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Abstract: Dynamic bandwidth allocation (DBA) is a fundamental challenge in the realm of networking. The
rapid, accurate, and fair allocation of bandwidth is crucial for network service providers to fulfill service-level
agreements, alleviate link congestion, and devise strategies to counter network attacks. However, existing bandwidth
allocation algorithms operate mainly on the control plane of the software-defined networking paradigm, which can
lead to considerable probing overhead and convergence latency. Moreover, contemporary network architectures
necessitate a hierarchical bandwidth allocation system that addresses latency requirements. We introduce a fine-
grained, hierarchical, and scalable DBA algorithm, i.e., the HSDBA algorithm, implemented on the programmable
data plane. This algorithm reduces network overhead and latency between the data plane and the controller,
and it is proficient in dynamically adding and removing network configurations. We investigate the practicality
of HSDBA using protocol-oblivious forwarding switches. Experimental results show that HSDBA achieves fair
bandwidth allocation and isolation guarantee within approximately 25 packets. It boasts a convergence speed 0.5
times higher than that of the most recent algorithm, namely, approximate hierarchical allocation of bandwidth
(AHAB); meanwhile, it maintains a bandwidth enforcement accuracy of 98.1%.

Key words: Dynamic bandwidth allocation; Software-defined networking; Programmable data plane;
Protocol-oblivious forwarding switch (POFSwitch)
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1 Introduction

While the technology for dynamic bandwidth
allocation (DBA) has considerably evolved in the
domain of wired networks, the growing reliance on
cloud services and the rising complexity of modern
network architectures, including information-centric
networking (ICN) (Xylomenos et al., 2014), poly-
morphic smart network (PINet) (Hu et al., 2020),
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and network slicing, have introduced new design re-
quirements and challenges for data planes. Taking
PINet as an example, the concept and architecture
of PINet are introduced to tackle the challenges en-
countered in future heterogeneous networks. PINet
is characterized by its openness, adaptability, and
universality. The introduction of polymorphic nodes
and a polymorphic routing mechanism enables the
network to dynamically allocate and optimize re-
sources to meet the requirements of diverse appli-
cations and services. In this scenario, the data
plane needs to be programmable while offering iso-
lation mechanisms to ensure efficient and equitable
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allocation of bandwidth (Wang et al., 2022).

Bandwidth is a scarce resource in the network.
Although congestion control mechanisms imple-
mented on end-hosts contribute to managing band-
width allocation, relying exclusively on them can
result in an inequitable distribution of bandwidth.
Malicious traffic or poorly designed applications can
obtain a larger share of bandwidth by establishing
multiple transmission control protocol (TCP) flows.
Furthermore, certain link-capacity-based congestion
control mechanisms, e.g., bottleneck bandwidth and
round-trip propagation time (BBR) (Cardwell et al.,
2017), have the potential to dominate the bandwidth
resources over traditional pacing-based TCP con-
nections (e.g., Tahoe, Reno, and Cubic). This af-
fects the quality of service (QoS) for end-users or
cloud tenants and ultimately results in the degra-
dation of the service-level agreement (SLA). Conse-
quently, researchers have proposed solutions to en-
able DBA in intermediate network devices, such as
switches or routers (Kumar et al., 2015). More-
over, there are several well-established deployment
scenarios, including software-driven wide-area net-
work (SWAN) (Hong et al., 2013) and B4 (Jain et al.,
2013).

Research conducted by Google has revealed that
data centers typically exhibit a hierarchical structure
with at least five levels of traffic aggregation (Jain
et al., 2013; Noormohammadpour and Raghavendra,
2018). Similar patterns of bandwidth allocation have
been observed in wide-area networks (WANs) (Ku-
mar et al., 2015). Fig. 1 illustrates a prototypical
example of fine-grained bandwidth allocation within
the framework of PINet. Each layer in this hier-
archy represents a distinct scope of resource alloca-
tion. The uppermost layer indicates the link capac-
ity of the port, and the number of nodes at this layer
corresponds to the number of switch panel ports.
The subsequent layers symbolize the subdivisions
of this bandwidth. Within the PINet framework,
these layers are designated, in descending order, as
port, polymorphic, subnet, user, and service. The
DBA algorithm permits the configuration of a guar-
anteed rate (GR) for each node. In scenarios wherein
the aggregate rate at the port surpasses the link ca-
pacity, the bandwidth is apportioned among nodes
in accordance with the hierarchical max-min fair-
ness (MMF) principle (Luangsomboon and Liebe-
herr, 2021). Consequently, each aggregation node
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Fig. 1 Typical five-level bandwidth configuration for
polymorphic smart network (PINet)

(AN) is allocated either the requested bandwidth or
the fair share.

Programmable data planes have introduced flex-
ibility and reconfigurability to data plane devices.
However, their bandwidth management capabilities
continue to rely on conventional queue scheduling
algorithms (Bennett and Zhang, 1996, 1997; Guo,
2001; Ramabhadran and Pasquale, 2003; Saeed et al.,
2019). Despite the effectiveness of these approaches,
they are burdened by multiple implementation con-
straints. Incorporating such features into a pro-
grammable data plane is a complex process, start-
ing with the hardware data plane. Among the pop-
ular choices are P4-based data planes, which can
reach terabit-per-second-level throughput. However,
such a hardware system is constrained by limited on-
chip resources, typically supporting only 1–2 levels,
each hosting 8–32 queues, and offering a finite se-
lection of scheduling algorithm alternatives. In con-
trast, software data planes, such as Open vSwitch
(OVS) (Pfaff et al., 2015), vector packet processor
(VPP) (Barach et al., 2018), and protocol-oblivious
forwarding switch (POFSwitch) (Yu JZ and Wang,
2014), do not impose restrictions on the number of
queues. However, the extensive pre-allocated soft-
ware queues can result in significant memory over-
head and introduce additional computational burden
to the central processing unit (CPU). This could po-
tentially escalate the number of CPU cores in use
and augment the queuing latency of packets.

Current research primarily concentrates on
bandwidth sharing and traffic-scheduling problems
in data center networks. These investigations ac-
count for the bandwidth constraints on network
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pathways and aim to achieve equitable sharing of link
resources by dynamically modulating bandwidth al-
location strategies (Shieh et al., 2011; Chen et al.,
2016; Xia et al., 2017). It is noteworthy that, in the
context of data centers, there is no imperative for the
data plane to preserve a hierarchical data structure.
Additionally, bandwidth allocation is predominantly
achieved via a centralized control plane (Al-Fares
et al., 2010; Benson et al., 2011; Curtis et al., 2011),
potentially leading to considerable convergence la-
tency. Furthermore, several studies have used ac-
tive queue management (AQM) mechanisms to dis-
cern network congestion and probabilistically drop
packets (Sharma et al., 2018; Thapeta et al., 2021;
Li et al., 2023). Yu ZL et al. (2021b) presented
a hierarchical structure built upon the traditional
core stateless fair queuing (CSFQ) strategy (Stoica
et al., 1998), termed hierarchical CSFQ (HCSFQ),
whereas approximate hierarchical allocation of band-
width (AHAB) (MacDavid et al., 2023) focuses on
bandwidth allocation challenges in network slicing.
AHAB addresses the shortcomings of HCSFQ in
terms of convergence speed and uses a sketch-based
algorithm to estimate user rates, thereby reducing
spatial occupancy. It is relevant to note that both
HCSFQ and AHAB apply strategies similar to AQM
in dealing with bandwidth constraints, and these are
implemented within the pipelines of programmable
devices. Both methods use the algorithms similar
to the water-filling approach to heuristically approx-
imate fair sharing.

Modern networks are increasingly relying on
programmable data planes as foundational devices
for packet forwarding, offering greater flexibility and
scalability to meet the needs of various applications
and workloads. This shift is evident across a broad
spectrum of deployment scenarios (Dalton et al.,
2018). As a consequence, we introduce the hier-
archical and scalable dynamic bandwidth allocation
(HSDBA) algorithm, designed for the deployment
in programmable data planes. Distinguished by its
rapid convergence and high efficiency in traffic iso-
lation, HSDBA represents a significant advancement
compared with existing DBA methodologies. Our
contributions are delineated as follows:

1. Addressing the issue of fair bandwidth alloca-
tion, we propose a fine-grained hierarchical method
that can support GR configurations.

2. The proposed method adopts a pipeline-based

approach, eliminating any output queuing latency
within the switch. The scheme is able to cope with
the joining of new ANs and the departure of existing
ones, ensuring the flexibility and scalability of the
allocation.

3. The algorithm can be programmed by the ex-
isting protocol-oblivious forwarding (POF) instruc-
tion set. We implement a prototype of the POF soft-
ware switch (x86 platform), and the experimental
results show that HSDBA can achieve hierarchical
bandwidth allocation and ensure isolation.

2 Related works

Bandwidth allocation and isolation are central
to the performance of network systems (e.g., flow
completion time, long-tail latency, and QoS guar-
antees) in data centers and WANs, ensuring that
different virtual networks can meet their respective
SLAs.

For the software data planes, Eiffel (Saeed et al.,
2019) uses an integer priority queue to efficiently
support a wide range of policies and ranking func-
tions. It introduces novel programming abstractions
to express scheduling policies. The QoS framework
of DPDK (https://www.dpdk.org/) provides a five-
level hierarchical scheduler that implements traffic
shaping, strict priority, and weighted round robin
at different levels. Since the priority of a traffic
class (TC) is strictly defined, its scheduling is deter-
mined by the dequeue state machine which selects
queues in ascending order of priority, and the low-
est priority queue does not have a chance to be pro-
cessed until the higher priority queues finish schedul-
ing. Therefore, DPDK scheduling cannot satisfy the
need for fair scheduling. Hierarchical link sharing
(HLS) (Luangsomboon and Liebeherr, 2021) ensures
hierarchy MMF of bandwidth. HLS supports mini-
mum GRs and isolation between classes. HLS has
overhead comparable to that of the other hierar-
chical scheduling algorithms for Linux kernels, such
as credit-based shaper (CBS) (Floyd and Jacobson,
1995) and hierarchical token bucket (HTB) (Devera,
2003). C2QoS (Yang et al., 2021) is a CPU-cycle
based network QoS strategy applied to vSwitch in
public clouds. Considering the problem of vSwitch
competing with virtual machines (VMs) for CPU
resources, C2QoS allocates input/output-dedicated
CPU resources to each VM to ensure bandwidth.
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However, the context of C2QoS is not the same as
the hierarchical network in this paper, wherein the
software switches are deployed as bare metal in the
WAN and each forwarding pipeline is bound to a
specific logical core, so there is no competition for
CPU and VM resources.

For the hardware data plane, Cascone et al.
(2017) introduced FDPA, a method for bandwidth
sharing predicated on the transmission rates among
TCP senders, using byte counters in P4 switches to
monitor each user’s sending rate and directing in-
coming packets into distinct priority queues. Lee
and Chan (2019) used multicolor marking in virtual
networks to secure bandwidth guarantees, focusing
on bandwidth isolation between virtual network ser-
vices and enhancing the QoS. Cebinae (Yu LC et al.,
2022) uses a token bucket to estimate the per-flow
fair share rate, achieving fairness by “taxing” flows
that exceed a threshold, but it takes several seconds
to converge. Nimble (Thapeta et al., 2021) achieves
precise TCP flow rate limiting by simulating queue
draining in the data plane. However, it supports
only fixed rates set by the control plane. To address
this issue, Wu et al. (2023) proposed AQ, a scal-
able network abstraction method, defining a func-
tion named A-Gap to calculate the difference be-
tween different applications, ensuring that different
congestion control algorithms can properly co-exist.
Additionally, AHAB (MacDavid et al., 2023) and
HCSFQ (Yu ZL et al., 2021b) use an approximate
method for hierarchical bandwidth allocation, which
is implemented on P4 switches. Another category of
research focuses on programmable schedulers, sup-
porting various scheduling tasks that include band-
width allocation, e.g., PIFO (Sivaraman et al., 2016),
PIEO (Shrivastav, 2019), SP-PIFO (Alcoz et al.,
2020), PCQ (Sharma et al., 2020), and AIFO (Yu
ZL et al., 2021a). This is a cutting-edge research
direction in recent years.

It is evident that a majority of existing methods
depend on queue mechanisms to facilitate bandwidth
allocation. However, the finite quantity of queues
available in switches, coupled with their inability to
accommodate arbitrary hierarchical structures and
to adjust dynamically, significantly hampers scala-
bility. We introduce a novel DBA algorithm that
transcends the limitations of queue-based schedul-
ing. A comprehensive explanation of this approach
will be elaborated upon in subsequent sections.

3 Problem specification

In this section, we give our problem definition
and present the objectives on which we focus. Table 1
presents the main notations used in Sections 3 and 4.

Table 1 Summary of notations

Notation Description

N Any non-leaf aggregation node
child(N) Set of child nodes of the aggregation node N

Ri Bandwidth demand, where i ∈ child(N)

αN Fair share rate of child(N)

BN Bandwidth obtained by node N

S, U Satisfied, unsatisfied state
gi Guaranteed rate, where i ∈ child(N)

wi Weight, where i ∈ child(N)

li Peak information rate, where i ∈ child(N)

pkt Packet
l(child) Packet length
Ti, Ti−1 Current, previous packet timestamp

3.1 Weighted max-min fairness

Fairness has consistently held a paramount po-
sition in evaluating the effectiveness of resource allo-
cation strategies. An ideal resource allocation mech-
anism should ensure fairness while optimizing re-
source utilization. MMF is widely acknowledged as a
resource allocation strategy that achieves a balance
between effectiveness and fairness, among the various
approaches used to achieve fairness. MMF shields
flows from starvation while simultaneously optimiz-
ing each flow’s throughput. Furthermore, even in
the presence of malicious flows, MMF can still pro-
vide basic guarantees for normal flows and effectively
reuse the total bandwidth.

MMF categorizes flows into two groups based
on a fair share value denoted as αN . The first cat-
egory encompasses flows with bandwidth require-
ments lower than or equal to αN , and these flows
are allocated a bandwidth resource value denoted as
Ri that aligns with their respective demands. The
second category comprises services with resource re-
quirements surpassing αN , and these services are
allocated bandwidth equivalent to the fair resource
value αN .

Aligned with the issue outlined by MacDavid
et al. (2023), our objective entails the progressive
allocation of link bandwidth to individual ANs in a
hierarchical fashion. When the total bandwidth de-
mand of the child nodes exceeds the capacity BN
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of node N , the equitable allocation of bandwidth to
node N , in accordance with MMF, can be mathe-
matically depicted by the equation below:

αN = argmax
αN

∑
i∈child(N)

min (Ri, wiαN ) . (1)

This study offers support for GR for each AN.
GR represents the minimum rate that a node can
secure in the event of link congestion, serving as a
safeguard against the manipulation of network re-
sources by specific users or applications. Within
the context of MMF, GR is attained through a well-
structured weight configuration that fulfills the fol-
lowing conditions:

w1

g1
=

w2

g2
= . . . =

wn

gn
, (2)

where n represents the number of child nodes of the
AN.

In the context of a programmable switch with
constrained switching capacity, there exists a unique
allocation scheme that adheres to the principles of
weighted MMF. Conventionally, the fair share com-
putation is executed using the water-filling algo-
rithm. However, this algorithm presents an inher-
ent trade-off between convergence speed and accu-
racy. Notably, network traffic in real-world scenar-
ios often demonstrates significant temporal fluctua-
tions. If the convergence speed of the algorithm is
low, bandwidth allocation might not effectively re-
spond to traffic changes, thereby compromising fair-
ness, particularly for shorter flows. Conversely, if
the algorithm lacks adequate accuracy, it could re-
sult in unjust bandwidth allocation outcomes. Con-
sequently, it becomes vital to develop an algorithm
that can concurrently maintain high accuracy and
demonstrate rapid convergence to facilitate efficient
and equitable network resource allocation.

3.2 Objectives

3.2.1 Arrival rate measurement

Accurate estimation of flow rates plays a pivotal
role in QoS management. Through accurate estima-
tion of arrival rates, switch can allocate bandwidth
and resources according to the SLAs or other prior-
itization policies. This practice ensures that criti-
cal applications and services receive sufficient band-
width and priority, thereby optimizing the overall
user experience.

3.2.2 Bandwidth isolation and fairness

The objective is to prevent monopolization of
network bandwidth, and we want to ensure that all
users or applications in the network obtain a fair
share of the bandwidth through on-demand allo-
cation. In this context, network resources are not
fixedly allocated, but dynamically adjusted accord-
ing to their weights and real-time arrival rates.

3.2.3 Bandwidth enforcement

This objective empowers network administra-
tors to impose restrictions on the transmission rate
of specific nodes. Imposing these limitations enables
network administrators to have precise control over
the distribution of network resources, ensuring that
diverse applications and services conform to prede-
termined performance standards. This aspect is of
paramount importance in upholding stability and
reliability of the network, particularly in scenarios
characterized by high network traffic or intense re-
source competition.

3.2.4 Scalability

This objective aims to equip switches with the
flexibility to adjust to new bandwidth configuration
needs and changes in user access. It necessitates that
switches not only facilitate the joining of new ANs
but also adeptly handle the exit of existing ones.

4 HSDBA approach

4.1 Design overview

The overall structure of the algorithm is shown
in Fig. 2, and it consists mainly of three steps. The
first step is rate measurement, which is used to ob-
tain the actual rate of the current-level AN, i.e., the
demand value of the node for bandwidth resources.
This step provides the necessary input information to
ensure an effective and fair allocation of bandwidth.
The next step is bandwidth enforcement, whereby
the switch implements a random packet drop strat-
egy by calculating the drop probability of packets,
thereby limiting the rate of the node within the fair
share rate. For packets determined to be dropped,
they are marked with drop_flag, and this step also
involves maintaining the state values of the node.
The final step is fair share update, in which the fair
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share of each node is recalculated based on the mea-
sured rate and state transitions from the first two
steps. This newly calculated fair share will be used as
the basis for subsequent decisions on whether pack-
ets are dropped. The following subsections discuss
in detail the specific design details of the three steps,
combined with Algorithm 1.

Through these three steps, HSDBA can detect
load changes on the data plane and automatically
manage DBA. This automated process optimizes
both network performance and service quality by en-
suring efficient network utilization. The implemen-
tation of this method is crucial for managing net-
work congestion and maintaining stable operation
for mission-critical applications.

4.2 Rate measurement

Packet headers typically carry information re-
garding packet length. For instance, in the case
of an incoming IPv6 packet, the device uses the

pkt Rate

measurement
Bandwidth

enforcement

Fair share

update

α
N

Traffic

managerProgrammable

pipeline

Fig. 2 Overview of hierarchical and scalable dynamic
bandwidth allocation (HSDBA)

Algorithm 1 HSDBA
Require: pkt, the arrival packet
1: B′

N ← link capacity
2: for each layer i do
3: /* rate measurement */
4: ANi ← table.lookup(i,pkt)
5: ANi.rate ← RateMeasure(ANi, l(pkt))
6: /* bandwidth enforcement */
7: if αi > ANi.rate then
8: ANi.state ← S
9: S.rate ← RateMeasure(ANi−1, l(pkt))

10: else if rand(0, 1) > αiwi
ANi.rate

then
11: ANi.state ← U
12: S.rate ← RateMeasure(ANi−1, 0)

13: drop_flag ← True
14: else
15: ANi.state ← U
16: S.rate ← RateMeasure(ANi−1, 0)

17: end if
18: U.weight ← UpdateWeight(ANi−1.state)

19: /* fair share update */
20: αi ← (BN − S.rate)/U.weight

21: BN ← min(αiwi,ANi.rate)

22: end for

payload_length field specified within the header to
perform layer 2 (L2) rate measurements. Similar
to CSFQ (Stoica et al., 1998), this method uses the
standard exponential averaging mechanism widely
used in networking for rate estimation, as depicted
by Eq. (3). The current rate is influenced by both
current inputs and historical rates, undergoing ad-
justments via an exponential decay factor to reflect
recent changes effectively. This exponential term,
distinguished by the decay factor τ , dictates the de-
gree of influence that the preceding rate exerts on the
current rate. By iteratively applying this formula in
a stepwise fashion to incoming packets, rate metrics
are derived at various temporal points.

Ri = l(pkt)−Ri−1e
−Ti−Ti−1

τ . (3)

Rate measurement is of paramount importance
in various network use cases and serves as a fun-
damental aspect of network performance analysis
and optimization. By facilitating real-time data col-
lection, rate measurement enables the optimization
of network performance, ensuring efficient resource
utilization and maximized QoS. Moreover, it pro-
vides valuable insights into the dynamic behavior of
network traffic, enabling active decision-making and
proactive management of network resources.

4.3 Bandwidth enforcement

The enforcement of bandwidth is achieved
through the execution of packet dropping, guided
by a designated probability. The initial step involves
comparing the value of Ri with fi = min(li, wiαN ).
In scenarios wherein Ri ≤ fi, the packet loss prob-
ability is established as zero, indicating a state of
satisfied for node i, denoted as S. Conversely, if
Ri > fi, i is deemed unsatisfied (represented as U).
The formula for the probability of packet loss is as
follows:

Pdrop = max

(
0, 1− fi

Ri

)
= 1−min

(
1,

fi
Ri

)
. (4)

For packets that reside in the unsatisfied state
U , a random number, rand, is generated by the
switch. This number follows a uniform distribution
in the range of 0 to 1. If the condition rand>Pdrop

is fulfilled, the packet is consequently marked with
drop_flag. The actual drop operation is then carried
out after subsequent fair share updates have been
performed.
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The incorporation of bandwidth enforcement fa-
cilitates zero-queueing, achieved through the execu-
tion of packet drops during the pipelining stage. This
ensures that the packets directed to the network in-
terface card (NIC) do not exceed the link capac-
ity, thereby eliminating the need for queue schedul-
ing. The bandwidth enforcement approach offers
several notable advantages. First, it reduces net-
work latency by minimizing packet queuing latency,
thereby enhancing the timeliness and responsiveness
of packet transmission, which is particularly critical
for latency-sensitive applications and services. Sec-
ond, it simplifies the design and implementation of
the network architecture, reducing the dependence
on complex scheduling algorithms and streamlining
the configuration process. Furthermore, it facilitates
fault diagnosis by mitigating potential failures asso-
ciated with queue scheduling, such as queue overflow,
network congestion, and priority reversal. Apply-
ing pipeline processing minimizes the occurrence of
these failures, simplifies troubleshooting procedures,
and ultimately enhances the reliability and manage-
ability of the network.

4.4 Fair share update

Based on the analysis conducted in Section 3.1,
the concept of weighted max-min fairness (WMMF)
involves classifying nodes into two groups based on
the fair share. Nodes in the satisfied state S ob-
tain bandwidth that matches their demand value.
Conversely, nodes in the unsatisfied state U pro-
cure bandwidth equivalent to wiαN . In the case
where U = ∅, the fair share αN is determined as
max (R1, R2, . . . , Rn). However, if U �= ∅, which in-
dicates congestion within the link, the WMMF prin-
ciple asserts that the expression for αN can be for-
mulated as follows:

BN =
∑

i∈child(N)

min (Ri, wiαN )=
∑
i∈S

Ri +
∑
i∈U

wiαN .

(5)
Thus, the fair share αN can be expressed as

αN =
BN −∑

i∈S Ri∑
i∈U wi

, (6)

where
∑

i∈S Ri denotes the summation of rates for
nodes in the satisfied state S. The computation of
this sum can be performed using the method pre-
sented in Section 4.2. Similarly,

∑
i∈U wi stands for

the sum of weights for the unsatisfied nodes U , as de-
tailed in Section 4.3. Upon determining the packet
loss probability, the variable encapsulating the sum
of weights is maintained in accordance with the cur-
rent state and the previous state.

However, in practice, it is not possible to use
Eq. (6) to compute αN directly because the value
of αN depends on the contents of the sets S and U ,
which in turn depend on the value of αN . Nonethe-
less, it is still possible to compute αN heuristically
using Eq. (6). This is done by first initializing αN

to zero. Subsequently, in each iteration, the current
value of αN is used to determine the sets S and U ,
and then Eq. (6) is used to compute the next value of
αN . Once αN remains constant over successive iter-
ations, the calculation can be stopped. This method,
although indirect, is effective in practice for estimat-
ing the fair share rate.

The entire bandwidth convergence process is
driven by packets within the data plane. Upon each
packet’s arrival at the switch, we harness the state
forwarding capabilities of the programmable switch
to update the state of its associated node and initi-
ate corresponding actions based on state transitions.
To illustrate this process, we construct a two-stage
finite-state machine (FSM), as depicted in Fig. 3 and
Table 2. Within the flow table entries, we use a 1-bit
variable to maintain this state, initializing all ANs to
the U state. If the rate of an AN falls below the fair
share, its state transitions to S. Then, the packet
contributes to the computation of

∑
i∈S Ri and fa-

cilitates the updating of
∑

i∈U wi, further triggering
the recalculation of αN . For other scenarios involv-
ing state transitions, please refer to Table 2.

S U3

2

1

4

Fig. 3 A two-stage finite-state machine for aggrega-
tion nodes

Table 2 Operations corresponding to the two-stage
finite-state machine

State
Update Update satisfied Update
weight AN rate fair share

� � � �

� � � �

� � � �

� � � �

AN: aggregation node
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To provide a concrete example, consider the sce-
nario where three ANs, namely, A1, A2, and A3,
possess an equal weight and share a link capacity of
BN = 50. Given the measured rates of R1 = 10,
R2 = 20, and R3 = 30, we initialize αN = 0 and
S = ∅. In the first iteration, αN = 50−0

3 = 16.7,
resulting in S = {A1}. Moving to the second itera-
tion, αN = 50−10

2 = 20, resulting in S = {A1, A2}.
In the third iteration, αN = 50−(10+20)

1 = 20, lead-
ing to S = {A1, A2}. At this point, the iteration is
complete and the converged fair share is 20.

4.5 Joining and pruning of aggregation nodes

This subsection details the workflow when an
AN joins or exits the network and the corresponding
data structure. Nodes residing on the same hier-
archical level have their matching fields and states
uniformly stored within a singular flow table, as il-
lustrated in Fig. 4. This figure provides a visual
representation of the storage structure for the top
three layers as exemplified in the PINet configura-
tion (shown in Fig. 1). In real-world applications,
the dimensions of the flow table escalate significantly
with an increase in the number of hierarchical layers.
The size of the first table is equivalent to the number
of ports. Conversely, the subnet-level aggregation
within the third table generally encompasses thou-
sands of service entries. By leveraging the pipeline-
based bandwidth allocation strategy, nodes can be
dynamically installed or removed at runtime with
ease. This approach distinctly provides superior scal-
ability compared to the queue-based approach. The
subsequent paragraphs provide a comprehensive ex-
planation of the processes involved when nodes join
or are pruned.

1. Joining. When a packet associated with
AN arrives at the switch, its treatment depends on
whether it explicitly matches an entry in the ta-
ble provided by the controller. If there is a direct

match, state maintenance and fair share update are
executed as outlined in Sections 4.2–4.4. However, if
the packet fails to match any entry, the default action
of the entry is executed, which involves registration
with the control plane via packet_in. This mecha-
nism enables the controller to acquire the entry infor-
mation of unregistered ANs and manage them effec-
tively. The states of the newly installed AN entries
are designated as U , and the state values related to
the ANs are updated accordingly. This approach
ensures the effective management and service provi-
sioning of nodes across varying hierarchical layers.

2. Pruning. In some cases, the control plane
may actively delete nodes in one or more branches.
This requires the controller to trigger the deletion
of all entries in the flow table that belong to that
branch and maintain the state values. To further
complicate the situation, since the whole fair share
update process is packet-driven, when the traffic of
an AN suddenly stops, there will be no subsequent
packets to maintain the state, resulting in zombie en-
tries that keep occupying space and state values. To
solve this problem, one straightforward approach is
to poll all entries and states through the control plane
to find and deal with these entries. This approach
quickly detects changes in bandwidth requirements,
but increases the overhead of the switch’s local con-
trol plane. Another approach is to set an idle time-
out for entries, so that if no packet is matched within
the idle survival time, the contents of the entry are
cleared. This approach reduces the control plane
overhead, but may increase the bandwidth conver-
gence time. Each approach possesses advantages and
disadvantages. Our adopted strategy entails using
polling for internal nodes since they request greater
bandwidth and necessitate timely responses to avoid
resource wastage. Conversely, for a larger number of
leaf nodes, we use the timeout approach to maintain
the state and asynchronously trigger the deletion of
entries.

Flow key Measured rate State

Root 1000

(a) (b) (c)

S S

S

S

S

S

P2 600

P1 400 N1 400

N2 400

N3 200

ActionMatch

Flow key Measured rate State

ActionMatch

Flow key Measured rate State

ActionMatch

Fig. 4 Example of the flow table structure: (a) port-level aggregation; (b) polymorphic-level aggregation;
(c) subnet-level aggregation
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3. Complexity analysis. According to the design
described in this subsection, nodes at the same layer
are collectively stored in a single flow table. Given
this data structure, it is necessary to update and
maintain the status of nodes at each layer within the
tree-like bandwidth configuration. This further im-
plies that a matching operation must be performed
for each layer, and the process for each packet re-
ceived by the switch is identical. Based on this, the
time complexity of this algorithm can be summa-
rized as O(d), where d represents the depth of the
tree. Regarding the space complexity, the algorithm
requires storage of a number of table entries equal
to the total number of nodes n across d flow tables,
thereby defining the space complexity of the algo-
rithm as O(n).

5 Prototype implementation

This section describes the implementation of
HSDBA in a programmable data plane. Specifi-
cally, we implement HSDBA-POF in the software
switch developed on the basis of the existing POF-
Switch (Yu JZ and Wang, 2014) and POF forward-
ing instruction set (POF-FIS). Based on this pro-
totype, the state domain is divided into the global
state, table state, flow state, and packet state using
the method proposed by Jing et al. (2022). Data
types and data locations are used to describe the
data in different state domains. This allows compat-
ibility with different types of data processing with-
out affecting the forwarding performance (Jing et al.,
2021).

The POF-FIS approach exhibits considerable
flexibility in its application, necessitating only {off-
set, length} as domain operands to facilitate the com-
putation of corresponding data. Consequently, we
apply the existing POF-FIS to implement the three
steps outlined in Sections 4.2–4.4, each correspond-
ing to a callable instruction block. The first is the
rate_estimate instruction block, which maintains a
sliding window in the flow state area, accumulates
the total packet length during the window time, and
divides this value by the window length to derive the
instantaneous rate. This rate is then written back to
the packet state for subsequent flow table process-
ing. If the window time is set to <1 s, the total
number of bytes counted within this second equals
the rate value in bytes per second. If the window

value is set to less than one second, additional scal-
ing calculations (i.e., left-shifting or dividing) are
performed to obtain the instantaneous rate. The
second is the bandwidth_enforce instruction block,
using which we execute the random packet drop cal-
culation. The current state of the AN, represented
by a single bit, can be determined using data trans-
fer instructions (e.g., set_field and rand), logical in-
structions (e.g., compare), and arithmetic operations
(e.g., div_field). Lastly, the fairshare_update in-
struction block, based on the state transition deter-
mined in the second step, uses add_field, sub_field,
and div_field operations to complete the fair share
update. It is important to note that the fair share
value is stored in the global data area. This setup al-
lows for its update by different entries, while enabling
subsequent packets to directly read the updated fair
share value. This value then serves as a reference for
the processing of subsequent packet drops.

POFSwitch uses a notable optimization strat-
egy for idle timeouts to facilitate efficient HSDBA.
Specifically, upon the triggering of an idle timeout,
the switch refrains from immediately executing a
delete operation. Instead, it designates the entry
as inactive while preserving the state value, which
represents U .weight in Algorithm 1. This strategy is
underpinned by the observation that in a majority of
cases, subsequent incoming streams may reactivate
these entries. To minimize the registration delay of
a node, the system swiftly reactivates an inactive
entry when a subsequent packet matches it, elimi-
nating the need for a full registration process at the
switch’s local control plane. Upon reaching the end
of the node’s intended lifecycle, the control plane ex-
plicitly removes the corresponding flow table entry.
This streamlined approach optimizes efficiency and
reduces system complexity.

6 Evaluation

6.1 Experimental setup

Fig. 5 shows the testbed for this case study. The
HSDBA-POF prototype has been implemented on
top of POFSwitch and DPDK 19.11.3. The hard-
ware setup includes an Intel Xeon Silver 4216 CPU
operating at 2.10 GHz, complemented by 256 GB
of RAM, and an X710-DA4 NIC. The system runs
on the CentOS 7.9.2009 operating system. Both
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HSDBA-POF and DPDK are compiled using “-O3”
and AVX512 optimizations. The controller works on
another server with the same hardware configuration
as POFSwitch, controlling the switch through the
corresponding south bound interface. The Keysight
Ixia XGS12 network test platform is set up as a traf-
fic generator and analyzer that could simulate thou-
sands of flows connected to the switch. Ixia estab-
lishes 4× 10 Gb/s links with HSDBA-POF.

POFSwitch

Controller4×10 Gb/s

Ixia

Fig. 5 Testbed topology for the experiments

To enable efficient testing, we use distinct bit in-
tervals of the IPv4 destination address as the match-
ing key for each flow table, which is subsequently
installed by the control plane. In our setup, the
packet length is fixed at 1024 bytes. By sequen-
tially enabling and disabling L2 and L3 flow groups
(FGs) in Ixia, we can measure the throughput curve
of the flow using the receive rate display. This mea-
surement provides valuable insights into the switch’s
bandwidth allocation across different flows.

6.2 Isolation of the data plane

6.2.1 Single layer

We evaluate the DBA capabilities of the algo-
rithm in a single-layer scenario with equal or differ-
ent weight configurations. The experimental setup
is similar to that described in other works (Alcoz
et al., 2020; Luangsomboon and Liebeherr, 2021; Yu
ZL et al., 2021b). By controlling the traffic genera-
tor, we generate a total of six user datagram protocol
(UDP) flows originating from different ports, with
each flow transmitting at a rate of 3 Gb/s. These
flows are all forwarded to a single port, with each
flow being continuously sent over a period of 60 s.
The experiment is initially conducted in a single-
layer flat mode, in which all ANs are subordinate
to the root node. The configuration details for this
experiment are presented in Table 3.

Fig. 6 presents the results of bandwidth alloca-
tion under a single-layer configuration. As depicted
in Fig. 6a, when all nodes possess equal weights,
their scheduling results should align with those of
the tail-drop first-in first-out (FIFO) queue. During
the congestion interval (between 30 s and 80 s), each
node secures a fair share of bandwidth. A distinctive
feature of HSDBA is its capacity to flexibly allocate
bandwidth based on the assigned weights of nodes.
As demonstrated in Fig. 6b, during periods of link
congestion, nodes A3 and A6 are able to proportion-
ally allocate more bandwidth.

Table 3 Experimental configuration for verifying
single-layer bandwidth isolation

Class Interval (s)
Rate Equal weight Different weights

(Gb/s) in Fig. 6a in Fig. 6b

A1 [0, 60] 3 1 1
A2 [10, 70] 3 1 1
A3 [20, 80] 3 1 2
A4 [30, 90] 3 1 1
A5 [40, 100] 3 1 1
A6 [50, 110] 3 1 2
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Fig. 6 Bandwidth allocation results in single-layer
flat mode with a link congestion interval of 30–80 s:
(a) equal weight; (b) different weights (References to
color refer to the online version of this figure)
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6.2.2 Multiple layers

Subsequently, we present the experimental re-
sults of hierarchical bandwidth allocation under di-
verse weights in a multilayer configuration. We as-
sess the bandwidth convergence in a two-layer sce-
nario and allocate weights to the nodes across both
layers. The duration and traffic of each flow are kept
consistent with those in the single-layer test. The
specific configuration is depicted in Fig. 7.
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Fig. 7 Bandwidth allocation configuration in the
multilayer mode

Fig. 8 presents the results of bandwidth alloca-
tion under a multilayer configuration. The schedul-
ing results differ from those of the single-layer con-
figuration, primarily due to the initial requirement
for bandwidth allocation to ensure isolation between
nodes A and B at layer 1 (L1). Consider the equal
weight scenario depicted in Fig. 8a: during periods
of link congestion (e.g., between 30 s and 40 s), the
bandwidth request for node A at L1 is 9 Gb/s, while
that of node B is 3 Gb/s. In line with the principle of
fairness, the bandwidth demand of node B1 can be
fully met. However, nodes A1–A3 can only distribute
a fair bandwidth of 7 Gb/s obtained by node A, re-
sulting in approximately 2.3 Gb/s each. Figs. 8b–
8d illustrate more complex scenarios involving vary-
ing weight configurations across layers. The results
demonstrate that HSDBA is capable of distribut-
ing bandwidth equitably among all nodes, adhering
to the hierarchical weight MMF allocation principle.
This weight-sensitive bandwidth allocation strategy

(a)

A
1

B
1

A
2

A
3

B
2

B
3

R
a
te

 (
G

b
/s

)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 10 20 30 40 50 60 70 80 90 100
Time (s)

0.0
110

A
1

B
1

A
2

A
3

B
2

B
3

R
a
te

 (
G

b
/s

)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 10 20 30 40 50 60 70 80 90 100
Time (s)

0.0
110

(c)

A
1

B
1

A
2

A
3

B
2

B
3

R
a
te

 (
G

b
/s

)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 10 20 30 40 50 60 70 80 90 100
Time (s)

0.0
110

(d)

(b)

A
1

B
1

A
2

A
3

B
2

B
3

R
a
te

 (
G

b
/s

)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 10 20 30 40 50 60 70 80 90 100
0.0

110
Time (s)

Fig. 8 Bandwidth allocation results in a multilayer mode with a link congestion interval of 30–80 s: (a) L1
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is crucial for ensuring the performance in critical
applications and enhancing the overall network ef-
ficiency in various scenarios.

6.3 Bandwidth allocation combined with con-
gestion control algorithms

In this experiment, we explore the cooperative
effect between HSDBA and host-side congestion con-
trol mechanisms. Without active bandwidth enforce-
ment by the switch, different congestion control al-
gorithms lead to varying bandwidth convergence re-
sults. For this investigation, we set up an experiment
where FG1 and FG2 each comprise 20 flows. FG1
lasts from 0 to 40 s, while FG2 runs from 20 to 60 s.
The two FGs use distinct congestion control algo-
rithms. We then evaluate the average throughput
achieved per flow in both FG1 and FG2, compar-
ing the results with or without the application of
HSDBA.

As depicted in Fig. 9a, when both FGs use
Linux’s default Cubic algorithm, their convergence
results are strikingly similar, with each flow essen-
tially receiving an equal share of bandwidth. This
can be largely attributed to the inherent fair band-
width allocation mechanism of the TCP.

However, in real-world scenarios, it is improb-
able that each flow traversing the switch will adopt
the same transport layer protocol. To simulate this
situation, we configure FG1 to use the Cubic algo-
rithm and FG2 to use the BBR algorithm (BBR is an
aggressive algorithm that may lead to fairness issues
for TCP connections). Furthermore, we maintain the
setting of FG1 and set FG2 to UDP. As illustrated in
Figs. 9b and 9c, without the application of HSDBA,

the presence of FG2 compresses the traditional TCP
connection and secures more bandwidth, no mat-
ter whether it is TCP-BBR or UDP. This results in
a significant reduction in fairness. Conversely, HS-
DBA can provide fairness guarantees such that TCP
connections using different congestion control algo-
rithms receive nearly equal transmission rates.

Since this research method uses a packet loss
policy for bandwidth limitation, a small amount of
jitter may occur for congestion control algorithms
based on packet loss detection. Nonetheless, the fair-
ness issue is significantly improved compared to the
scenario wherein HSDBA is not applied. In sum-
mary, as network service providers cannot control
all end-hosts to adopt the same congestion control
protocol, this experiment demonstrates that the ap-
plication of HSDBA can achieve fair bandwidth allo-
cation in the presence of a diverse set of congestion
control protocols.

6.4 Bandwidth allocation convergence

In our testbed environment, due to the mini-
mum limit of a 1-s data-sampling interval imposed
by the Ixia tester, we are unable to directly observe
the bandwidth convergence speed (the convergence
time is typically in a millisecond level) from the time
dimension. Consequently, we opt to use the num-
ber of packets driving bandwidth convergence as a
measure of bandwidth convergence speed. For the
experimental setup, we adhere to the same pattern
as HCSFQ and configure four flows in single-layer
mode with a fixed link capacity of 100 Mb/s. These
four flows maintain a stable sending rate of 100 Mb/s,
but each has different start and end time.
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Compared to HCSFQ and AHAB, our approach
uses a more direct and efficient strategy for calcu-
lating the fair bandwidth. Specifically, instead of
iteratively approximating the fair bandwidth using
a heuristic algorithm akin to the water-filling ap-
proach, we directly compute the updated fair share
in a one-step manner through state transition. Con-
sequently, in our approach, as soon as a change in
the flow rate is detected, the switch is capable of
using the current packets to drive the fair share
update. This implies that the speed of bandwidth
convergence is solely influenced by the number of
packets that can drive the measured rate update.
With this computational strategy, our method out-
performs both AHAB and HCSFQ in terms of con-
vergence speed. As shown in Table 4, our method is
approximately 19.6 and 0.5 times faster when com-
pared to HCSFQ and AHAB, respectively, in terms
of convergence speed. These results demonstrate
that by using the strategies of state shifting and on-
the-fly updating, our method can significantly en-
hance the efficiency of bandwidth convergence. This
is crucial for network systems that require real-time
agility.

Table 4 A comparison of the number of packets used
for the convergence of various bandwidth allocation
algorithms

Algorithm Number of packets

HCSFQ 516
AHAB 37
HSDBA 25

6.5 Bandwidth enforcement precision

We evaluate the precision of bandwidth enforce-
ment by setting rate limits that range from 100 kb/s
to 1 Gb/s. As depicted in Fig. 10, HSDBA exhibits
an average deviation of 1.9% when enforcing any pre-
scribed rate limit, resulting in 98.1% accuracy. Based
on the representation of Eq. (4), it can be inferred
that to achieve accurate bandwidth-limiting results,
one must obtain precise packet loss probabilities,
which in turn are determined by accurate bandwidth
measurements. This result underscores the accuracy
of both the rate measurement and drop probability
calculations, demonstrating that HSDBA is capable
of accommodating future growth in port line speeds
and handling any level of rate-limiting scenarios.
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Fig. 10 HSDBA rate enforcement accuracy (100 kb/s
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6.6 Forwarding latency

Packets are subject to three distinct delays in
the switch: processing delay, control plane delay,
and queuing delay. Processing delay refers to the
time taken for each packet to classify and execute the
instruction block. Control plane delay encompasses
the time required for the packet to be transmitted
to the local/global control plane for processing be-
fore being sent back to the switch as a packet_out.
Queuing delay is the latency incurred when the link
is busy transmitting other packets, causing newly
arriving packets to wait in the output buffer.

In our experimental setup, we set the link ca-
pacity to 1 Gb/s and generate four UDP flows,
each capable of transmitting at a rate of 300 Mb/s.
Within POFSwitch, we implement a queue-based
deficit weighted round robin (DWRR) scheduler that
maps the four flows to four queues. This configura-
tion is compared against HSDBA-POF in multilayer
mode to measure the packet forwarding latency. Ad-
ditionally, we establish the latency of the switch op-
erating at 1 Gb/s with zero packet loss as a baseline
for comparison.

The results are depicted in Fig. 11. Since
HSDBA completes the bandwidth enforcement in
the pipeline, the packets are forwarded to the NIC
at a rate that does not exceed the link capacity,
which reduces the latency of the packets waiting in
the software queues. In comparison, the HSDBA-
POF method significantly reduces latency compared
to the queue-based isolation approach, achieving an
average latency reduction of 80.1%. If the long-tail
effect of the CPU system is not taken into account,
then theoretically the packets for each flow can be
forwarded in a constant time in any case. In the con-
text of the control plane latency of the joining packet,
it takes about 3.6 ms to send the packet_in to the
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open network operating system (ONOS) controller
and complete the registration, and about 4.53 ms to
update the new rules in the data plane.
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6.7 Scalability

In this experiment, we demonstrate the scala-
bility of HSDBA by increasing the number of config-
ured layers and nodes. When the number of nodes
to be supported increases, the aggregate rates of the
nodes may differ by orders of magnitude. Moreover,
the presence of measurement errors may potentially
lead to a decrease in flow fairness. Similarly, when
the number of supported layers increases, multiple
rate measurements are needed, which may cause the
calculation errors at each layer to accumulate and
eventually become unacceptable.

We configure the bandwidth allocation as a six-
layer complete binary tree, which includes 32 leaf
nodes. We refer to the high “H” scenario configura-
tion in the work of Luangsomboon and Liebeherr
(2021), setting nodes 1–12 to generate 100 Mb/s
UDP flows and nodes 13–32 to generate 500 Mb/s
UDP flows, with all nodes set to an equal weight.
We measure their convergent bandwidth.

The experimental results are shown in Fig. 12.
When only an FIFO method is used as the output,
the presence of large flows greatly reduces the band-
width obtained by small flows, and the rate of some
small flows may even drop to near-zero. In con-
trast, HSDBA can provide hierarchical bandwidth
isolation guarantees, and all small flows (flows 1–12)
can obtain the bandwidth they need. Flows 13–16,

which belong to the left subtree of the binary tree,
can obtain bandwidth equal to their demand values
in higher-level bandwidth allocation, while flows 17–
32, which all belong to the right subtree, can only
fairly share 5 Gb/s of bandwidth.
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Fig. 12 HSDBA fair bandwidth allocation in a five-
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For the hardware resources occupied by
HSDBA, our method consumes mainly the storage
resources in the switch. The 128-bit flow metadata
space can meet the state programming requirements
of HSDBA. For a flow table with a table item size of
4096, the huge page memory occupied by a single-
layer flow table is approximately 2.68 MB, which is
acceptable in the software data plane.

7 Conclusions

This paper introduces HSDBA, an approach to
hierarchical and fair DBA in software-defined net-
working frameworks. Diverging from traditional
methodologies, HSDBA is implemented entirely in
the data plane and does not rely on queue sched-
ulers. The bandwidth allocation process is executed
in three packet-driven steps: rate measurement,
bandwidth enforcement, and fair share update. This
process ensures that HSDBA’s bandwidth allocation
mechanism is both granular and responsive.

Our comprehensive evaluations reveal that
HSDBA outperforms current solutions in achieving
hierarchical MMF, showcasing a convergence rate up
to 19.6 and 0.5 times higher compared with those
of HCSFQ and AHAB, respectively. Regarding la-
tency, HSDBA minimizes packet-queuing delays by
preemptively dropping packets in the pipeline, yield-
ing an average latency reduction of 80.1% when
compared to queue-based scheduling algorithms.
Additionally, HSDBA maintains a bandwidth
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enforcement accuracy of 98.1%. Moreover, HSDBA
surpasses these traditional algorithms in terms of
scalability and flexibility, theoretically accommodat-
ing any number of bandwidth configurations across
any network layer. This marks progress in meet-
ing and managing the growing demand for network
bandwidth, providing network service providers and
data center operators with a powerful tool to ensure
high-quality service and efficient resource utilization.

Future work will extend the applicability of
HSDBA to P4-enabled switches, addressing the chal-
lenges posed by hardware resource and comput-
ing constraints. Future tests on hybrid hardware
and software data planes will further determine
HSDBA’s efficiency and flexibility in various network
environments.
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