, ana

, b1w1, 

b1w2,⋯, b1wL, b2w1, b2w2,⋯, b2wL,⋯, bnb
w1, bnb

w2,

]⋯, bnb
wL

T
, θ2=[ ]θs, θe

T
, φs ( t )=[− xna − i + 1 ( t − na ), 

− x na − i ( t − n a ) , ⋯, − x 1 ( t − n a ) , ϕ 1( )u 2 ( t − 1) ,

ϕ 2( )u2 ( t − 1) ,⋯ ,  ϕ L( )u2 ( t − 1) ,  ϕ 1( )u2 ( t − 2 ) ,

ϕ2( )u2 ( t − 2 ) ,⋯, ϕL( )u2 ( t − 2 ) , ⋯, ϕ1( )u2 ( t − nb ) ,

]ϕ2( )u2 ( t − nb ) ,⋯, ϕL( )u2 ( t − nb )
T

.

To enhance identification precision, a linear filter 

1/D(z) is employed to Hammerstein systems. It 

should be emphasized that the filter can change only 

the influence of colored noises on the system but can‐

not change the structure of the system itself. Based 

on the constant input–output relation, the structure of 

the systems is simplified, which can simplify calcu‐

lations and improve parameter estimation accuracy 

(Ma L and Liu, 2016).

Multiplying both sides of Eq. (28) by 1/D(z), we 

obtain

1
D ( z )

y2 ( t ) =
1

D ( z )
g ( t ) + e ( t ) 

=
1

D ( z ) ( −∑i = 1

na

ai xn − i + 1 ( t − na )

+∑
j = 1

nb

bjv ( t − j ) ) + e ( t ).  (29)

Define the filtered output yf ( t ), filtered internal 

variable gf ( t ), and filtered input vf ( t ) as

yf ( t ) =
1

D ( z )
y2 ( t ) = y2 ( t ) −∑

i = 1

nd

di yf ( t − i ),  (30)

gf ( t ) =
1

D ( z )
g ( t ) =

1
D ( z )

x1 ( t )

=
1

D ( z ) ( −∑i = 1

na

ai xn − i + 1 ( t − na )

+∑
j = 1

nb

bjv ( t − j ) ) ,

              (31)

xif ( t ) =
1

D ( z )
xi ( t ) = xi ( t ) −∑

i = 1

nd

di xif ( t − i ) ,  (32)

vf ( t ) =
1

D ( z )
v ( t ) =∑

l = 1

L

wl Ul ( t ), (33)

where Ul ( t ) =
1

D ( z )
ϕ l(u2 ( t ) ).

Thus, we can obtain

yf ( t ) = gf ( t ) + e ( t )                               

=−∑
i = 1

na

ai xn − i + 1f ( t − na )       

                      +∑
j = 1

nb ∑
l = 1

L

bj wl Ul ( t − j ) + e ( t ). (34)

According to Eq. (34), we have

yf ( t ) = φT
f ( t )θs + e ( t ), (35)

where φf ( t )=[− xna − i + 1f ( t − na ), − xna − if ( t − na ),⋯,

− x1f ( t − n a ), U 1 ( t − 1) , U 2 ( t − 1) ,⋯, UL ( t − 1) ,
U1 ( t − 2 ) , U2 ( t − 2 ) ,⋯, UL ( t − 2 ) ,⋯, U1 ( t − nb ),

]U2 ( t − nb ),⋯, UL ( t − nb )
T
.

Note that Eq. (35) contains unknown variables 

yf ( t ) and φf ( t ), and thus the identification algorithm 

can not be implemented. To circumvent this limita‐

tion, a viable approach entails the utilization of esti‐

mation residuals as substitutes for the unidentified 

variables at time t.

Define the parameter estimation of the noises 

model as

θ̂e ( t ) = [ d̂1 ( t ) , d̂2 ( t ) ,⋯, d̂nd
( t ) ]T

. (36)

Thus, the estimation of D(z) is expressed as

D̂ ( z ) = 1 + d̂1 ( t ) z− 1 + d̂2 ( t ) z− 2 + ⋯ + d̂nd
( t ) z− nd.

(37)

Furthermore, we have

v̂f ( t ) =∑
l = 1

L

wl Ûl ( t ), (38)

Ûl ( t ) =
1

D̂ ( z )
ϕ l(u2 ( t ) )

=−∑
i = 1

nd

d̂i ( t )Ûl ( t − i ) + ϕ l(u2 ( t ) ) , (39)

ŷf ( t ) =
1

D̂ ( z )
y2 ( t ) = y2 ( t ) −∑

i = 1

nd

d̂i ŷf ( t − i ), (40)
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x̂if ( t ) =
1

D̂ ( z )
x̂i ( t ) = x̂i ( t ) −∑

i = 1

nd

d̂i x̂if ( t − i ),  (41)

x̂ ( t + 1) = Â ( t ) x̂ ( t ) + b̂ ( t ) v̂ ( t ). (42)

So, the estimate of r(t) is

r̂ ( t ) = y2 ( t ) − φ̂T
s ( t ) θ̂s ( t ). (43)

By defining and minimizing the mean square 

criterion functions J ( θ̂s )=∑
t = 1

N

 ŷf ( t ) − φ̂T
f ( t ) θ̂s

2
 and 

J ( θ̂e ) =∑
t = 1

N

 r̂ ( t ) − φ̂T
e ( t ) θ̂e

2

, the data-filtering-

based RELS approach can be obtained:

θ̂s ( t ) = θ̂s ( t − 1) + Ls ( t ) [ ŷf ( t ) − φ̂T
f ( t ) θ̂s ( t − 1) ] ,

(44)

Lf ( t ) =
P f ( t − 1) φ̂f ( t )

1 + φ̂T
f ( t ) P f ( t − 1) φ̂f ( t )

, (45)

P f ( t ) = [ I − Lf ( t ) φ̂f ( t ) ] P f ( t − 1), (46)

φ̂f ( t ) = [− x̂na − i + 1f ( t − na ), − x̂na − if ( t − na ),⋯,

− x̂1f ( t − na ), Û1 ( t − 1), Û2 ( t − 1),⋯, ÛL ( t − 1),

Û1 ( t − 2 ), Û2 ( t − 2 ),⋯, ÛL ( t − 2 ),⋯,

]Û1 ( t − nb ), Û2 ( t − nb ),⋯, ÛL ( t − nb )
T

, (47)

ŷf ( t ) = y2 ( t ) −∑
i = 1

nd

d̂i ŷf ( t − i ), (48)

Ûl ( t ) =−∑
i = 1

nd

d̂i ( t )Ûl ( t − i ) + ϕ l(u2 ( t ) ), (49)

x̂if ( t ) = x̂i ( t ) −∑
i = 1

nd

d̂i x̂if ( t − i ), (50)

x̂ ( t + 1) = Â ( t ) x̂ ( t ) + b̂ ( t ) v̂ ( t ), (51)

and

θ̂e ( t ) = θ̂e ( t − 1) + Le ( t ) [ ]r̂ ( t ) − φ̂T
e ( t ) θ̂e ( t − 1) ,

(52)

Le ( t ) =
Pe ( t − 1) φ̂e ( t )

1 + φ̂T
e ( t ) Pe ( t − 1) φ̂e ( t )

, (53)

Pe ( t ) = [ I − Le ( t ) φ̂e ( t ) ] Pe ( t − 1), (54)

φ̂s ( t ) = [− x̂na − i + 1 ( t − na ), − x̂na − i ( t − na ),⋯,

− x̂1 ( t − na ), ϕ1( )u2 ( t − 1) , ϕ2( )u2 ( t − 1) ,⋯,

ϕL( )u2 ( t − 1) , ϕ1( )u2 ( t − 2 ) , ϕ2( )u2 ( t − 2 ) ,⋯,

ϕL( )u2 ( t − 2 ) ,⋯, ϕ1( )u2 ( t − nb ) , ϕ2( )u2 ( t − nb ) ,⋯,

]ϕL( )u2 ( t − nb )
T

, (55)

φ̂e ( t ) = [ êf ( t − 1), êf ( t − 2 ), ⋯, êf ( t − nd )]T
,  (56)

r̂ ( t ) = y2 ( t ) − φ̂T
s ( t ) θ̂s ( t ), (57)

êf ( t ) = ŷf ( t ) − φ̂T
f ( t ) θ̂s ( t ), (58)

θ̂s = [ â1, â2,⋯, âna
, b̂1ŵ1, b̂1ŵ2,⋯, b̂1ŵL, b̂2ŵ1, 

b̂2ŵ2,⋯, b̂2ŵL,⋯, b̂nb
ŵ1, b̂nb

ŵ2,⋯, b̂nb
ŵL ]

T

,  (59)

To provide a clearer description of the proposed 
method, the detailed estimate procedure is illustrated 
in Fig. 3.

4  Simulation and analysis

To corroborate the efficacy and precision of the 
proposed parameter estimation method, two typical 

Fig. 3  Flowchart of the developed parameter identifica‐
tion method
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nonlinear processes, namely the pH nonlinear process 
and the continuous stirred tank reactor (CSTR), are 
simulated in this section.

4.1  pH neutralization process control

In the actual chemical production process, the 
control of pH value is often involved, and its control 
effect will seriously affect the purity of the substance.  
To corroborate the efficacy of the proposed strate‐
gy, we conduct a simulation using the pH neutraliza‐
tion process in chemical production (Smith et al., 
2007). Fig. 4 presents a diagram of the pH neutraliza‐
tion process. Alkaline solution uses caustic soda 
(NaOH), while acidic solution uses hydrochloric acid 
(HCl). The pH value of the neutralization tank is reg‐
ulated by adjusting the flow rate of HCl.

The pH model can be expressed as

Fout = FHCl + FNaOH,

V
dXHCl

dt
= FHClC0HCl − Fout XHCl,

V
dXNaOH

dt
= FNaOHC0NaOH − FS XNaOH,

dQ
dt

=
1
V (FHCl XHCl − FNaOH XNaOH − (FHCl + FNaOH )Q) ,

Q = 10−pH − KW

10−pH
.

Table 1 gives the nominal values of the parameters.
To handle the developed identification scheme, 

hybrid signals, including step signals with an ampli‐
tude of 0.5 and random signals with the amplitude 
distribution in [− 0.5, 0.5], are employed to acquire 
the process input–output. Applying step signals 
to input – output, the linear dynamic block can be 

obtained by ŷ (t ) = 1.0341x2 (t − 2) − 0.1868x1 (t − 2) +

0.1899v̂ (t − 1)+0.1899v̂ (t − 2). Then, we set the pa‐

rameters as ρ=1.0 and λ=0.01, and obtain an identi‐

fied NFN-based Hammerstein system.
The Hammerstein model serves as a structural 

framework for representing a nonlinear system by 
segregating the static nonlinear component from the 
dynamic linear component. Consequently, we can ini‐
tially employ the identified linear parameters to esti‐
mate the intermediate variables associated with the 
dynamic linear portion. Subsequently, we proceed to 
construct the inverse model for the static nonlinear 
section, using both the input and the estimated interme‐
diate variables. This approach results in an apparent 
linear relationship between the system’s input and 
output. Hence, we can effectively transform the non‐
linear control problem into a linear control problem. 
Fig. 5 illustrates the control architecture based on the 
identified Hammerstein system.

For comparison, a traditional proportional-
integral (PI) controller characterized by u ( t )=u ( t − 1) 

+K [e ( t ) − e ( t − 1) + e ( t ) /τ ], a control-based Ham‐

merstein system using a data-filtering-based forgetting 
factor stochastic gradient identification algorithm 
(Control-H-F-FFSG) in Ma JX et al. (2016), and 
MPC control of the Hammerstein system (MPC-H) 
(Du et al., 2018) are used to control the pH process, 
where e ( t ) = yr ( t ) − y ( t ), and yr is the reference tra‐

jectory. Within this study, the controller parameters of 
the proposed method are K=0.6 and τ=70, and the 
sampling time and prediction step size of the MPC 
controller are set to 0.02 s and 5, respectively. The 
pH control results with different values using differ‐
ent methods are shown in Fig. 6.

As can be easily seen in Fig. 6, the proposed con‐
trol system using an estimated NFN-Hammerstein 

Fig. 4  Process of pH neutralization

Table 1  Nominal values

Parameter

V

XHCl

XNaOH

XA

XB

KW

C0HCl

C0NaOH

Parameter implication

Volume

HCl concentration

NaOH concentration

HCl flow

NaOH flow

Fixed value

HCl initial concentration
NaOH initial concentration

Value

2 L

0.001 mol/L

0.001 mol/L

0.0067 L/s

0.005 L/s

10−14

0.01 mol/L
0.1 mol/L
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system manifests a superior control performance in con‐

trast to the traditional PI controller, the MPC-H meth‐

od, and the Control-H-F-FFSG method. In general, 

for selecting different pH values, the presented con‐

trol method can track, with effect, the set values with 

better overshoot and a higher response speed. To be 

specific, when the pH value is 8, the overshoot of 

the proposed control method is reduced compared to 

the traditional PI controller, the MPC-H method, and 

the Control-H-F-FFSG method. Thus, the developed 

NFN-Hammerstein system provides a feasible scheme 

for the design of the control system.

4.2  CSTR control

Due to the strong nonlinearity of the production 

process of the chemical CSTR systems, traditional 

linear control cannot meet the standards required for 

industrial production efficiency. Therefore, for the con‐

trol of CSTR systems, it is necessary to switch ideas 

and adopt control methods that are more suitable for 

nonlinear system control, thus improving the control 

efficiency and economic benefits of the CSTR sys‐

tem’s chemical production process. In this example, 

we consider a CSTR process (Jia et al., 2005), and its 

dynamic characteristics are as follows:

dCA

dt
=− k1CA − k3C

2
A +

F
V

(CAf − CA ),

dCB

dt
= k1CA − k2CB +

F
V

CB,

y = CB.

Table 2 lists the kinetic parameters.

We use step signals and random signals, as illus‐

trated in Fig. 7, to obtain the input–output data for 

the CSTR, and the data are normalized. Based on the 

step signals, the expression of the linear block can be 

Table 2  Kinetic parameters

Variable

k1

k2

k3

CA0

CB0

V

F

CAf

Parameter implication

Kinetic parameter

Kinetic parameter

Kinetic parameter

A initial concentration

B initial concentration

Volume

Flow rate

Feed concentration

Value

50 h−1

100 h−1

10 L/(mol·h)

3.0 mol/L

1.12 mol/L

1 L

34.3 L/h

10 mol/L

Fig. 5  pH process control system

Fig. 6  Set value tracking output response

Fig. 7  Input–output data of CSTR
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obtained by ŷ ( t )=0.2277x2 ( t − 2 )− 0.1339x1 ( t − 2 ) 

− 0.0326v̂ ( t − 1) + 0.0018v̂ ( t − 2 ). Next, for NFN 

identification, we set parameters ρ=1.0 and λ=0.01. 

Thus, the NFN parameters can be identified by us‐
ing the proposed scheme.

The identified NFN-based Hammerstein system 
is employed for concentration control for CSTR. The 
design principle of the control system is similar to 
that of the pH neutralization process. Currently, the 
controller parameters with K=0.15 and τ=0.6 are cho‐
sen, and the sampling time and prediction step size of 
the MPC controller are 0.02 s and 5, respectively. To 
verify the performance of the proposed control sys‐
tem, the traditional PI controller, the Control-H-F-
FFSG method, and the MPC-H method are used for 
comparison, and the control results of the concentra‐
tion and inlet flow rate using different methods are il‐
lustrated in Fig. 8.

According to Fig. 8, when the set point is 0.1, 
the set value is obtained at a high speed and with a 
short adjustment time by applying the designed con‐
troller based on the estimated NFN-Hammerstein sys‐
tems. In contrast, the traditional PI controller, MPC-
H method, and Control-H-F-FFSG method need 
more time to reach the set value. In terms of adjust‐
ment time, the proposed method has a noticeable re‐
duction compared with the MPC-H method, Control-
H-F-FFSG method, and traditional PI controller, 
which further proves the validity of the proposed con‐
trol scheme.

5  Conclusions

In this paper, we propose an identification strategy 
for Hammerstein nonlinear systems for industrial ap‐
plication by applying data filtering and a recursive 
approach. The two main advantages of the presented 
scheme are: (1) leveraging the step signals ’  trait of 
not stimulating the nonlinear characteristic, the param‐
eters of both linear and nonlinear blocks are inde‐
pendently identified using hybrid signals; (2) a data 
filtering technology is used for Hammerstein system 
identification, therefore reducing the impact of mea‐
surement noises and improving identification accuracy. 
In our future work, two aspects will be addressed. On 
one hand, for the Hammerstein system with colored 
measurement noise interference, we will improve the 
identification accuracy by estimating the variance of 
the noise. On the other hand, we will expand the ap‐
plication scope of the proposed method to control 
more nonlinear systems, such as power grid systems 
(Yang et al., 2021; Huang G et al., 2022) and perma‐
nent magnet synchronous motors (Xiao et al., 2022).
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